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Abstract

Extension results, expressed in terms of complete boundedness, leading to neces-
sary and sufficient conditions for the solvability of power moment problems with
unbounded operator data are given. As an application, necessary and sufficient con-
ditions for the existence of selfadjoint and normal extensions for some classes of
commuting tuples of unbounded linear operators are obtained.
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1 Introduction.

Let Ω be a nonempty set, and let Σ be a σ-algebra of subsets of Ω. Let also H
be a complex Hilbert space, and let B(H) be the algebra of all bounded, linear
operators on H. A fundamental concept in functional analysis, connecting the
objects above, is that of spectral measure (sometimes designed as a resolution
of the identity, see [Rud], Definition 12.17). Given a spectral measure E : Σ→
B(H), one can associate to each measurable function f : Ω → C a densely
defined, closed operator in H, say f(T ), as a result of an integration, and
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the assignment f → f(T ) enjoys a long list of useful properties (see [Rud],
Theorem 13.24).

The construction of a spectral measure is not always an easy matter. An
important tool to perform such a construction is offered by Naimark’s dilation
theorem (see, for instance, [Pau], Theorem 4.6). Naimark’s theorem shows that
the construction a spectral measure, associated to a certain problem, can be
often reduced to the construction of a (somewhat more accessible object called)
positive measure, i.e., an operator-valued map F : Σ → B(H), assuming
positive values, such that Fx,y := 〈F (∗)x, y〉 is a complex-valued measure
for all x, y ∈ H, where 〈∗, ∗〉 is the inner product of H.

Given a positive measure F : Σ → B(H), and a linear space S consisting of
Σ-measurable complex-valued functions on Ω, we may consider the following
subset of H:

DF,S := {x ∈ H, f ∈ L2(Fx,x), f ∈ S}.
It is easily seen that DF,S is a subspace of H. Moreover, by replacing, if nec-
essary, the measure F by its compression to the closure of DF,S , we may
assume, with no loss of generality, that the space DF,S is dense in H. In that
case, we have a map assigning to each function f ∈ S a sesquilinear form sf
on D = DF,S , given by sf (x, y) :=

∫
f dFx,y, x, y ∈ D.

Conversely, given an inner product space D, a linear space S consisting of
Σ-measurable complex-valued functions on Ω, and a map assigning to each
function f ∈ S a sesquilinear form sf on D, a positive measure F : Σ→ B(H)
such that sf (x, y) =

∫
f dFx,y for all x, y ∈ D is sought, where H is the Hilbert

space obtained by completing the inner product space D. This is a special
type of a moment problem which is described in [Vas1] (where other details
and references concerning such problems can be found).

The main purpose of this paper is to characterize, in terms of complete bound-
edness and complete positivity (fruitful concepts introduced by Arveson [Arv],
and extended to more general conditions by Powers [Pow]), the existence of
extensions of some linear maps, defined on subspaces of fractions of contin-
uous functions, whose values are sesquilinear forms on inner product spaces
(see Theorem 2.5), following the scalar model initiated in [Vas2].

In the third section, a solution to a moment problem as described above (see
Theorem 3.2) is given. This result is then applied to obtain necessary and
sufficient conditions for the existence of selfadjoint or normal extensions for
certain commuting families of unbounded operators.

As a sample, we present a particular case of Theorem 3.3. Let T1, T2 : D 7→
D be commuting symmetric operators in the inner product space D. The
operators T1, T2 admit commuting selfadjoint extensions if and only if for all
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l1, l2 ∈ Z+, m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ D with

m∑
j=1

〈(1 + T 2
1 )l1(1 + T 2

2 )l2xj, xj〉 ≤ 1,
m∑
j=1

〈(1 + T 2
1 )l1(1 + T 2

2 )l2yj, yj〉 ≤ 1,

and for all m×m two variable polynomial matrices p = (pj,k) with the property
supt1,t2 ‖(1 + t21)−l1(1 + t22)−l2p(t1, t2)‖m ≤ 1, we have∣∣∣∣∣∣

m∑
j,k=1

〈pj,k(T1, T2)xk, yj〉

∣∣∣∣∣∣ ≤ 1,

where ‖ ∗ ‖m is the norm in the algebra of m×m complex matrices.

Theorem 3.3 gives a characterization of the existence of selfadjoint extensions
whose joint spectral measure is supported by a given set, for some finite fam-
ilies of commuting symmetric operators.

The existence of normal extensions is characterized by Theorem 3.4. We note
that the present normal extension results are essentially different from the
corresponding ones in [StSz2] or [Vas2].

Now, let us describe some of the main tools used in this work. Let Ω be
a compact Hausdorff space and let C(Ω) be the algebra of all continuous,
complex-valued functions, endowed with the sup-norm ‖f‖∞ = supω∈Ω |f(ω)|.
As before, let H be a complex Hilbert space, and let B(H) be the algebra of
all bounded, linear operators on H. We shall use the following results:

Theorem A. Let Ψ : C(Ω)→ B(H) be linear, positive and unital. Then Ψ is
completely positive and completely contractive.

This assertion is essentially Theorem 4 in [Sti], see also [Pau], Theorem 3.11
and Proposition 3.6.

Theorem B. Let M ⊂ C(Ω) be a subspace with 1 ∈ M. If Φ : M→ B(H)
is a unital, complete contraction, then there exists a (completely) positive map
Ψ : C(Ω)→ B(H) extending Φ.

This is a consequence of Arveson’s extension theorem (see [Arv] or [Pau],
Corollary 7.6).

Let Q be a family of non-null positive elements of C(Ω). We say that Q is a
multiplicative family if (i) 1 ∈ Q, (ii) q′, q′′ ∈ Q implies q′q′′ ∈ Q, and (iii) if
qh = 0 for some q ∈ Q and h ∈ C(Ω), then h = 0.

Let C(Ω)/Q denote the algebra of fractions with numerators in C(Ω), and
with denominators in the multiplicative family Q, which is a unital C-algebra
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(see, for instance, [Wae] for details). This algebra has a natural involution
f → f̄ , induced by the natural involution of C(Ω).

To define a natural topological structure on C(Ω)/Q, for every q ∈ Q we
define the space

C(Ω)/q := {f ∈ C(Ω)/Q; qf ∈ C(Ω)}.

Obviously, C(Ω)/q ⊃ C(Ω). Setting ‖f‖∞,q := ‖qf‖∞ for each f ∈ C(Ω)/q,
the pair (C(Ω)/q, ‖ ∗ ‖∞,q) becomes a Banach space (see also [Vas2]).

Remark 1.1 In the family Q there is a natural partial ordering, which is
reflexive and transitive but not necessarily symmetric, written as q′|q′′ for
q′, q′′ ∈ Q, meaning q′ divides q′′, that is, there exists a q ∈ Q such that
q′′ = q′q.

Assuming that the constant function 1 has no divisor in Q \ {1}, the relation
q′|q′′ becomes symmetric too, but this hypothesis is not necessary for further
development.

Note also that if q′, q′′ ∈ Q and q′|q′′, then C(Ω)/q′ ⊂ C(Ω)/q′′ with continuous
inclusion mapping iq′,q′′ : C(Ω)/q′ ↪→ C(Ω)/q′′.

Indeed, if q′′ = q′q and f ∈ C(Ω)/q′, then

‖f‖∞,q′′ = ‖q′qf‖∞ ≤ ‖q‖∞‖q′f‖∞ = ‖q‖∞‖f‖∞,q′ .

For this reason, C(Ω)/Q =
⋃
q∈QC(Ω)/q can be naturally regarded as an

inductive limit of Banach spaces.

As noticed in [Vas2], the algebras of fractions of continuous functions provide
an appropriate framework for the study of positive measures having a certain
decay related to the given multiplicative family.

2 Positive maps on spaces of fractions

Let Ω be a compact Hausdorff space, let Q ⊂ C(Ω) be a multiplicative family,
and let C(Ω)/Q be the algebra of fractions with numerators in C(Ω), and with
denominators in Q.

We use throughout the text the notation q−1 to designate the fraction 1/q for
any q ∈ Q. In each space C(Ω)/q we have a positive cone (C(Ω)/q)+ consisting
of those elements f ∈ C(Ω)/q such that qf ≥ 0 as a continuous function.
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Let D be an inner product space (whose inner product will be denoted by
〈∗, ∗〉), and let SF (D) be the vector space of all sesquilinear forms on D. The
Hilbert space completion of D will be denoted by H.

Definition 2.1 Fix a q ∈ Q. A linear map ψ : C(Ω)/q → SF (D) will be
called unital if ψ(1)(x, y) = 〈x, y〉, x, y ∈ D. We say that ψ is positive if ψ(f)
is positive semidefinite for all f ∈ (C(Ω)/q)+.

More generally, let Q0 ⊂ Q be nonempty. Let F =
∑
q∈Q0

C(Ω)/q, and let
ψ : F → SF (D) be linear. The map ψ is said to be unital (resp. positive) if
ψ|C(Ω)/q is unital (resp. positive) for all q ∈ Q0.

Following [Pow], we shall also use a stronger positivity definition. A linear
subspace F =

∑
q∈Q0
Fq of C(Ω)/Q (where Q0 ⊂ Q and Fq ⊂ C(Ω)/q for

all q ∈ Q0) will be called symmetric, if for all q ∈ Q0 and f ∈ Fq we have
f̄ ∈ Fq. We denote by M(F) the linear space of all finite matrices over F , i.e.
all matrices (fj,k)j,k∈N such that fj,k 6= 0 for at most finitely many (j, k) ∈ N2.
The set M(C(Ω)/Q) has the structure of a ∗-algebra in an obvious manner,
and it can be identified with

⋃
q∈QM(C(Ω)/q). For q ∈ Q, let Kq denote

the set of all f = (fj,k)j,k∈N in M(C(Ω)/q) such that for all ω ∈ Ω the matrix
(q(ω)fj,k(ω))j,k∈N is positive semidefinite. Then an easy calculation shows that
K :=

⋃
q∈QKq is a cone, which is admissible in the sense of Powers (see [Pow],

Definition 3.1).

Let φ : F → SF (D) be linear. We say that φ is completely positive (in the
sense of Powers [Pow]), if for all matrices f = (fj,k)j,k∈N ∈M(F)∩K we have

∞∑
j=1

∞∑
k=1

φ(fj,k)(xk, xj) ≥ 0, (xj)j∈N ∈ DN. (1)

Theorem 2.2 Let Q0 ⊂ Q be nonempty, let F =
∑
q∈Q0

C(Ω)/q, and let
ψ : F → SF (D) be linear and unital. The map ψ is positive if and only if

sup{|ψ(hq−1)(x, x)|; h ∈ C(Ω), ‖h‖∞ ≤ 1} = ψ(q−1)(x, x), q ∈ Q0, x ∈ D.

If ψ : F → SF (D) is positive, there exists a unique positive B(H)-valued
measure F on the Borel subsets of Ω such that

ψ(f)(x, y) =
∫

Ω
f dFx,y, f ∈ F , x, y ∈ D.

Proof. Let ψ : F → SF (D) be linear and unital. Set ψ1 = ψ|C(Ω). The
map ψ1 is positive if and only if there exists a positive, unital, linear map
Ψ1 : C(Ω) → B(H) such that ψ1(h)(x, y) = 〈Ψ1(h)x, y〉, x, y ∈ D. This can
be obtained by standard extension arguments, which will be briefly presented
for the convenience of the reader.
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Assuming ψ1 positive, if h ∈ C(Ω) is positive, then

0 ≤ ψ1(h)(x, x) ≤ ‖h‖∞‖x‖2, x ∈ D,

because ψ1 is also unital. From this estimate we derive

|ψ1(h)(x, y)| ≤ ‖h‖∞‖x‖ ‖y‖, x, y ∈ D,

via the Cauchy-Schwarz inequality. Using the density of D in H and the Riesz
theorem concerning the dual of H, we derive the existence of a positive op-
erator Ψ1(h) ∈ B(H) such that ψ1(x, y) = 〈Ψ1(h)x, y〉, x, y ∈ D. Moreover,
the assignment h→ Ψ1(h), h ≥ 0, is additive and positively homogeneous. As
every function h ∈ C(Ω) is an algebraic combination of four positive functions,
we derive easily the general assertion.

Conversely, the existence of a positive, unital, linear map Ψ1 : C(Ω)→ B(H)
such that ψ1(h)(x, y) = 〈Ψ1(x), y〉, x, y ∈ D clearly implies that ψ1 is positive.

We use the fact that a linear functional θ : C(Ω) → C is positive if and only
if it is continuous and ‖θ‖ = θ(1)

Set ψ̃q(h) = ψ(hq−1), h ∈ C(Ω), q ∈ Q0.

Suppose ψ positive and fix an x ∈ D. As C(Ω) ⊂ F and each positive function
h ∈ C(Ω) is also positive in C(Ω)/q, the map ψ̃q is positive on C(Ω). Put
ψ̃q,x(h) = ψ̃q(h)(x, x), h ∈ C(Ω), which is a positive functional on C(Ω).
Hence

‖ψ̃q,x‖ = sup{|ψ(hq−1)(x, x)|; h ∈ C(Ω), ‖h‖∞ ≤ 1}
= ψ̃q(1)(x, x) = ψ(q−1)(x, x), q ∈ Q0,

which is the stated condition.

Conversely, the equality ‖ψ̃q,x‖ = ψ(q−1)(x, x) = ψ̃q(1)(x, x) shows that ψ̃q,x
is positive on C(Ω). Then there exists a positive (Borel) measure µq,x on Ω
such that ψ̃q,x(h) =

∫
Ω h dµq,x, h ∈ C(Ω), for all q ∈ Q0.

The relation ψ̃q1,x(hq1) = ψ(h)(x, x) = ψ̃q2,x(hq2) for all q1, q2 ∈ Q0 and
h ∈ C(Ω) implies the equality q1µq1,x = q2µq2,x. Therefore, there exists a
positive measure µx such that µx = qµq,x for all q ∈ Q0.

The equality µx = qµq,x shows the set {ω; q(ω) = 0} must be µx-null. Con-
sequently, µq,x = q−1µx, and the function q−1 is µx-integrable for all q ∈ Q0.
Moreover, the measure µx is uniquely determined because of the equality
ψ(h)(x, x) =

∫
Ω h dµx, h ∈ C(Ω). Setting 4µx,y = µx+y − µx−y + iµx+iy −

iµx−iy, x, y ∈ D, we have the representation ψ(h)(x, y) =
∫

Ω h dµx,y for all
h ∈ C(Ω) and x, y ∈ D, via the polarization formula. This shows, in par-
ticular, that the map ψ1 = ψ|C(Ω) is (unital and) positive. Therefore, there
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exists a unital positive map Ψ1 : C(Ω) → B(H) such that ψ1(h)(x, y) =
〈Ψ1(h)x, y〉, x, y ∈ D. It is well known that the map Ψ1 has an integral repre-
sentation Ψ1(h) =

∫
Ω h dF, where F is a positive B(H)-valued measure F on

the Borel subsets of Ω. As Fx,y = µx,y for all x, y ∈ D, and D is dense in H,
the measure F is uniquely determined.

If f ∈ F is arbitrary, then f =
∑
j∈J hjq

−1
j , with hj ∈ C(Ω), qj ∈ Q0 for all

j ∈ J, J finite. We can write

ψ(f)(x, x) =
∑
j∈J

ψ̃qj (hj)(x, x) =
∑
j∈J

∫
Ω
hj dµqj ,x =

∫
Ω
fdµx =

∫
Ω
f dFx,x

for all x ∈ D, from which we easily derive the formula in the statement. The
measure F being positive, the map ψ must be also positive. 2

Remark 2.3 Let F :=
∑
q∈Q0

C(Ω)/q for a nonempty Q0 ⊂ Q, and let ψ :
F → SF (D) be a unital positive map on F . Set ψq = ψ|C(Ω)/q and ψq,x(f) =
ψq(f)(x, x) for all q ∈ Q0, h ∈ C(Ω)/q and x ∈ D. If ψ̃q is defined as in the
proof of Theorem 2.2, we have the equality

‖ψq,x‖ = sup
‖f‖∞,q≤1

|ψq,x(f)| = sup
‖h‖∞≤1

|ψ̃q,x(h)| = ‖ψ̃q,x‖ = ψ(q−1)(x, x)

for all q ∈ Q0 and x ∈ D.

We shall need the following fact:

Lemma 2.4 Let Q be a multiplicative system on Ω and let q, q1, q2 ∈ Q be
such that q = q1q2. Suppose that ψ : C(Ω)/q → SF (D) is a positive, linear
map satisfying

ψ(q−1)(x, x) > 0 and ψ(q−1
1 )(x, x) > 0 , for all x ∈ D \ {0},

so that 〈∗, ∗〉q := ψ(q−1)(∗, ∗) and 〈∗, ∗〉q1 := ψ(q−1
1 )(∗, ∗) are scalar products

on D. Let Dq and Dq1 denote the completions of D with respect to 〈∗, ∗〉q
and 〈∗, ∗〉q1, respectively. Then there exist uniquely determined linear maps
Ψq : C(Ω)→ B(Dq) and Ψq,q1 : C(Ω)→ B(Dq1) such that, for all h ∈ C(Ω),

〈Ψq(h)x, y〉q = ψ(h/q)(x, y), x, y ∈ D, (2)

and

〈Ψq,q1(h)x, y〉q1 = ψ(h/q1)(x, y) = 〈Ψq(hq2)x, y〉q, x, y ∈ D. (3)

Moreover, the maps Ψq and Ψq,q1 are unital, completely contractive and com-
pletely positive.
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Proof. By the positivity of ψ we obtain, for all h ∈ (C(Ω))+ and x ∈ D,

ψ(h/q)(x, x) ≤ ‖h‖∞ψ(q−1)(x, x) = ‖h‖∞〈x, x〉q . (4)

If h is an arbitrary continuous function on Ω, it can be written in the form
h = h1−h2 +i(h3−h4) with continuous functions satisfying 0 ≤ hj ≤ ‖h‖∞ on
Ω. Representing the sesquilinear forms (x, y) 7→ ψ(hj/q)(x, y) in polar form,
we conclude from (4) that we have for all x, y ∈ D with ‖x‖q ≤ 1 and ‖y‖q ≤ 1

|ψ(h/q)(x, y)| ≤ 16‖h‖∞ .

Therefore, there exists a unique operator Ψq(h) ∈ B(Dq), such that (2) holds.
Moreover, the linearity and positivity of ψ imply the linearity and positivity
of Ψq. Because of

〈Ψq(1)x, y〉q = ψ(q−1)(x, y) = 〈x, y〉q , x, y ∈ D,

we see that Ψq(1) is the identity operator on Dq. Hence, by Theorem A in the
Introduction, Ψq is completely positive and completely contractive.

As q1 divides q, we have C(Ω)/q1 ⊂ C(Ω)/q and the restriction of ψ to C(Ω)/q1

is positive. Hence, replacing in the preceding arguments q by q1, we obtain a
unique linear map Ψq,q1 : C(Ω)→ B(Dq1) such that

〈Ψq,q1(h)x, y〉q1 =ψ(h/q1)(x, y) = ψ(hq2/q)(x, y)

=〈Ψq(hq2)x, y〉q

for all h ∈ C(Ω) and x, y ∈ D, and as before, Ψq,q1 is completely positive and
completely contractive. 2

Let ” ≺ ” be another partial ordering on the set Q. We say that ” ≺ ” is
multiplicative if q′ ≺ q′′ implies q′|q′′ for all q′, q′′ ∈ Q.

As usually, a subset Q0 ⊂ Q is said to be cofinal if for every q ∈ Q we can
find a q′ ∈ Q0 such that q ≺ q′.

In the next statement we shall use the notation ‖ ∗ ‖n,∞ to designate the
canonical norm of the C∗–algebra Mn(C(Ω)) of n × n matrices with entries
from C(Ω). Similarly, for further use, the symbol ‖ ∗ ‖n denotes the canonical
norm in the C∗–algebra Mn(C). The norms used in the statement (a) of the
next theorem were introduced in Remark 2.3.

Theorem 2.5 Let Q be a multiplicative system on Ω endowed with a mul-
tiplicative partial ordering ” ≺ ”, and let Q0 be a cofinal subset of Q with
1 ∈ Q0.

Let F =
∑
q∈Q0
Fq, where Fq is a vector subspace of C(Ω)/q such that q′−1 ∈

Fq′ ⊂ Fq for all q′ ∈ Q0 and q ∈ Q0, with q′ ≺ q. Let also φ : F → SF (D) be

8



linear and unital, and set φq = φ|Fq, φq,x(∗) = φq(∗)(x, x) for all q ∈ Q0 and
x ∈ D.

The following two statements are equivalent:

(a) The map φ extends to a unital, positive, linear map ψ on C(Ω)/Q such
that, for all x ∈ D and q ∈ Q0, we have:

‖ψq,x‖ = ‖φq,x‖, where ψq = ψ|C(Ω)/q, ψq,x(∗) = ψq(∗)(x, x).

(b) (i) φ(q−1)(x, x) > 0 for all x ∈ D \ {0} and q ∈ Q0.
(ii) For all q ∈ Q0, n ∈ N, x1, . . . , xn, y1, . . . , yn ∈ D with

n∑
j=1

φ(q−1)(xj, xj) ≤ 1,
n∑
j=1

φ(q−1)(yj, yj) ≤ 1,

and for all (fj,k) ∈Mn(Fq) with ‖(qfj,k)‖n,∞ ≤ 1, we have∣∣∣∣∣∣
n∑

j,k=1

φ(fj,k)(xk, yj)

∣∣∣∣∣∣ ≤ 1.

If F is a symmetric subspace of C(Ω)/Q, then (a) and (b) are equivalent to

(c) φ is completely positive.

Proof. If φ : F → SF (D) extends to a unital, positive ψ : C(Ω)/Q → SF (D)
such that ‖ψq,x‖ = ‖φq,x‖ for all q ∈ Q0 and x ∈ D, then ‖ψq,x‖ = ‖φq,x‖ =
φ(q−1)(x, x) = ψ(q−1)(x, x), by Theorem 2.2 and Remark 2.3. Because of
‖q‖−1

∞ ≤ q−1 for all q ∈ Q0 and the positivity of ψ, we obtain for all x ∈ D\{0}:

φ(q−1)(x, x) = ψ(q−1)(x, x) ≥ ψ(‖q‖−1
∞ )(x, x) = ‖q‖−1

∞ 〈x, x〉 > 0,

and thus we have (i).

Applying Lemma 2.4, we obtain, for all q ∈ Q, a uniquely determined lin-
ear map Ψq : C(Ω) → B(Dq) satisfying (2), that is completely positive and
completely contractive. In particular, for all n ∈ N, x1, . . . , xn, y1, . . . , yn ∈ D
with

n∑
j=1

‖xj‖2
q =

n∑
j=1

φ(q−1)(xj, xj) ≤ 1,
n∑
j=1

‖yj‖2
q =

n∑
j=1

φ(q−1)(yj, yj) ≤ 1,

and for all (fj,k) ∈Mn(Fq) with ‖(qfj,k)‖n,∞ ≤ 1, we have∣∣∣∣∣∣
n∑

j,k=1

φ(fj,k)(xk, yj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j,k=1

〈Ψq(qfj,k)xk, yj〉q

∣∣∣∣∣∣ ≤ 1
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which proves (ii). Hence (a) implies (b).

Moreover, if F is a symmetric subspace of C(Ω)/Q and F = (fj,k)j,k=1,...,n ∈
Mn(F) is positive in the natural order of Mn(C(Ω)/Q), then F ∈Mn(Fq) for
some q ∈ Q0 and F is positive in Mn(C(Ω)/q), i.e. qF is positive in Mn(C(Ω)).
By the complete positivity of Ψq, we obtain for all x1, . . . , xn ∈ D,

0 ≤
n∑
j=1

n∑
k=1

〈Ψq(qfj,k)xk, xj〉q =
n∑
j=1

n∑
k=1

φ(fj,k)(xk, xj) .

Hence, we have shown that, in this case, (a) implies (c).

Suppose now that φ : F → SF (D) is a unital, linear map satisfying conditions
(i) and (ii). In particular, for all q ∈ Q0, the sesquilinear form 〈∗, ∗〉q := φ(q−1)
defines a scalar product on D. We write Dq for the completion of D with
respect to the corresponding norm ‖∗‖q (see also Lemma 2.4) and still denote
the extended scalar product by 〈∗, ∗〉q. As φ is unital, we have D1 = H.
By (ii), for all h ∈ qFq, the sesquilinear form φ(h/q) extends to a uniquely
determined bounded sesquilinear form on Dq. Hence there exists a unique
operator Φq(h) ∈ B(Dq), satisfying

φ(h/q)(x, y) = φ(q−1)(Φq(h)x, y) = 〈Φq(h)x, y〉q

for all x, y ∈ D. Note that Φq(1) is the identity operator on Dq. From condition
(ii), we conclude that the unital linear map

Φq : qFq → B(Dq)

is a complete contraction and hence, by Theorem B in the Introduction, it
extends to a completely positive unital map Ψq : C(Ω)→ B(Dq). Thus,

〈Ψq(qf)x, y〉q = φ(f)(x, y), f ∈ Fq, x, y ∈ D. (5)

Applying Lemma 2.4 to the map f 7→ 〈Ψq(qf)∗, ∗〉q from C(Ω)/q to SF (D),
we obtain a unique, unital, completely contractive and completely positive
linear map Ψq,q1 : C(Ω)→ B(Dq1), satisfying

〈Ψq,q1(h)x, y〉q1 = 〈Ψq(hq2)x, y〉q (6)

and

|〈Ψq,q1(h)x, y〉q1| = |〈Ψq(hq2)x, y〉q| ≤ ‖h‖∞‖x‖q1‖y‖q1 , (7)

for all h ∈ C(Ω), x, y ∈ D, q1, q ∈ Q0, q2 ∈ Q, q1q2 = q.

For every q ∈ Q0, we denote by Kq the set of all those families

a = (a(f, x, y))f∈C(Ω)/q, x,y∈D ∈ CC(Ω)/q×D×D
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satisfying

|a(f, x, y)| ≤ ‖qf‖∞‖x‖q‖y‖q, f ∈ C(Ω)/q, x, y ∈ D. (8)

Endowed with the product topologies, the topological spaces Kq, q ∈ Q0, and
hence K :=

∏
q∈Q0

Kq are compact.

For each q ∈ Q0, let now Hq be the set of all a = (aq′)q′∈Q0 ∈ K such that for
all q′ ∈ Q0 with q′ ≺ q: the map f 7→ aq′(f, ∗, ∗) is a positive linear map from
C(Ω)/q′ to SF (D) extending φ|Fq′ and satisfying

aq′(f, x, y) = aq(f, x, y), f ∈ C(Ω)/q′, x, y ∈ D. (9)

Clearly, the sets Hq are closed in K and hence compact. In order to prove⋂
q∈Q0

Hq 6= ∅, it therefore suffices to show that all finite intersections Hq1 ∩
· · ·∩Hqn with q1, . . . , qn ∈ Q0 are not empty. As Q0 is cofinal in Q, there exists
some q ∈ Q0 such that qj ≺ q for j = 1, . . . , n. Let the operator Ψq ∈ B(Dq)
and, for all divisors q′ ∈ Q0 of q, the operators Ψq,q′ ∈ B(Dq′) be as constructed
above. We define for all x, y ∈ D, q′ ∈ Q0, and all f ∈ C(Ω)/q′:

aq′(f, x, y) :=

0 if q′ does not divide q

〈Ψq,q′(q
′f)x, y〉q′ if q′ divides q

for all f ∈ C(Ω)/q′, x, y ∈ D. Notice, that a := (aq′)q′∈Q0 ∈ K by (7).

Fix an index j ∈ {1, . . . , n} and let q′ ∈ Q0 satisfy q′ ≺ qj. Then there are
q′j, q̃j ∈ Q such that qj = q′q′j and q = qj q̃j. We conclude from (6) that for all
f ∈ C(Ω)/q′ and x, y ∈ D we have:

aq′(f, x, y) =〈Ψq,q′(q
′f)x, y〉q′ = 〈Ψq(q

′q′j q̃jf)x, y〉q = 〈Ψq(qf)x, y〉q
=〈Ψq,qj (qjf)x, y〉qj = aqj (f, x, y) ,

so that f 7→ aq′(f, ∗, ∗) is a linear map from C(Ω)/q′ to SF (D) which is
positive by the positivity of Ψq,q′ and extends φ|Fq′ because of Fq′ ⊂ Fq and
(5). Hence, a := (aq′)q′∈Q0 ∈ Hq1 ∩ · · · ∩Hqn .

It follows that there exists some b = (bq)q∈Q0 ∈
⋂
q∈Q0

Hq. We define now, for
all f ∈ C(Ω)/Q =

⋃
q∈Q0

C(Ω)/q, x, y ∈ D:

ψ(f)(x, y) := bq(f, x, y) if f ∈ C(Ω)/q .

To see that this is well defined, suppose that f ∈ C(Ω)/qj, j = 1, 2 with
q1, q2 ∈ Q0. As Q0 is cofinal in Q there exists some q ∈ Q0 such that q1 ≺ q
and q2 ≺ q, and so both divide q. As b ∈ Hq, we have for all x, y ∈ D,

bq1(f, x, y) = bq(f, x, y) = bq2(f, x, y),
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and the map (x, y) 7→ bq(f, x, y) is a sesquilinear form on D. Thus, ψ :
C(Ω)/Q → SF (D) is a well defined linear map which is easily seen to be
positive and extends φ.

Given q ∈ Q0, we see from the fact that b satisfies (8) that

‖φq,x‖ ≤ ‖ψq,x‖ ≤ ‖x‖2
q = φ(q−1)(x, x) = φq,x(q

−1) ≤ ‖φq,x‖,

for all x ∈ D, which completes the proof of (a).

Finally, suppose that F is a symmetric subspace of C(Ω)/Q and that the
condition in (c) is satisfied. Then φ is a completely positive map on F in the
sense of [Pow]. Note also that every f = f̄ ∈ C(Ω)/Q can be represented
as f = h/q with h ∈ C(Ω) real valued and q ∈ Q0 (via the fact that Q0 is
cofinal in Q). Setting g = ‖h‖∞/q, we have g ∈ Fq, and the difference g − f
is positive in Fq (even when g − f is regarded as a matrix). In other words,
with the terminology of [Pow], the space F is cofinal in C(Ω)/Q with respect
to the admissible cone K (see Definition 2.1). We conclude from Theorem 3.7
in [Pow] that φ extends to a completely positive map ψ on C(Ω)/Q, showing
that (c) implies (a), via Theorem 2.2. 2

In the scalar case D = C, we identify SF (D) with C. Using the fact that, in
this situation, bounded linear functionals on Fq are automatically completely
bounded and the cb-norm coincides with the norm ([Pau], Theorem 3.9), we
obtain, as a particular case, Theorem 3.7 in [Vas2].

Corollary 2.6 Let Q be a multiplicative system on Ω endowed with a mul-
tiplicative partial ordering ” ≺ ” and let Q0 be a cofinal subset of Q with
1 ∈ Q0.

Let F =
∑
q∈Q0
Fq, where Fq is a vector subspace of C(Ω)/q such that q′−1 ∈

Fq′ ⊂ Fq for all q′ ∈ Q0 and q ∈ Q0, with q′ ≺ q. A linear functional φ : F →
C with φ(1) > 0 extends to a positive linear functional ψ : C(Ω)/Q → C with
‖ψ|C(Ω)/q‖ = ‖φ|Fq‖ for all q ∈ Q0 if and only if ‖φ|Fq‖ = φ(q) > 0 for all
q ∈ Q0.

Proof. Without loss of generality we may assume φ(1) = 1. With the remarks
above, the statement follows directly from Theorem 2.5. 2

For every q ∈ Q we denote by Z(q) the set {ω ∈ Ω; q(ω) = 0}, that is the
zeros of q on Ω. For subsets Q1 of Q we write Z(Q1) :=

⋃
q∈Q1

Z(q).

Combining Theorem 2.5 with Theorem 2.2, we show now:

Corollary 2.7 Suppose that, with the hypotheses of Theorem 2.5, condition
(b) is satisfied. Then there exists a positive B(H)–valued measure F on the
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Borel subsets of Ω such that

φ(f)(x, y) =
∫

Ω
f dFx,y, f ∈ F , x, y ∈ D. (10)

For every such measure F and every q ∈ Q, we have F (Z(q)) = 0. Hence, if
Q contains a countable subset Q1 with Z(Q1) = Z(Q), then F (Z(Q)) = 0.

Proof. The existence of F with (10) follows from Theorems 2.5 and 2.2. If
F is any such measure and q ∈ Q, since Q0 is cofinal in Q, there exists some
q0 ∈ Q0 with q ≺ q0, and hence Z(q) ⊂ Z(q0). Fix an x ∈ D \ {0} and an
arbitrary ε > 0. With Aε := {ω ∈ Ω; 0 ≤ q0(ω) ≤ ε/φ(q−1

0 )(x, x)}, we obtain

Fx,x(Z(q)) ≤
∫
Aε

q0(ω)

q0(ω)
dFx,x(ω) ≤

∫
Aε

ε

φ(q−1
0 )(x, x)q0(ω)

dFx,x(ω)

≤ ε

φ(q−1
0 )(x, x)

∫
Ω
q−1

0 dFx,x = ε

and thus Fx,x(Z(f)) = 0 for all x ∈ D, which implies F (Z(q)) = 0. By means
of the σ–additivity of the scalar measures, we also obtain the last statement
of the Corollary. 2

3 Selfadjoint and normal extensions

In a classical paper by Fuglede (see [Fug]) dealing with the multidimensional
power moment problem, an operator theoretic characterization of moment
multi-sequences in terms of existence of some commuting selfadjoint exten-
sions is given. This is an important motivation to study selfadjoint or normal
extensions of some given linear transformations.

To fix the terminology, let T1, . . . , Tn be linear operators defined on a dense
subspace D of a Hilbert space H. Assume that D is invariant under T1, . . . , Tn
and that T1, . . . , Tn commute on D. We say that the tuple T = (T1, . . . , Tn)
has a selfadjoint (resp. normal) extension if there exists a Hilbert space K
containing H as a subspace, and a tuple A = (A1, . . . , An) consisting of com-
muting (in the sense, that the corresponding spectral measures commute)
selfadjoint (resp. normal) operators in K such that D ⊂ ∩nj=1D(Aj) and
Tjx = Ajx, x ∈ D, for all j = 1, . . . , n.

Remark 3.1 Our methods give primarily some ”dilations” but, as in the
proofs of Theorem 3.3 in [Bi] and Lemme 2 in [Fo], we can prove that these
are actually extensions. Let us explain the meaning of this assertion, giving
some direct arguments.

Note that if S : D(S) ⊂ H 7→ H is a symmetric operator with SD(S) ⊆ D(S),
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and if B : D(B) ⊂ K 7→ K is a selfadjoint operator such that H ⊂ K, D(S) ⊂
D(B2) and Skx = PBkx, x ∈ D(S), k = 1, 2, where P is the orthogonal
projection of K onto H, then Sx = Bx for all x ∈ D(S). Indeed, we have

〈Sx, Sx〉 = 〈Sx, PBx〉 = 〈Sx,Bx〉

and

〈Bx, Sx〉 = 〈PBx, Sx〉 = 〈S2x, x〉 = 〈B2x, x〉 = 〈Bx,Bx〉,
for all x ∈ D(S). Therefore

‖Sx−Bx‖2 = 〈Sx, Sx〉 − 〈Sx,Bx〉 − 〈Bx, Sx〉+ 〈Bx,Bx〉 = 0,

for all x ∈ D(S).

Similarly, if S : D(S) ⊂ H 7→ H is an arbitrary linear operator and if B :
D(B) ⊂ K 7→ K is a normal operator such that H ⊂ K, D(S) ⊂ D(B),
Sx = PBx and ‖Sx‖ = ‖Bx‖ for all x ∈ D(S), then Sx = Bx for all
x ∈ D(S).

Let D be a complex inner product space and let φ : Pn → SF (D) be a linear
unital map. We are interested to find a positive measure F on the Borel subsets
of Rn, with values in B(H), where H denotes the completion of D, such that
φ(p)(x, y) =

∫
p dFx,y for all p ∈ Pn and x, y ∈ D, which is, in fact, an operator

moment problem (see, for instance, [Vas1]). When such a positive measure F
exists, we say that φ : Pn → SF (D) is a moment form and the measure F is
said to be a representing measure for φ. When the representing measure F of
φ vanishes on the complement of the closed subset K in Rn, we say that φ is
a K-moment form.

We intend to apply the characterization given by Theorem 2.5. As in [Vas2],
we shall use the following framework.

Let Zn
+ be the set of all multi-indices α = (α1, . . . , αn), i.e., αj ∈ Z+ for all

j = 1, . . . , n.

Let Pn be the algebra of all polynomial functions on Rn, with complex coef-
ficients. We shall denote by tα the monomial tα1

1 · · · tαn
n , where t = (t1, . . . , tn)

is the current variable in Rn, and α ∈ Zn
+.

Let (R∞)n = (R ∪ {∞})n, i.e., the Cartesian product of n copies of the one
point compactification R∞ = R∪{∞} of the real line R. We consider the family
Qn consisting of all rational functions of the form qα(t) = (1 + t21)−α1 · · · (1 +
t2n)−αn , t = (t1, . . . , tn) ∈ Rn, where α = (α1, . . . , αn) ∈ Zn

+ is arbitrary. The
function qα can be continuously extended to (R∞)n \ Rn for all α ∈ Zn

+.
Moreover, the set Qn becomes a multiplicative family in C((R∞)n). Set also
pα(t) = qα(t)−1, t ∈ Rn, α ∈ Zn

+.
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Let Pn,α be the vector space generated by the monomials tβ = tβ1
1 · · · tβn

n , with
βj ≤ 2αj, j = 1, . . . , n, α ∈ Zn

+. For each p ∈ Pn,α, the rational function
p/pα can be continuously extended to (R∞)n \ Rn, and so it can be regarded
as an element of C((R∞)n). Therefore, Pn,α is a subspace of C((R∞)n)/qα =
pαC((R∞)n) for all α ∈ Zn

+.

Fix a closed set K ⊂ Rn. As we are primarily interested in the unbounded case,
we will assume, in general, that K is unbounded. We write K̂ for the closure of
K in (R∞)n, which is a compact space. Let Qn(K̂) be the set of all functions
from Qn, (extended to (R∞)n and) restricted to K̂. This is a multiplicative
family in C(K̂). For q ∈ Qn(K̂) let A(q) := {α ∈ Zn

+ ; qα|K ≡ q}. We

introduce a partial ordering in Qn(K̂) by defining q′ ≺ q′′ if for all α ∈ A(q′)
there exists some β ∈ A(q′′) such that β − α ∈ Zn

+. In this case we have

q′′ = q′qβ−α|K̂, which shows that the partial ordering “≺” is multiplicative.
Notice, that the space Pn(K) of all restrictions to K of polynomials in Pn may
be regarded as a subspace of the algebra of fractions C(K̂)/Qn(K̂). Indeed,
with Pq :=

∑
α∈A(q)Pn,α|K, we have q−1 ∈ Pq ⊂ C(K̂)/q and Pn(K) =⋃

q∈Qn(K̂)Pq. Moreover, because of Pn,α ⊂ Pn,β if β − α ∈ Zn
+, we see that

Pq′ ⊂ Pq′′ whenever q′ ≺ q′′.

This discussion shows that the required conditions to apply Theorem 2.5 are
fulfilled. Note also that if s =

∑
α∈A(q) sα ∈ Pq =

∑
α∈A(q)Pn,α|K for a fixed

q ∈ Qn(K̂), we have qs =
∑
α∈A(q) sαq =

∑
α∈A(q) sαqα ∈ C(K̂). Hence, s ∈

C(K̂)/q and ‖s‖∞,q := supt∈K̂ |sq| = supt∈K̂ |sqα| for all α ∈ A(q), which
provides the natural norm of the space Pq.

Let φ : Pn → SF (D) be a unital, linear map. If φ is a K-moment form, then
we clearly have ψ(p) = 0 for each polynomial p such that p|K = 0.

Conversely, the linear map φ : Pn → SF (D) is said to be K-compatible if it
has the property that φ(p) = 0 whenever p|K = 0. In such a case, φ induces
a linear map on Pn(K), say φ̃, given by φ̃(f) = φ(p), for all f ∈ Pn(K) and
p ∈ Pn with f = p|K. As the map φ̃ is unambiguously defined by φ, it will be
also denoted by φ.

Notice, that K-compatibility can only be violated if K is contained in the set
of zeros of a polynomial p 6= 0. In particular, if intK 6= ∅, then every linear
map φ : Pn → SF (D) is K-compatible. In the case n = 1, every linear map
φ : Pn → SF (D) is K-compatible for all unbounded closed subsets K of R

It is clear that if φ : Pn → SF (D) is a positive, linear map such that
|φ(p)(x, x)| ≤ supt∈K |qα(t)p(t)|φ(pα)(x, x) for all p ∈ Pn,α, x ∈ D and α ∈ Zn

+,
then φ is K-compatible. Nevertheless, a stronger condition is necessary in or-
der to derive the existence of a representing measure for such a form.
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Theorem 3.2 Let K ⊂ Rn be closed and unbounded, let D be a complex inner
product space and let φ : Pn → SF (D) be a unital, linear map.

The map φ is a K-moment form if and only if

(i) φ(pα)(x, x) > 0 for all x ∈ D \ {0} and α ∈ Zn
+.

(ii) The map φ is K-compatible and for all α ∈ Zn
+, m ∈ N and x1, . . . , xm,

y1, . . . , ym ∈ D with

m∑
j=1

φ(pα)(xj, xj) ≤ 1,
m∑
j=1

φ(pα)(yj, yj) ≤ 1,

and for all f = (fj,k) ∈ Mm(Pq) with supt∈K ‖q(t)f(t)‖m ≤ 1, where

q = qα|K̂, we have ∣∣∣∣∣∣
m∑

j,k=1

φ(fj,k)(xk, yj)

∣∣∣∣∣∣ ≤ 1.

Proof. Assume first that φ is a K-moment form and let F be a representing
measure of φ carried by K. Then we have φ(p)(x, y) =

∫
K p dFx,y for all p ∈ Pn

and x, y ∈ D. As noticed above, such a map φ is K-compatible. Therefore, it
induces a linear and unital map φ : Pn(K)→ SF (D). Moreover, if q ∈ Qn(K̂)
and α ∈ A(q), we have for all x ∈ D \ {0},

φ(q−1)(x, x) = φ(pα)(x, x) =
∫
K
pα dFx,x ≥

∫
K
dFx,x = ‖x‖2 > 0,

as pα ≥ 1 and F is positive. This shows that condition (i) in Theorem 2.5
holds for φ̃.

To prove condition (ii), we define a unital, linear map ψ : C(K̂)/Qn(K̂) →
SF (D) via the equation ψ(f)(x, y) =

∫
K f dFx,y for all f ∈ C(K̂)/Qn(K̂) and

x, y ∈ D. This definition is correct, since for each f ∈ C(K̂)/Qn(K̂) we can
find an index α ∈ Zn

+ such that h := fqα|K̂ ∈ C(K̂). Then we have∫
K
|f | dFx,x ≤ ‖h‖∞

∫
K
pα dFx,x = ‖h‖∞φ(pα)(x, x) <∞,

for all x ∈ D. This shows that each f ∈ C(K̂)/Qn is integrable with respect
to each measure Fx,x, and hence integrable with respect to each measure Fx,y,
for all x, y ∈ D, by the polarization formula. Moreover, the restriction of
ψ to the space C(K̂)/q is clearly positive, for all q ∈ Qn(K̂). Thus, ψ is a
unital, positive extension of φ. Setting, as before, ψq = ψ|C(K̂)/q, ψq,x(∗) =

ψq(∗)(x, x), φq = φ|Pq, φq,x(∗) = ψq(∗)(x, x) for all q ∈ Qn(K̂) and x ∈ D, we
have:

φ(q−1)(x, x) = ψ(q−1)(x, x) = ‖ψq,x‖ ≥ ‖φq,x‖ ≥ φ(q−1)(x, x),
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via Theorem 2.2. This shows that the map φ : Pn(K) → SF (D) satisfies
condition (a) in Theorem 2.5.

Fix α ∈ Zn
+, m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ D such that

m∑
j=1

φ(q−1)(xj, xj) =
m∑
j=1

φ(pα)(xj, xj) ≤ 1,

m∑
j=1

φ(q−1)(yj, yj) =
m∑
j=1

φ(pα)(yj, yj) ≤ 1,

where q = qα|K̂. Take f = (fj,k) ∈ Mm(Pq) with supt∈K ‖q(t)p(t)‖m ≤ 1.
Then, by (ii) in Theorem 2.5, we infer that∣∣∣∣∣∣

m∑
j,k=1

φ(fj,k)(xk, yj)

∣∣∣∣∣∣ ≤ 1.

Conversely, assume that conditions (i) and (ii) are fulfilled. Because φ is K-
compatible, it induces the unital, linear map φ : Pn(K)→ SF (D), as noticed
before. Moreover, conditions (i) and (ii) in the statement above imply condi-
tions (i) and (ii) in Theorem 2.5. Note also that the function q(1,...,1) is null on

the set K̂ \K, and this set contains the zeros of any function from Qn(K̂).

By virtue of Theorem 2.5, and by Corollary 2.7 as well, it follows that the
map φ extends to a unital, positive, linear map having a representing measure
F̃ on the Borel sets of K̂, whose support lies in K. Then the measure F given
by F (B) := F̃ (B ∩ K̂) for all Borel sets B in Rn is a positive B(H)–valued
measure satisfying

φ(p)(x, y) =
∫
K
p dF̃x,y =

∫
Rn
pdFx,y , p ∈ Pn .

Hence, φ is a K–moment form. 2

Remark 1 In the statements of Theorem 3.2, the conditions (i) and (ii) may
be replaced by similar conditions, in which the multi-index α runs only in a
cofinal family in Zn

+ (with respect to the partial ordering ξ ≺ η for two multi-
indices ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn), meaning that ξj ≤ ηj, j = 1, . . . , n),
which suffices to apply Theorem 2.5.

Note also that if the map Pn 3 p → p|K ∈ Pn(K) is injective, then Pq =
Pn,α|K where α is the only multi-index such that A(q) = {α}, for all q ∈
Qn(K̂).

We shall use the following well-known fact: If S = (S1, . . . , Sn) is a tuple of
(not necessarily bounded) commuting normal linear operators in a Hilbert
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space K, in the sense that their spectral measures E1, . . . , En commute, then
there exists a unique spectral measure E on Cn, satisfying E(A1× . . .×An) =
E1(A1) · · ·En(An) for arbitrary A1, . . . , An in σ-algebra Bor(C) of all Borel
sets in C, and Sjx =

∫
Cn zjdE(z)x for all x in the domain D(Sj) of Sj, j =

1, . . . , n. We call E the joint spectral measure of S and say that E has support
in a closed set K ⊂ Cn if E(Cn \K) = 0. In particular, when S = (S1, . . . , Sn)
consists of commuting selfadjoint operators, the support of their joint spectral
measure lies in Rn (details concerning joint spectral measures and integrals
can be found in [B-S]; see also [Rud] for some details).

Theorem 3.3 Let K ⊂ Rn be closed and let T = (T1, . . . , Tn) be a tuple of
symmetric, linear operators defined on a dense subspace D of a Hilbert space
H. Assume that D is invariant under T1, . . . , Tn and that T1, . . . , Tn commute
on D. Let φT : Pn → SF (D) be the linear unital map given by

φT (p)(x, y) := 〈p(T )x, y〉 , p ∈ Pn, x, y ∈ D .

The tuple T admits a selfadjoint extension such that its joint spectral measure
has support in K if and only if the map φT is K-compatible and for all α ∈
Zn

+, m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ D with

m∑
j=1

φT (pα)(xj, xj) ≤ 1,
m∑
j=1

φT (pα)(yj, yj) ≤ 1,

and for all p = (pj,k) ∈Mm(Pq) with supt∈K ‖q(t)p(t)‖m ≤ 1, where q = qα|K̂,
we have ∣∣∣∣∣∣

m∑
j,k=1

φT (pj,k)(xk, yj)

∣∣∣∣∣∣ ≤ 1.

Proof. Assume first that T admits a selfadjoint extension. Then there exists
a Hilbert space K containing H and a tuple A = (A1, . . . , An) consisting
of commuting selfadjoint operators in K such that D ⊂ D(Aα) and Tαx =
Aαx, x ∈ D, for all α ∈ Zn

+. Moreover, the joint spectral measure E : Bor(Rn)
of A vanishes on Rn \ K. If we define F : Bor(Rn) → B(H) by F (S) :=
PE(S)|H for all S ∈ Bor(Rn), where P is the orthogonal projection of K
onto H, we have for all p ∈ Pn, x, y ∈ D,∫

Rn
pdFx,y =

∫
Rn
pdEx,y =

〈 ∫
Rn
p(z)dE(z)x, y

〉
= 〈p(A)x, y〉

=〈p(T )x, y) = φT (p)(x, y) .

Hence, F is a representing measure for φT which vanishes on Rn \K and φT
is a K–moment form. It now follows from Theorem 3.2 that the condition in
the theorem must be satisfied.
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Conversely, suppose that the condition in the statement holds.

First note that, φT (pα)(x, x) = 〈pα(T )x, x〉 ≥ 〈x, x〉 for all α ∈ Zn
+. Thus,

if the condition in the statement is fulfilled for T , then the map φT satisfies
conditions (i) and (ii) of Theorem 3.2. Hence, there exists a positive measure F
on the Borel sets of Rn with values in B(H), which is a representing measure
for φT , and which vanishes on Rn \ K. By the Naimark dilation theorem
([Pau], Theorem 4.6), there exists a Hilbert space K, a bounded linear operator
V : H → K and a selfadjoint spectral measure E on the Borel sets of Rn with
values in B(K), such that F (A) = V ∗E(A)V for all A ∈ Bor(Rn). Moreover,
the measure E also vanishes on Rn \K.

Because of F (K) = 1H and E(K) = 1K, the operator V is an isometry. Hence,
identifying H with its isometric image V (H), we see that

F (S) = PE(S)|H , S ∈ Bor(Rn),

where P denotes the orthogonal projection from K onto H. We then obtain
selfadjoint operators A1, . . . , An by

D(Aj) = {x ∈ K ;
∫
K
|tj|2d〈E(t)x, x〉} <∞}

and

Ajx :=
∫
K
tjdE(t)x , x ∈ D(Aj) .

As we have 0 ≤ φT (|p|2)(x, x) =
∫
K |p(t)|2d〈F (t)x, x〉 < +∞ for all p ∈ Pn

and x ∈ D, using a well known argument (see [Bi] or [Fo]), we infer that

〈Tαx, y〉 = φT (tα)(x, y) =
∫
K
tαd〈F (t)x, y〉

=
∫
K
tαd〈E(t)x, y〉 = 〈Aαx, y〉 = 〈PAαx, y〉,

provided x, y ∈ D. Hence, PAαx = Tαx for all x ∈ D, α ∈ Zn
+, which shows

that the selfadjoint tuple A := (A1, . . . , An) is a dilation of T = (T1, . . . , Tn),
and so A is actually a selfadjoint extension of T , via Remark 3.1. 2

Remark 2 When K = Rn, the previous statement becomes much simpler.
Indeed, in this case the map φT is automatically Rn-compatible and we have
Pq = Pn,α where α is the only multi-index such that q = qα. Therefore, with
the notation of Theorem 3.3, the tuple T = (T1, . . . , Tn) admits a selfadjoint
extension if and only if for all α ∈ Zn

+, m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ D
with

m∑
j=1

〈pα(T )xj, xj〉 ≤ 1,
m∑
j=1

〈pα(T )yj, yj〉 ≤ 1,
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and for all p = (pj,k) ∈Mm(Pn,α) with supt∈Rn ‖qα(t)p(t)‖m ≤ 1, we have

∣∣∣∣∣∣
m∑

j,k=1

〈pj,k(T )xk, yj〉

∣∣∣∣∣∣ ≤ 1.

The particular case n = 2 has been already presented in the Introduction.

We now consider situations in (C∞)n, where C∞ is the one point compact-
ification of the complex plane C. From now on, let Qn denote the family
of all functions of the form qα(z) := (1 + |z1|2)−α1 · · · (1 + |zn|2)−αn , with
z = (z1, . . . , zn) ∈ Cn and α = (α1, . . . , αn) ∈ Zn

+. As in the real case, the
functions qα extend continuously to (C∞)n and Qn is a multiplicative family
in C((C∞)n).

For all α ∈ Zn
+, we denote by Tn,α the linear spaces generated by the monomials

zξzη := zξ11 · · · zξnn z1
η1 · · · znηn such that, for j = 1, . . . ., n, we have ξj+ηj < 2αj

or ξj = ηj = αj.

Note, that for all f ∈ Tn,α the function qαf extends continuously to (C∞)n and
that Tn,α ⊂ Tn,β if αj ≤ βj, j = 1, . . . , n. We also consider the linear subspace
Tn :=

∑
α∈Zn

+
Tn,α of C((C∞)n)/Qn.

Let now K be an unbounded closed subset of Cn and K̂ its closure in (C∞)n.
We define (as in the discussion before Theorem 3.2) Tn(K) := {f |K ; f ∈ Tn},
and let Qn(K̂) denote the set of restrictions to K̂ of all functions in Qn
(extended to (C∞)n), which is a multiplicative set in C(K̂). For q ∈ Qn(K̂)
let A(q) := {α ∈ Zn

+ ; qα|K̂ = q}. We introduce a partial ordering in this
set by defining q′ ≺ q′′ if for all α ∈ A(q′) there exists some β ∈ A(q′′) such
that β − α ∈ Zn

+. In this case we have q′′ = q′qβ−α|K̂, so the partial ordering
“≺” is multiplicative. The space Tn(K) may be regarded as a subspace of
the algebra of fractions C(K̂)/Qn(K̂). Indeed, with Tq :=

∑
α∈A(q) Tn,α|K, we

have q−1 ∈ Tq ⊂ C(K̂)/q and Tn(K) =
⋃
q∈Qn(K̂) Tq. Moreover, because of

Tn,α ⊂ Tn,β if β − α ∈ Zn
+, we see that Tq′ ⊂ Tq′′ whenever q′ ≺ q′′. Hence, the

conditions to apply Theorem 2.5 are fulfilled.

Let now T = (T1, . . . , Tn) be a tuple of linear operators defined on a dense
subspace D of a Hilbert space H such that Tj(D) ⊂ D and TjTkx = TkTjx for
all j, k ∈ {1, . . . , n}, x ∈ D. In this situation, we may define a unital linear
map φT : Tn → SF (D) by

φT (zξzη)(x, y) :=〈T ξx, T ηy〉 , x, y ∈ D, α ∈ Zn
+, (11)

which extends by linearity to the space Tn of all polynomials in z1, . . . , z1, . . . , zn
which is generated by these monomials. An easy induction proof shows that,
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for all α, β in Zn
+ with β − α ∈ Zn

+, and x ∈ D \ {0}, we have

0 < 〈x, x〉 ≤ φT (q−1
α )(x, x) ≤ φT (q−1

β )(x, x) . (12)

When the map φT : Tn 7→ SF (D) is K-compatible (that is, φT (p) = 0 if p ∈ Tn
and p|K = 0), then it induces a map from Tn(K) into SF (D), for which we
keep the same notation.

Theorem 3.4 Let K ⊂ Cn be closed and let T = (T1, . . . , Tn) be a tuple of
linear operators defined on a dense subspace D of a Hilbert space H. Assume
that D is invariant under T1, . . . , Tn and that T1, . . . , Tn commute on D. The
tuple T admits a normal extension having a joint spectral measure whose sup-
port lies in K if and only if the map φT : Tn 7→ SF (D) is K-compatible, and
for all α ∈ Zn

+, m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ D with

m∑
j=1

φT (q−1
α )(xj, xj) ≤ 1,

m∑
j=1

φT (q−1
α )(yj, yj) ≤ 1,

and for all p = (pj,k) ∈Mm(Tq) with supt∈K ‖q(t)p(t)‖m ≤ 1, where q = qα|K̂,
we have ∣∣∣∣∣∣

m∑
j,k=1

φT (pj,k)(xk, yj)

∣∣∣∣∣∣ ≤ 1.

Proof. If the condition of the theorem is fulfilled, and so we have a linear
and unital map φT : Tn(K)→ SF (D) induced by φT , then conditions (i) (by
(12)) and (ii) of Theorem 2.5) are satisfied for φT . Hence, by that theorem
and Corollary 2.7, there exists a regular, positive B(H)–valued measure F on
the Borel sets of K̂, such that (10) holds for φT and such that F (K̂ \K) = 0.
Because φT is unital, F (K) is the identity operator on H. As in the proof
of the preceding theorem, by the Naimark dilation theorem ([Pau], Theorem
4.6), there exists a Hilbert space K containing H as a closed subspace and a
spectral measure E : Bor(K) → B(K) such that F (A) = PE(A)|H for all
A ∈ Bor(K), where P denotes the orthogonal projection from K onto H. For
j = 1, . . . , n, let Nj be the corresponding normal operators with domains

D(Nj) :=
{
x ∈ K ;

∫
K
|zj|2d〈E(z)x, x〉} <∞

}
and

Njx :=
∫
K
zjdE(z)x , x ∈ D(Nj) .

Going back to the arguments from [Bi] and [Fo], for all x, y ∈ D, j = 1, . . . , n,
we have

〈PNjx, y〉 =〈Njx, y〉 =
∫
K
zjd〈E(z)x, y〉 =

∫
K
zjd〈F (z)x, y〉

=φT (zj|K)(x, y) = φT (zj)(x, y) = 〈Tjx, y〉 .
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Hence, PNjx = Tjx for all x ∈ D, j = 1, . . . , n. Note also that

‖Tjx‖2 =φT (|zj|2)(x, x) =
∫
K
|zj|2d〈F (z)x, x〉

=
∫
K
|zj|2d〈E(z)x, x〉 = ‖Njx‖2.

for all x ∈ D, j = 1, . . . , n, which shows that the tuple N := (N1, . . . , Nn) is
a normal extension of T = (T1, . . . , Tn) (see also the proof in Remark 3.1).

Conversely, if T = (T1, . . . , Tn) admits a normal extension N := (N1, . . . , Nn)
with joint spectral measure E having support contained in K, then, for all
α ∈ Zn

+, the space D is contained in

D(Tα) ⊂ D(Nα) =
{
x ∈ K ;

∫
K
|zα|2d〈E(z)x, x〉 <∞

}
.

It follows that, for all f ∈ C(K̂)/(qα|K̂), the function f is integrable on K
with respect to the positive scalar measure dEx,x := d〈E(∗)x, x〉. Using the
decomposition 4Ex,y = Ex+y,x+y − Ex−y,x−y + iEx+iy,x+iy − iEx−iy,x−iy we see

that ψ : C(K̂)/Qn(K̂) 7→ SF (D), defined by

ψ(f)(x, y) :=
∫
K
f(z)d〈E(z)x, y〉, x, y ∈ D, f ∈ C(K̂)/Qn(K̂),

is a linear map which is obviously unital and positive. Moreover, ψ is an
extension of φT because N extends T . As the map ψ has support in K, the
map φT should be K-compatible.

If we set φ = φT , ψq = ψ|C(K̂)/q, ψq,x(∗) = ψq(∗)(x, x), φq = φ|Tq, φq,x(∗) =

ψq(∗)(x, x) for all q ∈ Qn(K̂) and x ∈ D, we have:

φ(q−1)(x, x) = ψ(q−1)(x, x) = ‖ψq,x‖ ≥ ‖φq,x‖ ≥ φ(q−1)(x, x),

via Theorem 2.2. This shows that the map φ : Tn(K) → SF (D) satisfies
condition (a) in Theorem 2.5. Consequently, by Theorem 2.5, we infer that
the condition in the statement is satisfied. 2

For the particular case n = 1, the set Q1 consists of all functions of the form
ql := (1 + |z|2)−l, with z ∈ C and l ∈ Z+. Because of

q−1
l (z) = (1 + zz)l =

l∑
k=0

(
l

k

)
zkzk

we obtain from Theorem 3.4:

Corollary 3.5 Let S : D(S) ⊂ H 7→ H be a linear operator such that
SD(S) ⊂ D(S). The operator S admits a normal extension if and only if
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for all l ∈ Z+, m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ D(S) with

m∑
j=1

l∑
k=0

(
l

k

)
〈Skxj, Skxj〉 ≤ 1,

m∑
j=1

l∑
k=0

(
l

k

)
〈Skyj, Skyj〉 ≤ 1,

and for all p = (pj,k) ∈Mm(T1), with supz∈C ‖(1 + |z|2)−lp(z)‖m ≤ 1, we have∣∣∣∣∣∣
m∑

j,k=1

φS(pj,k)(xk, yj)

∣∣∣∣∣∣ ≤ 1.

Instead of working with (R∞)n and (C∞)n, we could also have taken the one
point compactifications Rn ∪ {∞} and Cn ∪ {∞}. Instead of Qn, one then
considers the multiplicative family {qk ; k ∈ Z+}, where q(t) := 1+‖t‖2 for all
t ∈ Rn, respectively t ∈ Cn. Instead of Pn,α and Tn,α the linear hull Tn,k of the
space of all polynomials of degree < 2k − 1 and the functions qj, 0 ≤ j ≤ k,
have to be taken.

The formulations and the proofs of the corresponding variants of Theorems 3.2,
3.3 and 3.4 are left to the reader.

A different characterization of tuples of symmetric operators having selfadjoint
extensions can be found in [Vas1]. The actual statement of Theorem 3.4 is more
explicit in terms of the given data. The case of one operator, covered by our
Corollary 3.5, also occurs in [StSz2], with a completely different approach.
For a further characterization for subnormal operators see also Theorem 3 in
[StSz1]

Let us finally mention that our main result (Theorem 2.5) has been recently
extended to a a noncommutative context in [Dos].
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Memorial Volume. Operator Theory: Advances and Applications, Vol. 127,
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