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1. Introduction

The classical Cayley transform κ(t) = (t− i)(t + i)−1 is a bijective map between
the real line R and the set T\{1}, where T is the unit circle in the complex plane.
If p(t) =

∑n
k=0 akt

k is a polynomial of one real variable, generally with complex
coefficients, then the function

p ◦ κ−1(z) =

n
∑

k=0

ikak(1 + z)k(1 − z)−k =

n
∑

k=0

(−1)kak(=z)
k(1 −<z)−k,

defined on T \ {1}, is a sum of fractions with denominators in the family
{(1 − z)k; k ≥ 0}, or in the family {(1 − <z)k; k ≥ 0}, the latter consisting of
positive functions on T. This remark allows us to identify the algebra of polynomi-
als of one real variable with sub-algebras of some algebras of fractions. As a matter
of fact, a similar identification can be easily obtained for polynomials in several
real variables. We shall use this idea to describe the structure of some algebras of
unbounded operators.

We start with some notation and terminology for Hilbert space linear op-
erators. For the properties of the unbounded operators, in particular unbounded



2 Vasilescu

self-adjoint and normal operators, and the Cayley transform, we refer to [?], Chap-
ter 13.

Let H be a complex Hilbert space. For a linear operator T acting in H, we
denote by D(T ) its domain of definition. If T is closable, the closure of T will be
denoted by T̄ . If T is densely defined, let T ∗ be its adjoint. We write T1 ⊂ T2 to
designate that T2 extends T1.

We recall that a densely defined closed operator T is said to be normal (resp.
self-adjoint) if D(T ) = D(T ∗) and T ∗T = TT ∗ (resp. T = T ∗).

If D(T ) = D(T ∗), the equality T ∗T = TT ∗ is equivalent to ‖Tx‖ = ‖T ∗x‖
for all x ∈ D(T ) (see [11], Part II). Clearly, every self-adjoint operator is normal.

Let D be a dense linear subspace of H, let L(D) be the algebra of all linear
mappings from D into D, and let, for further use, B(H) be the algebra of all
bounded linear operators on H.

Set

L#(D) = {T ∈ L(D);D(T ∗) ⊃ D, T ∗D ⊂ D}.

If we put T# = T ∗|D, the set L#(D) is an algebra with involution T → T#.
Let N be a subalgebra of L#(D) such that for every T ∈ N one has T# ∈ N .

We also assume that the identity on D belongs to N . With the terminology from
[20], the algebra N is an O∗-algebra.

As in the bounded case (see [18], Definition 11.24), we say that an O∗-algebra
N is a normal algebra if N consists of (not necessarily bounded) operators whose
closures are normal operators.

One of the main aims of this work is to describe normal algebras in terms
of algebras of fractions (see Theorem 4.8). We briefly recall the definition of the
latter algebras in a commutative framework. In the next section, a more general
framework will be presented.

Let A be a commutative unital complex algebra and let M ⊂ A be a set
of denominators, that is, a subset closed under multiplication, containig the unit
and such that if ma = 0 for some m ∈ M and a ∈ A, then a = 0. Under these
conditions, we can form the algebra of fractions A/M consisting of the equivalence
classes modulo the relation (a1,m1) ∼ (a2,m2) if a1m2 = a2m1 for a1, a2 ∈ A and
m1,m2 ∈ M, endowed with a natural algebraic structure (see [6] or [24] for some
details; see also the next section for a more complete discussion). The equivalence
class of the pair (a,m) will be denoted by a/m.

If A is a commutative unital normed complex algebra whose completion B is
a semisimple Banach algebra, and M ⊂ A is a set of denominators, the Gelfand
representation allows us to replace A/M by an algebra of fractions of continuous
functions. Specifically, if â denotes the Gelfand transform of any a ∈ A (computed

in B), and Ŝ stands for the set {â; a ∈ S} for a subset S ⊂ A, then M̂ is a set of

denominators in Â and the natural assignement A/M 3 a/m → â/m̂ ∈ Â/M̂ is
a unital algebra isomorphism, as one can easily see.

The remark from above shows that the algebras of fractions of continuous
functions on compact spaces are of particular interest. Their role in the study
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of scalar and operator moment problems, and in extension problems, has been
already emphasized in [2] and [25]. In the present work, we continue the investi-
gation concerning the algebras of fractions of continuous functions, showing their
usefulness in the representation of normal algebras.

We shall briefly describe the contents of this article. In the next section, fol-
lowing some ideas from [6], we present a general construction of spaces of fractions,
sufficiently large to allow a partially noncommutative context. Some exemples,
more or less related to moment problems, are also given.

As mentioned before, algebras of fractions of continuous functions on com-
pact spaces are of particular interest. In the third section, we describe the dual of
some spaces of fractions of continuous functions (Theorem 3.1), extending a result
from [25], stated as Corollary 3.2. Other examples of algebras of fractions of con-
tinuous functions, needed in the next sections, some of them considering functions
depending on infinitely many variables, are also presented.

In the fourth section, we introduce and discuss the algebras of unbounded nor-
mal operators. To obtain a representation theorem of such an algebra, identifying
it with a subalgebra of an algebra of fractions of continuous functions (see Theo-
rem 4.8), we need versions of the spectral theorem for infinitely many unbounded
commuting self-adjoint or normal operators (see Theorem 4.2 and Theorem 4.3).
This subject has been approached by many authors (see, for instance, [4] and [19]).
A recent similar result of this type, which we are aware of, is the main theorem in
[16], obtained in the context of semi-groups. Inspired by a result in [18] stated for
one operator, our main tool to obtain the versions of the spectral theorem men-
tioned above is the Cayley transform, leading to an approach seemingly different
from other approaches for infinitely many operators.

Some examples of unbounded normal algebras are also given in this section.
The last section contains an extension result of the so-called subnormal fami-

lies of unbounded operators to normal ones. We use the main result from [2] to get
a version of another result from [2], which, unlike in the quoted work, is proved
here for families having infinitely many members (see Theorem 5.2), using our
Theorem 4.3. The statement of Theorem 5.2 needs another type of an algebra of
fractions, which is also included in this section.

Let us mention that fractional transformations have been recently used, in
various contexts, in [2], [9], [10], [14], [15], [25] etc. See also [11], [23], [26] for other
related results.

2. Spaces of fractions

In this section we present a general setting for a construction of spaces of fractions,
associated with real or complex vector spaces, with denominators in appropriate
families of linear maps. We adapt some ideas from [6].

Let K be either the real field R or the complex one C, let E be a vector space
over K, and let L(E) be the algebra of all linear maps from E into itself.
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Definition 2.1. Let M ⊂ L(E) have the following properties:
(1) for all M1,M2 ∈ M we have M1M2 ∈ M;
(2) the identity map IE on E belongs to M;
(3) M is commutative;
(4) every map M ∈ M is injective.
Such a family M ⊂ L(E) will be called a set of denominators.

Definition 2.2. Let M ⊂ L(E) be a set of denominators. Two elements (x1,M1),
(x2,M2) from E×M are said to be equivalent, and we write (x1,M1) ∼ (x2,M2),
if M1x2 = M2x1.

Remark 2.3. The relation ∼ given by Definition 2.2 is clearly reflexive and symmet-
ric. It is also transitive because if (x1,M1) ∼ (x2,M2) and (x2,M2) ∼ (x3,M3), we
infer easily that M2(M1x3 −M3x1) = 0, via condition (3), whence M1x3 = M3x1,
by condition (4). Consequently, the relation ∼ is an equivalence relation. This al-
lows us to consider the set of eqivalence classes E ×M/ ∼, which will be simply
denoted by E/M. The eqivalence class of the element (x,M) will be denoted x/M .

The set E/M can be organized as a vector space with the algebraic operations

x1/M1 + x2/M2 = (M2x1 +M1x2)/M1M2, x1, x2 ∈ E, M1,M2 ∈ M,

and

λ(x/M) = (λx)/M, λ ∈ K, x ∈ E, M ∈ M,

which are easily seen to be correctly defined.

Definition 2.4. The vector space E/M will be called the space of fractions of E
with denominators in M.

Note that, if AM is the (commutative) algebra generated by M in L(E), the
linear space E/M is actually an AM-module, with the action given by

N(x/M) = (Nx)/M, x ∈ E, N ∈ AM, M ∈ M.

If we regard the multiplication by M0 ∈ M as a linear map on E/M, then
M0 has an inverse on E/M defined by

M−1
0 (x/M) = x/(M0M), x ∈ E, M ∈ M.

We also note that the map E 3 x 7→ x/IE ∈ E/M is injective, which allows
the identification of E with the subspace {x/IE , x ∈ E} of E/M. For this reason,
the fraction x/M may be denoted by M−1x for all x ∈ E, M ∈ M.

We define the subspaces

E/M = {ξ ∈ E/M; Mξ ∈ E}, M ∈ M.

We clearly have

E/M =
⋃

M∈M

E/M. (2.1)
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A set of denominators M ⊂ L(E) has a natural division. Namely, ifM ′,M ′′ ∈
M, we write M ′|M ′′, and say that M ′ divides M ′′ if there exists M0 ∈ M such
that M ′′ = M ′M0.

A subset M0 of M is said to be cofinal if for every M ∈ M we can find an
M0 ∈ M0 such that M |M0.

If M ′|M ′′, and so M ′′ = M ′M0, the map E/M ′ 3 x/M ′ 7→ M0x/M
′′ ∈

E/M ′′ is the restriction of the identity to E/M ′, showing that E/M ′ is a subspace
of E/M ′′. This also shows that the vector space E/M is the inductive limit of the
family of vector spaces (E/M)M∈M.

Remark 2.5. If there is a norm ‖ ∗ ‖ on the vector space E, each space E/M can
be endowed with the norm

‖ξ‖M = ‖Mξ‖, ξ ∈ E/M, M ∈ M. (2.2)

Assuming also that M consists of bounded operators on E, it is easily seen
that

‖ξ‖M ′′ ≤ ‖M0‖‖ξ‖M ′ , ξ ∈ E/M ′,

whenever M ′′ = M ′M0, showing that the inclusion E/M ′ ⊂ E/M ′′ is continuous,
and so E/M can be viewed as an inductive limit of normed spaces. If F is a
topological vector space and T : E/M 7→ F is a linear map, then T is continuous
if T |E/M is continuous for each M ∈ M (see [17] for details).

Remark 2.6. Assume that E is an ordered vector space and let E+ be the positive
cone of E. Let also M ⊂ L(E) be a set of denominators. If one has M(E+) ⊂ E+

for all M ∈ M (i.e., every M ∈ M is a positive operator), we say that M is a set
of positive denominators. If M is a set of positive denominators, we may define a
positive cone (E/M)+ in each space E/M by setting

(E/M)+ = {ξ ∈ E/M ; Mξ ∈ E+}.

If F is another ordered vector space with the positive cone F+, a linear map
φ : E/M 7→ F is said to be positive if φ((E/M)+) ⊂ F+ for all M ∈ M.

Remark 2.7. Assume that E = A is an algebra. Let M ⊂ L(A) be a set of
denominators. Also assume that M is an A-module map of the A-module A for
all M ∈ M. In other words, M(ab) = aM(b) for all a, b ∈ A and M ∈ M. Then
the fraction space A/M becomes an algebra, with the multiplication given by the
relation

(a′/M ′)(a′′/M ′′) = (a′a′′)/(M ′M ′′), a′, a′′ ∈ A, M ′,M ′′ ∈ M.

Particularly, let A be an algebra with unit 1. For each c ∈ A we set Mc(a) =
ca, a ∈ A, i.e., the left multiplication map by c on A. A subset Q ⊂ A is said to
be a set of denominators if the family MQ = {Mq; q ∈ Q} ⊂ L(A) is a set of
denominators. In this case, we identify Q and MQ and write A/MQ simply A/Q.
If Q is in the center of A, then A/Q is an algebra.
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Example 2.8. Let A be a complex ∗-algebra with unit 1, and let L : A 7→ C be a
positive form on A. This pair can be associated, in a canonical way, with a certain
pre-Hilbert space, via the classical construction due to Gelfand and Naimark. To
briefly recall this construction, let N = {a ∈ A;L(a∗a) = 0}. Since L satisfies
the Cauchy-Schwarz inequality, it follows that N is a left ideal of A. Moreover,
the quotient D = A/N is a pre-Hilbert space, whose inner product is given by
〈a+ N , b+ N〉 = L(b∗a) , a, b ∈ A.

Note also that D is an A-module. Therefore, we may define a linear map
Ma on D associated to any a ∈ A, via the relation Ma(x̃) = (ax)̃ , x ∈ A, where
x̃ = x+ N .

Let C be the center of A, and fix C0 ⊂ C nonempty. The map Mrc
is injective

if rc = 1 + c∗c for each c ∈ C0. Consequently, the set M of all maps of the form

Mα1
rc1

· · ·Mαm

rcm
,

where α1, . . . αm are arbirary nonnegative integres and c1, . . . , cm are arbitrary
elements from C0, is a set of denominators in L(D). This shows that we can consider
the space of fractions D/M.

The following particular case is related to the classical Hamburger moment
problem in several variables. Let us denote by Zn+ the set of all multi-indices
α = (α1, ..., αn), i.e., αj ∈ Z+ for all j = 1, ..., n. Let Pn be the algebra of all
polynomial functions on Rn, with complex coefficients, endowed with its natural
involution. We denote by tα the monomial tα1

1 · · · tαn
n , where t = (t1, ..., tn) is the

current variable in Rn, and α ∈ Zn+.
If an n-sequence γ = (γα)α∈Zn

+
of real numbers is given, we associate it with

the functional Lγ : Pn → C, where Lγ(t
α) = γα, α ∈ Zn+. Assuming Lγ to be

positive, we may perform the construction described above, and obtain a pre-
Hilbert space Dγ = D. The spaces of fractions obtained as above will be related
to the family C0 = {t1, . . . , tn}. Setting Aj p̃ = (tjp)̃, p ∈ Dγ , j = 1, ..., n, the
denominator set as above , say Mγ , will be given by the family of maps of the
form

(1 +A2
1)
α1 · · · (1 +A2

n)αm ,

where α1, . . . αm are arbirary nonnegative integres. And so, we can form the space
of fractions Dγ/Mγ , as a particular case of the previous construction.

Example 2.9. Let C[0, 1] (resp. C[0, 1)) be the algebra of all complex-valued contin-
uous functions on the interval [0,1] (resp. [0,1)). We consider the Volterra operator

V f(t) =
∫ t

0 f(t)dt, t ∈ [0, 1), f ∈ C[0, 1), which is an injective map. Let CV [0, 1)
be the subspace of C[0, 1) consisting of those functions f such that V nf ∈ C[0, 1]
for some integer n ≥ 0 (depending on f). Let V = {V n;n ≥ 0}, which, regarded
as a family of linear maps on C[0, 1], is a family of denominators. Therefore, we
may form the space of fractions C[0, 1]/V . Note that the space CV [0, 1) may be
identified with a subspace of C[0, 1]/V . Indeed, if f ∈ CV [0, 1) and n ≥ 0 is such
that V nf ∈ C[0, 1], we identify f with the element V nf/V n ∈ C[0, 1]/V n, and
this assignment is linear and injective.
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Example 2.10. Let Ω be a compact space and let C(Ω) be the algebra of all
complex-valued continuous functions on Ω, endowed with the natural norm ‖f‖∞ =
supω∈Ω |f(ω)|, f ∈ C(Ω). We consider a collection P of complex-valued functions
p, each defined and continuous on an open set ∆p ⊂ Ω. Let µ be a positive
measure on Ω such that µ(Ω \ ∆p) = 0, and p (extended with zero on Ω \ ∆p)
is µ-integrable for all p ∈ P . Via a slight abuse of notation, we may define the
numbers γp =

∫

Ω
pdµ, p ∈ P , which can be called the P-moments of µ. A very

general, and possibly hopeless moment problem at this level, might be to char-
acterize those families of numbers (γp)p∈P which are the P-moments of a certain
positive measure.

Let us add some natural supplementary conditions. First of all, assume that
Ω0 = ∩p∈P∆p is a dense subset of Ω. Also assume that there exists R ⊂ P a family
containing the constant function 1, closed under multiplication in the sense that
if r′, r′′ ∈ R then r′r′′ defined on ∆r′ ∩∆r′′ is in R, and each r ∈ R is nonnull on
its domain of definition. Finally, we assume that for every function p ∈ P there
exists a function r ∈ R such that the function p/r, defined on ∆p ∩ ∆r, has a
(unique) continuous extension to Ω. In particular, all functions from the family
Q = {1/r; r ∈ R} have a continuous extension to Ω. Moreover, the set Q, identified
with a family in C(Ω), is a set of denominators. This allows us to identify each
function p ∈ P with a fraction from C(Ω)/Q, namely with h/q, where h is the
continuous extension of p/r and q = 1/r for a convenient r ∈ R. With these
conditions, the above P-moment problem can be approached with our methods
(see [25]; see also Corollary 3.2).

Summarizing, for a given subspace P of the algebra of fractions C(Ω)/Q, and
a linear functional φ on P , we look for necessary and sufficient conditions on P
and φ to insure the existence of a solution, that is, a positive measure µ on Ω such
that each p be µ-almost everywhere defined and φ(p) =

∫

Ω
pdµ, p ∈ P . We may

call such a problem a singular moment problem, when no data are specified. With
this terminology, the classical moment problems of Stieltjes and Hamburger, in
one or several variables, are singular moment problems.

3. Spaces of fractions of continuous functions

Let Ω be a compact space and let C(Ω) be the algebra of all complex-valued contin-
uous functions on Ω, endowed with the natural norm ‖f‖∞ = supω∈Ω |f(ω)|, f ∈
C(Ω). We denote by M(Ω) the space of all complex-valued Borel measures on Ω,
sometimes identified with the dual of C(Ω). For an arbitrary function h ∈ C(Ω),
we set Z(h) = {ω ∈ Ω;h(ω) = 0}, which is obviously a compact subset of Ω. If
µ ∈M(Ω), we denote by |µ| ∈M(Ω) the variation of µ.

We discuss certain spaces of fractions, which were considered in [25]. Let Q be
a family of nonnegative elements of C(Ω). The set Q is said to be a multiplicative
family if (i) 1 ∈ Q, (ii) q′, q′′ ∈ Q implies q′q′′ ∈ Q, and (iii) if qh = 0 for some
q ∈ Q and h ∈ C(Ω), then h = 0. As in Remark 2.7, a multiplicative family is
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a set of denominators, and so we can form the algebra of fractions C(Ω)/Q. To
unify the terminology, a multiplicative family Q ⊂ C(Ω) will be called, with no
ambiguity, a set of (positive) denominators.

To define a natural topological structure on C(Ω)/Q, we use Remark 2.5. If

C(Ω)/q = {f ∈ C(Ω)/Q; qf ∈ C(Ω)},

then we have C(Ω)/Q = ∪q∈QC(Ω)/q. Setting ‖f‖∞,q = ‖qf‖∞ for each f ∈
C(Ω)/q, the pair (C(Ω)/q, ‖ ∗ ‖∞,q) becomes a Banach space. Hence, C(Ω)/Q is
an inductive limit of Banach spaces (see [17], Section V.2).

As in Remark 2.6, in each space C(Ω)/q we have a positive cone (C(Ω)/q)+
consisting of those elements f ∈ C(Ω)/q such that qf ≥ 0 as a continuous function.

We use in this text sometimes the notation q−1 to designate the element 1/q
for any q ∈ Q.

Let Q0 ⊂ Q be nonempty. Let F =
∑

q∈Q0
C(Ω)/q, that is, the subspace

of C(Ω)/Q generated by the subspaces (C(Ω)/q)q∈Q0 , which is itself an inductive
limit of Banach spaces. Let also ψ : F → C be linear. As in Remark 2.5, the map
ψ is continuous if the restriction ψ|C(Ω)/q is continuous for all q ∈ Q0.

We note that the values of ψ do not depend on the particular representation
of the elements of F .

Let us also note that the linear functional ψ : F → C is positive (see Remark
2.6 or [25]) if ψ|(C(Ω)/q)+ ≥ 0 for all q ∈ Q0.

The next result, which is an extension of the Riesz representation theorem,
describes the dual of a space of fractions, defined as above.

Theorem 3.1. Let Q0 ⊂ Q be nonempty, let F =
∑

q∈Q0
C(Ω)/q, and let ψ : F →

C be linear. The functional ψ is continuous if and only if there exists a uniquely
determined measure µψ ∈ M(Ω) such that |µψ|(Z(q)) = 0, q−1 is |µψ|-integrable
for all q ∈ Q0 and ψ(f) =

∫

Ω
fdµψ for all f ∈ F .

The functional ψ : F → C is positive, if and only if it is continuous and the
measure µψ is positive.

Proof. Let µ ∈ M(Ω) be a measure such that |µ|(Z(q)) = 0 and q−1 (which is
|µ|-almost everywhere defined) is |µ|-integrable for all q ∈ Q0. We set ψ(f) =
∫

Ω
fdµ for all f ∈ F . This definition is correct. Indeed, if f =

∑

j∈J h
′
j/q

′
j =

∑

k∈K h
′′
k/q

′′
k are two (finite) representations of f ∈ F , with h′j , h

′′
k ∈ C(Ω) and

q′j , q
′′
k ∈ Q0, setting Z = ∪j∈JZ(q′j) ∪ ∪k∈KZ(q′′k ), we easily derive that f(ω) =

∑

j∈J h
′
j(ω)/q′j(ω) =

∑

k∈K h
′′
k(ω)/q′′k (ω) for all ω ∈ Ω \Z. As |µ|(Z) = 0, we infer

that f is a function defined |µ|-almost everywhere and the integral ψ(f) =
∫

Ω fdµ
does not depend on the particular representation of f .

Clearly, the functional ψ is linear. Note also that

|ψ(f)| =

∣

∣

∣

∣

∫

Ω

hq−1dµ

∣

∣

∣

∣

≤

∫

Ω

|h|q−1d|µ| ≤ ‖f‖∞,q

∫

Ω

q−1d|µ| (3.1)

for all f = h/q ∈ C(Ω)/q, showing the continuity of ψ.
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Conversely, let ψ : F → C be linear and continuous. For every q ∈ Q0 we set
θq(h) = ψ(h/q), h ∈ C(Ω). Since the map C(Ω) 3 h→ h/q ∈ C(Ω)/q is continuous
(in fact, it is an isometry), the map θq is a continuous linear functional on C(Ω).
Therefore, there exists a measure νq ∈M(Ω) such that θq(h) =

∫

Ω
h dνq , h ∈ C(Ω),

for all q ∈ Q0.
Note that ψ(hq1/q1) = ψ(hq2/q2) for all q1, q2 ∈ Q0 and h ∈ C(Ω), because

hq1/q1 and hq2/q2 are two representations of the same element in F . Therefore,
θq1(hq1) = ψ(hq1/q1) = ψ(hq2/q2) = θq2(hq2) for all q1, q2 ∈ Q0 and h ∈ C(Ω),
implying the equality q1νq1 = q2νq2 . Consequently, there exists a measure µ such
that µ = qνq for all q ∈ Q0.

The equality µ = qνq implies the equality |µ| = q|νq|. This shows the set
Z(q) must be |µ|-null. Moreover, the function q−1 is |µ|-integrable for all q ∈ Q0.
Consequently, νq = q−1µ, and the function q−1 is µ-integrable for all q ∈ Q0.

If f ∈ F is arbitrary, then f =
∑

j∈J hjq
−1
j , with hj ∈ C(Ω), qj ∈ Q0 for all

j ∈ J, J finite. We can write

ψ(f) =
∑

j∈J

θqj
(hj) =

∑

j∈J

∫

Ω

hj dνqj
=

∫

Ω

fdµ,

giving the desired integral representation for the functional ψ.
As we have

∫

Ω
hdµ = ψ(hq/q) for all h ∈ C(Ω) and q ∈ Q0, and ψ(hq/q)

does not depend on q, it follows that the measure µ is uniquely determined. If we
put µ = µψ, we have the measure whose existence and uniqueness are asserted by
the statement.

Let ψ : F → C be linear be linear and positive. Then, as one expects, ψ
is automatically continuous. Indeed, if h ∈ C(Ω) is real-valued and q ∈ Q0, the
inequality −‖h‖∞/q ≤ h/q ≤ ‖h‖∞/q implies, via the positivity of ψ, the estimate
|ψ(h/q)| ≤ ‖h/q‖∞,qψ(1/q). If h ∈ C(Ω) is arbitrary, the estimate above leads to
|ψ(h/q)| ≤ 2‖h/q‖∞,qψ(1/q), showing that ψ is continuous. Finally, the equality
ψ(f) =

∫

fdµψ, f ∈ C(Ω)/q, q ∈ Q0 shows that ψ is positive if and only if µψ is
positive. �

The next result is essentially Theorem 3.2 from [25].

Corollary 3.2. Let Q0 ⊂ Q be nonempty, let F =
∑

q∈Q0
C(Ω)/q, and let ψ : F →

C be linear. The functional ψ is positive if and only if

sup{|ψ(hq−1)|; h ∈ C(Ω), ‖h‖∞ ≤ 1} = ψ(q−1), q ∈ Q0. (3.2)

Proof. Set ψq = ψ|C(Ω)/q for all q ∈ Q0. Then, since ‖f‖∞,q = ‖h‖∞ whenever
f = h/q ∈ C(Ω)/q, we clearly have

‖ψq‖ = sup{|ψ(hq−1)|; h ∈ C(Ω), ‖h‖∞ ≤ 1}.

If ψ is positive, and µψ is the associated positive measure given by Theorem
3.1, the estimate (3.1) implies that

‖ψq‖ ≤

∫

Ω

q−1dµψ = ψ(q−1) ≤ ‖ψq‖,
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because ‖1/q‖∞,q = 1. This shows that (3.2) holds.
Conversely, we use the well-known fact that a linear functional θ : C(Ω) → C

is positive if and only if it is continuous and ‖θ‖ = θ(1)
Assuming that (3.2) holds, with the notation of the proof of Theorem 3.1, we

have

‖θq‖ = ‖ψq‖ = ψ(1/q) = θq(1),

showing that θq is positive for all q. Therefore, the measures νq are all positive,
implying that the measure µ = µψ is positive. Consequently, ψ must be positive.

�

Definition 3.3. Let Q ⊂ C(Ω) be a set of denominators. A measure µ ∈ M(Ω) is
said to be Q-divisible if for every q ∈ Q there is a measure νq ∈ M(Ω) such that
µ = qνq.

Theorem 3.1 shows that a functional on C(Ω)/Q is continuous if and only if
it has an integral representation via a Q-divisible measure. In addition, Corollary
3.2 asserts that a functional is positive on C(Ω)/Q if and only if it is represented
by a Q-divisible positive measure µ such that µ = qνq with νq ∈ M(Ω) positive
for all q ∈ Q.

As a matter of fact, the concept given by Definition 3.3 can be considerably
extended, as shown by the next example.

Example 3.4. This is a continuation of the discussion started in Example 2.9,
whose notation will be kept. We fix an indefinitely differentiable function φ, with
support in [0,1]. Note the identity

∫ 1

0

h(t)φ(t)dt = (−1)n
∫ 1

0

V nh(t)φ(n)(t)dt, (3.3)

valid for all h ∈ C[0, 1] and all integers n ≥ 0. If we set dµ(t) = φ(t)dt and
dνn(t) = (−1)nφ(n)(t)dt, and referring to Definition 3.3, we may say, by (3.3),
that the measure µ is V-divisible.

It is plausible that the study of M-divisible measures, defined in an appro-
priate manner for a set of denominators M consisting of linear and continuous
operators on C(Ω), can be related to the study of continuous linear functionals on
the space C(Ω)/M, via a possible extension of Theorem 3.1.

Example 3.5. Let S1 be the algebra of polynomials in z, z̄, z ∈ C. We will show that
this algebra, which is used to characterize the moment sequences in the complex
plane, can be identified with a subalgebra of an algebra of fractions of continuous
functions. This exemple will be extended to infinitely many variables in the last
section (similar, yet different examples were considered in [2]). Let R1 be the set
of functions {(1 + |z|2)−k; z ∈ C, k ∈ Z+}, which can be continously extended to
C∞ = C ∪ {∞}. Identifying R1 with the set of their extensions in C(C∞), the
family R1 becomes a set of denominators in C(C∞). This will allows us to identify
the algebra S1 with a subalgebra of the algebra of fractions C(C∞)/R1.
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Let S
(1)
1,k , k ≥ 1, be the space generated by the monomials zj z̄l, 0 ≤ j+l < 2k.

We put S
(1)
1,0 = C. Let also S

(2)
1,k , k ≥ 1, be the space generated by the monomials

|z|2j , 0 < j ≤ k. Put S
(2)
1,0 = {0}.

Set S1,k = S
(1)
1,k + S

(2)
1,k , k ≥ 0. We clearly have S1 =

∑

k≥0 S1,k. Since S1,k

may be identified with a subspace of C(C∞)/rk, where rk(z) = (1 + |z|2)−k for
all k ≥ 0, the space S1 can be viewed as a subalgebra of the algebra C(C∞)/R1.
Note also that r−1

k ∈ S1,k for all k ≥ 1 and S1,k ⊂ S1,l whenever k ≤ l.

According to Theorem 3.4 from [25], a linear map φ : S1 7→ C has a positive
extension ψ : C(C∞)/R1 7→ C with ‖φk‖ = ‖ψk‖ if and only if ‖φk‖ = φ(r−1

k ),
where φk = φ|S1,k and ψk = ψ|C(C∞)/rk, for all k ≥ 0 (the norms of the func-
tionals are computed in the sense discussed in Remark 2.5).

This result can be used to characterize the Hamburger moment problem in
the complex plane, in the spirit of [25]. Specifically, given a sequence of complex
numbers γ = (γj,l)j≥0,l≥0 with γ0,0 = 1, γk,k ≥ 0 if k ≥ 1 and γj,l = γ̄l,j for all
j ≥ 0, l ≥ 0, the Hamburger moment problem means to find a probability measure
on C such that γj,l =

∫

zj z̄ldµ(z), j ≥ 0, l ≥ 0.

Defining Lγ : S1 7→ C by setting Lγ(z
j z̄l) = γj,l for all j ≥ 0, l ≥ 0 (extended

by linearity), if Lγ has the properties of the functional φ above insuring the ex-
istence of a positive extension to C(C∞)/R1, then the measure µ is provided by
Corollary 3.2.

For a fixed integer m ≥ 1, we can state and characterize the existence of
solutions for a truncated moment problem (for an extensive study of such problems
see [7] and [8]). Specifically, given a finite sequence of complex numbers γ = (γj,l)j,l
with γ0,0 = 1, γj,j ≥ 0 if 1 ≤ j ≤ m and γj,l = γ̄l,j for all j ≥ 0, l ≥ 0, j 6=
l, j + l < 2m, find a probability measure on C such that γj,l =

∫

zj z̄ldµ(z) for
all indices j, l. As in the previous case, a necessary and sufficient condition is that
the corresponding map Lγ : S1,m 7→ C have the property ‖Lγ‖ = Lγ(r

−1
m ), via

Theorem 3.4 from [25]. Note also that the actual truncated moment problem is
slightly different from the usual one (see [7]).

The similar space T1, introduced in [2], can be used to characterize the fol-
lowing moment problem: Find a probability measure µ on C such that the double
sequence of the form γ = (γj,0, γk,k)j≥0, k≥1 (with γ0,0 = 1 and γk,k ≥ 0 if k ≥ 1)
be a moment sequence in the sense that γj,0 =

∫

zjdµ(z), γk,k =
∫

|z|2kdµ(z).

Example 3.6. We are particularly interested in some special algebras of fractions
of continuous functions, depending on infinitely many variables, necessary for our
further discussion.

Let I be a (nonempty) family of indices. We consider the space R
I , where,

as before, R is the real field. Denote by t = (tι)ι∈I the independent variable in

RI . Let Z
(I)
+ be the set of all collections α = (αι)ι∈I of nonnegative integers, with

finite support. Setting t0 = 1 for 0 = (0)ι∈I and tα =
∏

αι 6=0 t
αι
ι for t = (tι)ι∈I ∈

RI , α = (αι)ι∈I ∈ Z
(I)
+ , α 6= 0, we may consider the algebra of complex-valued
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polynomial functions PI on R
I , consisting of expressions of the form

∑

α∈J cαt
α,

with cα complex numbers for all α ∈ J , where J ⊂ Z
(I)
+ is finite. Note also that

the map PI 3 p → p̄ ∈ PI is an involution on PI , where p̄(t) =
∑

α∈J c̄αt
α if

p(t) =
∑

α∈J cαt
α.

When dealing with finite measures, an appropriate framework is the space of
all continuous functions on a compact topological space. But neither the space RI

is compact nor the functions from PI are bounded. If we consider the one-point
compactification R∞ of R, then we can embed RI into the compact space (R∞)I .
This operation leads us to consider the space PI as a subspace of an algebra of
fractions derived from the basic algebra C((R∞)I), via a suitable multiplicative
family. Specifically, we consider the family QI consisting of all rational functions

of the form qα(t) =
∏

αι 6=0(1 + t2ι )
−αι , t = (tι)ι∈I ∈ RI , where α = (αι) ∈ Z

(I)
+ ,

α 6= 0, is arbitrary (see also [9]). Of course, we set q0 = 1. The function qα can

be continuously extended to (R∞)I \ RI for all α ∈ Z
(I)
+ . Moreover, the set QI

becomes a set of denominators in C((R∞)I). Set also pα(t) = qα(t)−1, t ∈ R
I , α ∈

Z
(I)
+ .

Let PI,α be the vector space generated by the monomials tβ , with βι ≤

2αι, ι ∈ I, α, β ∈ Z
(I)
+ . It is clear that p/pα can be continuously extended to

(R∞)I \ RI for every p ∈ PI,α, and so it can be regarded as an element of
C((R∞)I). Therefore, PI,α is a subspace of C((R∞)I)/qα = pαC((R∞)I) for
all α ∈ ZI

+.

Example 3.7. We give now another example of an algebra of fractions, which will
be used in the next section to describe the normal algebras.

As before, let I be a (nonempty) family of indices. We consider the space
T
I , where T is the unit circle in the complex plane. Denote by z = (zι)ι∈I the

independent variable in TI . Let Z
(I)
+ be defined as in the previous example. Setting

(<z)0 = 1 for 0 = (0)ι∈I , (<z)α =
∏

αι 6=0(<zι)
αι and similar formulas for (=z)α

whenever z = (zι)ι∈I ∈ TI , α = (αι)ι∈I ∈ Z
(I)
+ , α 6= 0, we may consider the

algebra of complex-valued functions RI on TI , consisting of expressions of the
form

∑

α,β∈J cα,β(<z)
α(=z)β , with cα,β complex numbers for all α, β ∈ J , where

J ⊂ Z
(I)
+ is finite.

We may take in the algebra RI a set of denominators SI consisting of all
functions of the form sα(t) =

∏

αι 6=0(1 − <zι)
αι , z = (zι)ι∈I ∈ T

I , where α =

(αι) ∈ Z
(I)
+ , α 6= 0, is arbitrary. We put s0 = 1. Clearly, SI is a set of denominators

also in C((T)I).
Note that the map

PI 3 p 7→ p ◦ τ ∈ RI/SI ,

where τ : (T\{1})I 7→ R
I is given by τ(z)ι = −=zι/(1−<zι), ι ∈ I, is an injective

algebra homomorphism, allowing the identification of PI with a subalgebra of
RI/SI .
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Remark 3.8. Let Ω be a compact Hausdorff space, let A be unital C∗-algebra, and
let C(Ω, A) be the C∗-algebra of all A-valued functions, continuous on Ω. Let Q be
set of denominators in C(Ω), which can be identified with a set of denominators in
C(Ω, A). Therefore, we may consider the algebra of fractions C(Ω, A)/Q. Let Q0 be
an arbitrary subset of Q and let F =

∑

q∈Q0
Fq be a subspace of

∑

q∈Q0
C(Ω, A)/q

such that q−1 ∈ Fq et Fq ⊂ C(Ω, A)/q for all q ∈ Q0.
Let H be a Hilbert space, let D be a dense linear subspace of H, and denote

by SF (D) the space of all sesquilinear forms on D. Let φ : F 7→ SF (D) be linear.
Suppose that φ(q−1)(x, x) > 0 for all x ∈ D\{0} and q ∈ Q0. Then φ(q−1) induces
an inner product on D, and let Dq be the space D, endowed with the norm given
by ‖ ∗ ‖2

q = φ(q−1)(∗, ∗). Set φq = φ|Fq . We may define the quantities

‖φq(f)‖ = sup{|φq(f)(x, y)|; ‖x‖q ≤ 1, ‖y‖q ≤ 1},

and

‖φq‖ = sup{‖φq(f)‖; ‖qf‖∞ ≤ 1}.

We say that the map φ : F 7→ SF (D) is contractive if ‖φq‖ ≤ 1 for all q ∈ Q0.

4. Normal algebras

We keep the notation and terminology from the Introduction.

Let A1, A2 be self-adjoint in H. Trying to avoid, at this moment, any in-
volvement of the concept of a spectral measure for unbounded operators, we say
that A1, A2 commute if the bounded operators (A1 + iIH)−1 and (A2 + iIH)−1

commute, where IH is the identity on H, which is one of the possible (classi-
cal) definitions of the commutativity of (unbounded) self-adjoint operators. It is
known that the operator N in normal in H if and only if one has N = A1 + iA2,
where A1, A2 are commuting self-adjoint operators (see [11], Part II, or [20]).
For this reason, given two normal operators N ′, N ′′ having the decompositions
N ′ = A′

1 + iA′
2, N

′′ = A′′
1 + iA′′

2 , with A′
1, A

′
2, A

′′
1 , A

′′
2 self-adjoint, we say that

N ′, N ′′ commute if the self-adjoint operators A′
1, A

′
2, A

′′
1 , A

′′
2 mutually commute.

Let N ⊂ L#(D) be an O∗-algebra. As mentioned in the Introduction, we say
that N is normal if N̄ is normal for each N ∈ N .

A homonymic concept, defined in the framework of bouneded operators, can
be found in [18]. The aim of this section is to describe the structure of normal
algebras, extending Theorem 12.22 from [18]. Let us recall the essential part of
that result.

Theorem A. Let N be a closed normal algebra of B(H) containing the identity,
and let ∆ be the maximal ideal space of N . Then there exists a unique spectral

measure E on the Borel subsets of ∆ such that N =
∫

∆ N̂dE for every N ∈ N .

This result leads us to some versions of the Spectral Theorem, called here
Theorem 4.2 and Theorem 4.3, valid for an arbitrary family of not necessarily
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bounded, commuting self-adjoint or normal operators (see also [4], [16], [19] etc.
for various approaches to this topic).

Remark 4.1. Let Ω be a topological space and let E be a spectral measure, defined
on the family of all Borel subsets of Ω, with values in B(H). For every Borel function
f : Ω → C we set Df = {x ∈ H;

∫

Ω |f |2dEx,x < ∞}, where Ex,y(∗) = 〈E(∗)x, y〉.
Then the formula

〈Ψ(f)x, y〉 =

∫

Ω

fdEx,y, x ∈ Df , y ∈ H

defines a normal operator Ψ(f) for each f , with Ψ(f)∗ = Ψ(f̄) (see [18], especially
Theorem 13.24, for this and other properties to be used in this text).

If f is E-almost everywhere defined (in particular, almost everywhere finite)
on Ω, we keep the notation

∫

Ω fdEx,y whenever the integral is well defined.

In the following, for every complex number λ, the operator λIH will be simply
written as λ.

The next statement is a version of Theorem 13.30 from [18] (stated and
proved for one self-adjoint operator). We adapt some ideas from the proof of quoted
theorem, to get a statement for infinitely many variables.

Theorem 4.2. Let (Aι)ι∈I be a commuting family of self-adjoint operators in H.
Then there exists a unique spectral measure E on the Borel subsets of (R∞)I such
that each coordinate function (R∞)I 3 t→ tι ∈ R∞ is E-almost everywhere finite.
In addition,

〈Aιx, y〉 =

∫

(R∞)I
tιdEx,y(t), x ∈ D(Aι), y ∈ H,

where

D(Aι) = {x ∈ H;

∫

(R∞)I
|tι|

2dEx,x(t) <∞},

for all ι ∈ I.
If the set I is at most countable, then the measure E has support in RI .

Proof. Let Uι denote the Cayley transform of the self-adjoint operator Aι for each
ι ∈ I. Since

Uι = (Aι − i)(Aι + i)−1 = 1 − 2i(Aι + i)−1, ι ∈ I,

the collection (Uι)ι∈I is a commuting family of unitary operators in B(H). More-
over, the point 1 does not belong to the point spectrum of 1−Uι for all ι, as follows
from the general properties of the Cayley transform [18].

Let B be the closed unital algebra generated by the family (Uι, U
∗
ι )ι∈I in

B(H), which is a commutative unital C∗-algebra. Let Γ(B) be the space of char-
acters of the algebra B.

Standard arguments from the Gelfand theory allow us to assert that the map

Γ(B) 3 γ 7→ (Ûι(γ))ι∈I ∈ T
I
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is a homeomorphism, and so the space Γ(B) may be identified with a closed sub-
space, say Ω, of the compact space TI .

By virtue of the Theorem A above, there exists a spectral measure F defined
on the Borel subsets of Ω such that Uι =

∫

Ω
zιdF (z), where z = (zι)ι∈I is the

variable in TI and the map Ûι has been identified with the coordinate function
z → zι for all ι.

Set Cι = {z ∈ Ω; zι = 1}. We want to prove that F (Cι) = 0 for all ι.
Assuming that this is not the case for some ι, we could find a nonnull vector xι
such that E(Cι)xι = xι. In addition,

xι − Uιxι =

∫

Ω

(1 − zι)dF (z)xι =

∫

Cι

(1 − zι)dF (z)xι = 0,

which contradicts the fact that the kernel of 1 − Uι is null.
In particular, this shows that the function (1 − zι)

−1 is defined F -almost
everywhere for all ι.

For technical reasons, we may extend the set function F to the family of all
Borel subsets of TI by putting F̃ (β) = F (β ∩ Ω) for every Borel subset β of TI .
Let κI : (R∞)I → TI be the map given by

(R∞)I 3 t = (tι)ι∈I 7→ w = (wι)ι∈I ∈ T
I

where wι = κι(t) = (tι − i)(tι + i)−1 if tι 6= ∞ and wι = 1 if tι = ∞. The map κI
is a homeomorphism and the superposition E = F̃ ◦ κI is a spectral measure on
the Borel subsets of (R∞)I .

If Dι = {t ∈ (R∞)I ; tι = ∞}, then E(Dι) = F̃ (κ(Dι)) = F (Cι) = 0, as
noticed above. In other words, the coordinate function (R∞)I 3 t → tι ∈ R∞ is E-
almost everywhere finite. Moreover, if θι(z) = i(1+zι)(1−zι)

−1 = −=zι(1−<zι)
−1,

then θι is F̃ -almost everywhere defined, and one has
∫

(R∞)I
tιdEx,y(t) =

∫

TI

θι(z)dF̃x,y(z) =

∫

Ω

θι(z)dFx,y(z),

for all x ∈ Dθι
and y ∈ H, via a change of variable and the Remark above. As the

function θι is real-valued, the operator Ãι given by the equality

〈Ãιx, y〉 =

∫

(R∞)I
tιdEx,y(t), x ∈ Dθι

, y ∈ H

is self-adjoint. The arguments from the last part of Theorem 13.30 in [18] show

that Ãι must be precisely Aι. For the convenience of the reader, we sketch this
argument. The equality (1− zι)θι(z) = i(1+ zι) leads to the equality Ãι(1−Uι) =

i(1 + Uι). This shows that Ãι is a self-adjoint extension of the inverse Cayley
transform Aι of Uι. But any self-adjoint operator is maximally symmetric ([18],

Theorem 13.15), and so Aι = Ãι.
The equality

D(Aι) = {x ∈ H;

∫

(R∞)I
|tι|

2dEx,x(t) <∞},
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for all ι ∈ I, is a consequence of [18], Theorem 13.24.
To prove the uniqueness of the measure E, we consider another spectral

measure G, defined on the Borel subsets of (R∞)I such that the G-measure of
set Dι = {t ∈ (R∞)I ; tι = ∞} is null for all ι. In other words, each coordinate
function (R∞)I 3 t→ tι ∈ R∞ is G-almost everywhere finite, and

〈Aιx, y〉 =

∫

(R∞)I
tιdGx,y(t), x ∈ D(Aι), y ∈ H, ι ∈ I.

Then the map H = G ◦κ−1
I defines a spectral measure on the Borel subsets of the

compact space (R∞)I . Because κ−1
I = θ, where θ(z) = (θι(z))ι∈I , we must have

Uι =

∫

(R∞)I
κι(t)dG(t) =

∫

TI

zιdH(z),

where z = (zι)ι∈I is the variable in TI . As the unital C∗-algebra generated by the
polynomials in zι, z̄ι, ι ∈ I, is dense in both C(Ω) and C(TI), via the Weierstrass-
Stone density theorem, the scalar measures Fx,y andHx,y are equal for all x, y ∈ H.
Therefore, the spectral measures F and H must be equal too. Consequently, the
spectral measures measures E and G obtained from F and H respectively, must
be equal, which completes the proof of the theorem.

Finally, if the set I is at most countable, then the measure E has support in
the Borel set

(R∞)I \
⋃

ι∈I

Dι = R
I .

�

We may consider the one-point compactification C∞ of the complex plane C.
Then, for every family of indices I, the space (C∞)I is compact. A version of the
previous result, valid for normal operators, is given by the following.

Theorem 4.3. Let (Nι)ι∈I be a commuting family of normal operators in H. Then
there exists a unique spectral measure G on the Borel subsets of (C∞)I such that
each coordinate function (C∞)I 3 z → zι ∈ C∞ is G-almost everywhere finite. In
addition,

〈Nιx, y〉 =

∫

(C∞)I
zιdGx,y(z), x ∈ D(Nι), y ∈ H,

where

D(Nι) = {x ∈ H;

∫

(C∞)I
|zι|

2dGx,x(z) <∞},

for all ι ∈ I.
If the set I is at most countable, then the measure G has support in C

I .

Proof. We write Nι = A′
ι + iA′′

ι , where (A′
ι, A

′′
ι )ι∈I is a commuting family of self-

adjoint operators. Set L = (I×{0})∪({0}×I), Bλ = A′
ι if λ = (ι, 0), and Bλ = A′′

ι

if λ = (0, ι). We may apply the previous theorem to the family of commuting self-
adjoint operators (Bλ)λ∈L. Therefore, there exists a spectral measure E on the
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Borel subsets of (R∞)L such that each coordinate function R
L 3 t → tλ ∈ R is

E-almost everywhere defined. Moreover,

〈Bλx, y〉 =

∫

(R∞)L
tλdEx,y(t), x ∈ D(Bλ), y ∈ H, λ ∈ L.

We define a map τ : (R∞)L 7→ (C∞)I in the following way. If t = (tλ)λ∈L is
an arbitrary point in (R∞)I , we put τ(t) = (zι)ι∈I , where zι = t(ι,0) + it(0,ι) for
all ι ∈ I. Clearly, we put zι = ∞ if either t(ι,0) = ∞ or t(0,ι) = ∞.

We consider the spectral measure given by G = E ◦ τ−1, defined on the Borel
subsets of (C∞)I . Setting

Aι = {z ∈ (C∞)I ; zι = ∞},

Bι = {t ∈ (R∞)L; t(ι,0) = ∞}, Cι = {t ∈ (R∞)L; t(0,ι) = ∞},

we obtain τ−1(Aι) ⊂ Bι ∪ Cι for all ι ∈ I. Since E(Bι ∪ Cι) = 0, it follows that
G(Aι) = 0, that is, the coordinate function z 7→ zι is G-almost everywhere finite.
In addition,

∫

(C∞)I
zιdGx,y(z) =

∫

(R∞)L
(t(ι,0) + it(0,ι))dEx,y(z)

= 〈(A′
ι + iA′′

ι )x, y〉 = 〈Nιx, y〉

for all x ∈ D(Nι) = D(A′
ι) ∩ D(A′′

ι ), y ∈ H and ι ∈ I.
We also have

D(Nι) = {x ∈ H;

∫

(C∞)I
|zι|

2dGx,x(z) <∞},

for all ι ∈ I, as a consequence of [18], Theorem 13.24.
Because G(Aι) = 0 for all ι ∈ I, the last assertion follows as in the proof of

Theorem 4.2. �

Example 4.4. Let Ω be a Hausdorff space, let C(Ω) be the space of all complex-
valued continuous functions on Ω, and let E be a spectral measure, defined on the
family of all Borel subsets of Ω, with values in B(H). Assume that the measure E
is Radon, that is, the scalar positive measures Ex,x, x ∈ H, are all Radon measures
(see [5] and [16] for details). We shall see that the set D∞ = ∩f∈C(Ω)Df is a dense
subspace in H and

N∞ = {Ψ(f)|D∞; f ∈ C(Ω)}

is a normal algebra.
That N∞ is an O∗-algebra follows easily from [18], Theorem 13.24. To prove

that D∞ is a dense subspace in H, we adapt some ideas from [16], page 225. We
fix a function f ∈ C(Ω) and a compact set K ⊂ Ω. Fix also y = E(K)x ∈ E(K)H.
As the function fχK is bounded, where χK is the characteristic function of K, we
have

∫

Ω |f |2dEy,y =
∫

K |f |2dEy,y =
∫

K |f |2dEx,x, via the standard properties of
the spectral measure E (see [18], Theorem 13.24). In particular, y ∈ Df , and so
∪K∈K(Ω)E(K)H ⊂ D∞, where K(Ω) is the family of all compact subsets of Ω. To
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prove the density of D∞ in H, it sufficient to prove that the set ∪K∈K(Ω)E(K)H
is dense in H.

Fix an x ∈ H. It follows from [5], Proposition 2.1.7, that

sup
K∈K(Ω)

‖E(K)x‖2 = sup
K∈K(Ω)

∫

K

dEx,x =

∫

Ω

dEx,x = ‖x‖2.

In particular, there is a sequence (Kk)k≥1 of compact subsets in Ω such that
limk→∞ ‖E(Kk)x‖ = ‖x‖. As the vectors x−E(Kk)x = E(Ω \Kk)x and E(Kk)x
are orthogonal, we infer that

‖x−E(Kk)x‖
2 = ‖x‖2 − ‖E(Kk)x‖

2,

for all k ≥ 1. Therefore, limk→∞ E(Kk)x = x, showing the desired density.
We have only to show that the closure of the operator Ψ(f)|D∞ equals Ψ(f)

for each f ∈ C(Ω). With f ∈ C(Ω) and x ∈ Df , we refine a previous argument.
Because we have

sup
K∈K(Ω)

∫

K

dEx,x =

∫

Ω

dEx,x, sup
K∈K(Ω)

∫

K

|f |2dEx,x =

∫

Ω

|f |2dEx,x,

(via [5], Proposition 2.1.7), and left side integrals depend increasingly on the
compact set K, there is a sequence (Kk)k≥1 of compact subsets in Ω such that
limk→∞ ‖E(Kk)x‖ = ‖x‖, and limk→∞ ‖Ψ(f)E(Kk)x‖ = ‖Ψ(f)x‖. The orthogo-
nality of the vectors x−E(Kk)x and E(Kk)x on one side, and that of the vectors
Ψ(f)x − Ψ(f)E(Kk)x and Ψ(f)E(Kk)x on the other side show, as above, that
limk→∞ E(Kk)x = x and limk→∞ Ψ(f)E(Kk)x = Ψ(f)x, which implies that the
closure of the operator Ψ(f)|D∞ is equal Ψ(f).

Consequently, N∞ is a normal algebra.

Example 4.5. Let Ω be a topological space of the form Ω = ∪n≥1Ωn, where (Ωn)n≥1

is an increasing sequence of Borel subsets. Let also A be an algebra of Borel
functions on Ω, containing the constant functions and the complex conjugate of
every given function from A. Also assume that f |Ωn

is bounded for all f ∈ A and
n ≥ 1.

Let E be a spectral measure (not necessarily Radon), defined on the family of
all Borel subsets of Ω, with values in B(H). Setting D = ∩f∈ADf , then D is dense
in H and N = {Ψ(f)|D; f ∈ A} is a normal algebra. Indeed, if f ∈ A, and so f |Ωn

is bounded for all n ≥ 1, we have E(Ωn)x ∈ Df . In addition, limn→∞E(Ωn)x = x
for all x ∈ H, showing that D is dense in H. Moreover, if x ∈ Df , then the sequence

Ψ(f)E(Ωn)x is convergent to Ψ(f)x, implying Ψ(f)|D = Ψ(f) for each f ∈ A. It
is clear that N is an O∗-algebra, and therefore, N∞ is a normal algebra.

Lemma 4.6. If A is a normal algebra and N1, N2 are arbitrary elements, then
N̄1, N̄2 commute.

Proof. We first note that if S ∈ N is symmetric, then S̄ is selfadjoint, which
is clear because S̄ is normal. Note also that for an arbitrary N ∈ N we have
NN# = N#N , as a consequence of the fact that N̄(N̄ )∗ = (N̄)∗N̄ .
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Now, let S1, S2 ∈ N be symmetric. Note that

2i(S1S2 − S2S1)x = (S1 − iS2)(S1 + iS2)x − (S1 + iS2)(S1 − iS2)x

= (S1 + iS2)
∗(S1 + iS2)x− (S1 + iS2)(S1 + iS2)

∗x = 0,

for all x ∈ D, since (S1 + iS2) is normal and (S1 + iS2)
∗ = (S1+iS2)

∗ ⊃ (S1−iS2).
It follows from Proposition 7.1.3 in [20] that S̄1, S̄2 commute.

If N1, N2 ∈ N are arbitrary, we write N1 = S11 + iS12, N2 = S21 + iS22,
with Sjk symmetric. The previous argument shows that the selfadjoint operators
S̄11, S̄12, S̄21, S̄22 commute. Therefore, the normal operators N̄1, N̄2 also commute.

�

Lemma 4.7. Let A1, . . . , An be commuting self-adjoint operators and let U1, . . . , Un
be the Cayley transforms of A1, . . . , An respectively. Then we have:

n
∏

j=1

(2 − Uj − U∗
j )kj =

n
∏

j=1

4kj (1 +A2
j )

−kj ,

for all integers k1 ≥ 1, . . . , kn ≥ 1.
In particular, the operator

∏n
j=1(2 − Uj − U∗

j )kj is positive and injective for
all integers k1 ≥ 1, . . . , kn ≥ 1.

Proof. We have the equality Uj = (Aj − i)(Aj + i)−1 for all indices j, by the
definition of Cayley transform, whence 1 − Uj = 2i(Aj + i)−1. Because one has
(2i(Aj + i)−1)∗ = −2i(Aj − i)−1, via the selfadjointness of Aj , we infer 1 − U∗

j =

−2i(Aj − i)−1. Therefore,

2 − Uj − U∗
j = 2i(Aj + i)−1((Aj − i) − (Aj + i))(Aj − i)−1 = 4(A2

j + 1)−1.

Taking into account that the operators (A2
j + 1)−1, j = 1, . . . , n, are all

bounded and commute, we deduce easily the stated formula. The remaining asser-
tions are direct consequences of that formula. �

Theorem 4.8. Let N ⊂ L#(L) be a normal algebra. Then there exists a family of
indices I, a compact subspace Ω ⊂ TI , a set of denominators M ⊂ C(Ω), and an
injective ∗-homomorphism N 3 N 7→ φN ∈ C(Ω)/M.

In addition, there exists a uniquely determined spectral measure F on the
Borel subsets of Ω such that φN is F -almost everywhere defined and

〈Nx, y〉 =

∫

Ω

φN (z)dFx,y(z), x ∈ D, y ∈ H.

Proof. Let A = (Aι)ι∈I be a family of hermitian generators of the algebra N .
Such a family obviously exists because N = (N + N#)/2 + i(N − N#)/2i and
both (N +N#)/2, (N −N#)/2i are hermitian. Every Aι can be associated with
the Cayley transform Uι of Āι. As in the proof of Theorem 4.2, since the selfadjoint
operators (Āι)ι∈I mutually commute, the corresponding Cayley transforms, as well
as their adjoints, mutually commute. Let B be the closed unital algebra generated
by the family (Uι, U

∗
ι )ι∈I in B(H), which is a commutative unital C∗-algebra.
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It follows from Lemma 4.6 that each operator 2−Uι−U
∗
ι is injective. If M̃ is

the family of all possible finite products of operators of the form 2−Uι−U∗
ι , ι ∈ I,

and the identity 1, then M̃ is a set of denominators consisting of positive operators.

We define a map from N to B/M̃ by associating to each generator Aι the
fraction i(Uι−U∗

ι )/(2−Uι−U∗
ι ), and extending this assignment to N by linearity

and multiplicativity. Let us do this operation properly.

Setting A0 = 1 for 0 = (0)ι∈I and Aα =
∏

αι 6=0A
αι
ι for α = (αι)ι∈I ∈

Z
(I)
+ , α 6= 0, we may define p(A) =

∑

α∈J cαA
α for every polynomial p(t) =

∑

α∈J cαt
α in PI . As a matter of fact, we have the equality N = {p(A); p ∈ PI}

because A is family of generators of N . If we put Wι = i(Uι − U∗
ι )/(2− Uι − U∗

ι )
and W = (Wι)ι∈I , then Φ(p(A)) = p(W ) for each polynomial p. To show that
this definition does not depend on a particular representation of p(A), it suffices
to show that p(W ) = 0 implies p(A) = 0 for a fixed polynomial p ∈ PI such that

p(A) =
∑

α∈J cαA
α. Let β ∈ Z

(I)
+ be such that αι ≤ βι for all ι ∈ I and α ∈ J .

Also set Vγ =
∏

ι(2 − Uι − U∗
ι )γι and Dα =

∏

ι(i(Uι − U∗
ι ))αι for all γ and α in

Z
(I)
+ . Then

Vβp(W ) =
∑

α∈J

cαVβW
α =

∑

α∈J

cαVβ−αDα = 0.

It follows from Lemma 4.7 and the fact that D is invariant under Aα for
all α, that the operator V −1

β is defined on D and leaves it invariant, for all β.
Consequently, for an arbitrary x ∈ D we have:

p(A)x =
∑

α∈J

cαDαV
−1
α x =

∑

α∈J

cαVβ−αDαV
−1
β x = 0.

This allows us to define correctly an injective unital ∗-homomorphism from the
algebra N into the algebra B/M̃.

As in the proof of Theorem 4.2, the space Γ(B) of characters of the algebra
B may be identified with a closed subspace Ω of the compact space TI . Then B is
identified with C(Ω), and the function Ûι with the coordinate function TI 3 z →
zι ∈ C for all ι. Hence, the set of denominators M corresponding to M̃ will be the
set of all possible finite products of functions of the form 2 − zι − z̄ι, ι ∈ I, and
the constant function 1. As noticed in the Introduction, the algebra of fractions
B/M̃ can be identified with the algebra of fractions C(Ω)/M. The image of the
algebra N in C(Ω)/M will be the unital algebra generated by the fractions θι(z) =
−=zι/(1 − <zι), ι ∈ I. Specifically, if N ∈ N is arbitrary, and if pN ∈ PI is a
polynomial such that N = pN(A), then, setting φN = pN ◦ θ, where θ = (θι)ι∈I ,
the map M 3 N 7→ φN ∈ C(Ω)/M is a ∗-homomorphism.

As in the proof of Theorem 4.2, there exists a spectral measure F defined on
the Borel subsets of Ω such that Uι =

∫

Ω zιdF (z) for all ι. Moreover, if Cι = {z ∈
Ω; zι = 1}, we have F (Cι) = 0 for all ι. This shows that the function φN , which is
not defined on a finite union of the sets Cι, is almost everywhere defined.

Fix an N ∈ N , N = pN (A), with pN (t)) =
∑

α∈J cαt
α. Because we have
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〈Āιx, y〉 =

∫

Ω

θι(z)dFx,y(z), x ∈ D(Āι), y ∈ H,

we can write the following equations:

∫

Ω

φN (z)dFx,y(z) =

∫

Ω

(pN ◦ θ)(z)dFx,y(z)

=
∑

α∈J

cα

∫

Ω

∏

αι 6=0

θαι

ι (z)dFx,y(z) =
∑

α∈J

cα

∫

Ω

∏

αι 6=0

Aαι

ι (z)dFx,y(z)

= 〈pN (A)x, y〉 = 〈Nx, y〉,

for all x ∈ D and y ∈ H, via the usual properties of the unbounded functional
calculus (see [18]).

The measure F is uniquely determined on Ω, via the uniqueness in Theorem
4.2. �

Remark 4.9. We may apply Theorem 4.3 to the family {N̄ ;N ∈ N}, N a normal
algebra, which is a commuting family of normal operators in H. According to this
result, there exists a unique spectral measureE on the Borel subsets of (C∞)N such
that each coordinate function (C∞)N 3 z → zN ∈ C∞ is E-almost everywhere
finite, and

〈N̄x, y〉 =

∫

(C∞)N
zNdEx,y(z), x ∈ D(N̄ ), y ∈ H, N ∈ N .

5. Normal extensions

In this section we present a version of a Theorem 3.4 in [2], concerning the existence
of normal extensions. Unlike in [2], we prove it here for infinitely many operators.

Fix a Hilbert space H, a dense subspace D of H, and a compact Hausdorff
space Ω. As before, we denote by SF (D) the space of all sesquilinear forms on D.

For the convenience of the reader, we shall reproduce some statements from
[2], to be used in the sequel. We start by recalling some terminology from [2].

Let Q ⊂ C(Ω) be a set of positive denominators. Fix a q ∈ Q. A linear map
ψ : C(Ω)/q → SF (D) is called unital if ψ(1)(x, y) = 〈x, y〉, x, y ∈ D. We say that
ψ is positive if ψ(f) is positive semidefinite for all f ∈ (C(Ω)/q)+.

More generally, let Q0 ⊂ Q be nonempty. Let C =
∑

q∈Q0
C(Ω)/q, and let

ψ : C → SF (D) be linear. The map ψ is said to be unital (resp. positive) if
ψ|C(Ω)/q is unital (resp. positive) for all q ∈ Q0.

We start with a part from Theorem 2.2 in [2].

Theorem B. Let Q0 ⊂ Q be nonempty, let C =
∑

q∈Q0
C(Ω)/q, and let ψ : C →

SF (D) be linear and unital. The map ψ is positive if and only if

sup{|ψ(hq−1)(x, x)|; h ∈ C(Ω), ‖h‖∞ ≤ 1} = ψ(q−1)(x, x), q ∈ Q0, x ∈ D.
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Let again Q0 ⊂ Q be nonempty and let F =
∑

q∈Q0
Fq, where q−1 ∈ Fq and

Fq is a vector subspace of C(Ω)/q for all q ∈ Q0. Let φ : F 7→ SF (D) be linear.
Suppose that φ(q−1)(x, x) > 0 for all x ∈ D\{0} and q ∈ Q0. Then φ(q−1) induces
an inner product on D, and let Dq be the space D, endowed with the norm given
by ‖ ∗ ‖2

q = φ(q−1)(∗, ∗).
Let Mn(Fq) (resp. Mn(F)) denote the space of n × n-matrices with entries

in Fq (resp. in F) . Note that Mn(F) =
∑

q∈Q0
Mn(Fq) may be identified with

a subspace of the algebra of fractions C(Ω,Mn)/Q, where Mn is the C∗-algebra
of n× n-matrices with entries in C. Moreover, the map φ has a natural extension
φn : Mn(F) 7→ SF (Dn), given by

φn(f)(x,y) =

n
∑

j,k=1

φ(fj,k)(xk , yj),

for all f = (fj,k) ∈ Mn(F) and x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Dn.
Let φnq = φn | Mn(Fq). Endowing the Cartesian product Dn with the norm

‖x‖2
q =

∑n
j=1 φ(q−1)(xj , xj) if x = (x1, . . . , xn) ∈ Dn, and denoting it by Dn

q , we
are in the conditions of Remark 3.8, with Mn for A and Dn

q for Dq . Hence we
say that the map φn is contractive if ‖φnq ‖ ≤ 1 for all q ∈ Q0. Using the standard
norm ‖ ∗ ‖n in the space of Mn, the space Mn(Fq) is endoved with the norm
‖(qfj,k)‖n,∞ = supω∈Ω ‖(q(ω)fj,k(ω))‖n, for all (fj,k) ∈Mn(Fq).

Following [3] and [13] (see also [12]), we shall say that the map φ : F 7→
SF (D) is completely contractive if the map φn : Mn(F) 7→ SF (Dn) is contractive
for all integers n ≥ 1.

Note that a linear map φ : F 7→ SF (D) with the property φ(q−1)(x, x) > 0
for all x ∈ D\{0} and q ∈ Q0 is completely contractive if and only if for all q ∈ Q0,
n ∈ N, x1, . . . , xn, y1, . . . , yn ∈ D with

n
∑

j=1

φ(q−1)(xj , xj) ≤ 1,

n
∑

j=1

φ(q−1)(yj , yj) ≤ 1,

and for all (fj,k) ∈Mn(Fq) with ‖(qfj,k)‖n,∞ ≤ 1, we have
∣

∣

∣

∣

∣

∣

n
∑

j,k=1

φ(fj,k)(xk , yj)

∣

∣

∣

∣

∣

∣

≤ 1. (5.1)

Let us now recall the main result of [2], namely Theorem 2.5, in a shorter
form (see also [21] and [25] for some particular cases).

Theorem C. Let Ω be a compact space and let Q ⊂ C(Ω) be a set of positive
denominators. Let also Q0 be a cofinal subset of Q, with 1 ∈ Q0. Consider F =
∑

q∈Q0
Fq, where Fq is a vector subspace of C(Ω)/q such that r−1 ∈ Fr ⊂ Fq for

all r ∈ Q0 and q ∈ Q0, with r|q. Let also φ : F → SF (D) be linear and unital,
and set φq = φ|Fq , φq,x(∗) = φq(∗)(x, x) for all q ∈ Q0 and x ∈ D.

The following two statements are equivalent:
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(a) The map φ extends to a unital, positive, linear map ψ on C(Ω)/Q such that,
for all x ∈ D and q ∈ Q0, we have:

‖ψq,x‖ = ‖φq,x‖, where ψq = ψ|C(Ω)/q, ψq,x(∗) = ψq(∗)(x, x).

(b) (i) φ(q−1)(x, x) > 0 for all x ∈ D \ {0} and q ∈ Q0.
(ii) The map φ is completely contractive.

Remark. A ”minimal” subspace of C(Ω)/Q to apply Theorem C is obtained as
follows. If Q0 is a cofinal subset of Q with 1 ∈ Q0, we define Fq for some q ∈ Q0

to be the vector space generated by all fractions of the form r/q, where r ∈ Q0

and r|q. It is clear that the subspace F =
∑

q∈Q0
Fq has the properties required

to apply Theorem C.

We also need Corollary 2.7 from [2].

Corollary D. Suppose that, with the hypotheses of Theorem B, condition (b) is
satisfied. Then there exists a positive B(H)–valued measure F on the Borel subsets
of Ω such that

φ(f)(x, y) =

∫

Ω

f dFx,y, f ∈ F , x, y ∈ D. (5.2)

For every such measure F and every q ∈ Q0, we have F (Z(q)) = 0.

Example 5.1. We extend to infinitely many variables the Example 3.5. Let I be a
(nonempty) family of indices. Denote by z = (zι)ι∈I the independent variable in

CI . Let also z̄ = (z̄ι)ι∈I . As before, let Z
(I)
+ be the set of all collections α = (αι)ι∈I

of nonnegative integers, with finite support. Setting z0 = 1 for 0 = (0)ι∈I and

zα =
∏

αι 6=0 z
αι
ι for z = (zι)ι∈I ∈ CI , α = (αι)ι∈I ∈ Z

(I)
+ , α 6= 0, we may consider

the algebra of complex-valued functions SI on CI , consisting of expressions of
the form

∑

α,β∈J cα,βz
αz̄β, with cα,β complex numbers for all α, β ∈ J , where

J ⊂ Z
(I)
+ is finite.

We can embed the space SI into the algebra of fractions derived from the
basic algebra C((C∞)I), using a suitable set of denominators. Specifically, we
consider the family RI consisting of all rational functions of the form rα(t) =
∏

αι 6=0(1 + |zι|2)−αι , z = (zι)ι∈I ∈ CI , where α = (αι) ∈ Z
(I)
+ , α 6= 0, is arbitrary.

Of course, we set r0 = 1. The function rα can be continuously extended to (C∞)I \

CI for all α ∈ Z
(I)
+ . In fact, actually the function fβ,γ(z) = zβ z̄γrα(z) can be

continuously extended to (C∞)I \ CI whenever βι + γι < 2αι, and βι = γι = 0 if

αι = 0, for all ι ∈ I and α, β, γ ∈ Z
(I)
+ . Moreover, the family RI becomes a set of

denominators in C((C∞)I)). This shows that the space SI can be embedded into
the algebra of fractions C((C∞)I)/RI .

To be more specific, for all α ∈ Z
(I)
+ , α 6= 0, we denote by S

(1)
I,α the linear

spaces generated by the monomials zβ z̄γ , with βι + γι < 2αι whenever αι > 0,

and βι = γι = 0 if αι = 0. Put S
(1)
I,0 = C.
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We also define S
(2)
I,α, for α ∈ Z

(I)
+ , α 6= 0, to be the linear space generated

by the monomials |z|2β =
∏

βι 6=0(zιz̄ι)
βι , 0 6= β, βι ≤ αι for all ι ∈ I and |z| =

(|zι|)ι∈I . We define S
(2)
I,0 = {0}.

Set SI,α = S
(1)
I,α + S

(2)
I,α for all α ∈ Z

(I)
+ . Note that, if f ∈ SI,α, the function

rαf extends continuously to (C∞)I and that SI,α ⊂ SI,β if αι ≤ βι for all ι ∈ I.

It is now clear that the algebra SI =
∑

α∈Z
(I)
+

SI,α can be identified with

a subalgebra of C((C∞)I)/RI . This algebra has the properties of the space F
appearing in the statement of Theorem C.

Let now T = (Tι)ι∈I be a family of linear operators defined on a dense
subspace D of a Hilbert space H such that Tι(D) ⊂D and TιTκx = TκTιx for all
ι, κ ∈ I, x ∈ D.

Setting Tα as in the case of complex monomials, which is possible because
of the commutativity of the family T on D, we may define a unital linear map
φT : SI → SF (D) by

φT (zαz̄β)(x, y) = 〈Tαx, T βy〉 , x, y ∈ D, α, β ∈ Z
(I)
+ , (5.3)

which extends by linearity to the subspace SI generated by these monomials.

An easy proof shows that, for all α, β in Z
(I)
+ with β − α ∈ Z

(I)
+ , and x ∈

D \ {0}, we have

0 < 〈x, x〉 ≤ φT (r−1
α )(x, x) ≤ φT (r−1

β )(x, x) . (5.4)

The polynomial r−1
α will be denoted by sα for all α ∈ Z

(I)
+ .

The family T = (Tι)ι∈I is said to have a normal extension if there exist a
Hilbert space K ⊃ H and a family N = (Nι)ι∈I consisting of commuting normal
operators in K such that D ⊂ D(Nι) and Nιx = Tιx for all x ∈ D and ι ∈ I.

A family T = (Tι)ι∈I having a normal extension is also called a subnormal
family (see, for instance, [1]).

The following result is a version of Theorem 3.4 from [2], valid for an arbitrary
family of operators. We mention that the basic space of fractions from [2] is slightly
modified.

Theorem 5.2. Let T = (Tι)ι∈I be a family of linear operators defined on a dense
subspace D of a Hilbert space H. Assume that D is invariant under Tι for all
ι ∈ I and that T is a commuting family on D. The family T admits a normal
extension if and only if the map φT : SI 7→ SF (D) has the property that for all

α ∈ Z
(I)
+ , m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ D with

m
∑

j=1

φT (sα)(xj , xj) ≤ 1,
m

∑

j=1

φT (sα)(yj , yj) ≤ 1,
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and for all p = (pj,k) ∈ Mm(SI,α) with supz ‖rα(z)p(z)‖m ≤ 1, we have
∣

∣

∣

∣

∣

∣

m
∑

j,k=1

φT (pj,k)(xk , yj)

∣

∣

∣

∣

∣

∣

≤ 1. (5.5)

Proof. We follow the lines of the proof of Theorem 3.4 in [2].
If the condition of the theorem is fulfilled, and so we have a linear and unital

map φT : SI → SF (D) induced by (5.3), then conditions (i) (by (5.4)) and (ii) of
Theorem C are satisfied for φT . Hence, by that theorem and Corollary D, there
exists a positive B(H)-valued measure F on the Borel sets of Ω = (C∞)I , such
that (5.2) holds for φT . Because φT is unital, F (Ω) is the identity operator on H.
By the classical Naimark dilation theorem (see, for instance [12]), there exists a
Hilbert space K containing H as a closed subspace and a spectral measure E on
the Borel subsets of Ω with values in B(K), such that F (∗) = PE(∗)|H, where
P denotes the orthogonal projection from K onto H. As in Remark 4.1, for each
ι ∈ I, let Nι be the normal operator with domain

D(Nι) =
{

x ∈ K ;

∫

Kι

|zι|
2dEx,x(z)} <∞

}

and

Nιx =

∫

Kι

zιdE(z)x , x ∈ D(Nι) ,

where Kι = {z ∈ Ω; zι 6= ∞}. For all x, y ∈ D, ι ∈ I, we have

〈PNιx, y〉 = 〈Nιx, y〉 =

∫

Kι

zιdEx,y(z)

=

∫

Ω

zιdFx,y(z) = φT (zι)(x, y) = 〈Tιx, y〉 ,

because F (Kι) = F (Ω). Indeed, F (Ω \ Kι) = F ({z ∈ Ω; zι = ∞}) =
F (Z((1 + |zι|2)−1) = 0, by Corollary D. Hence, PNιx = Tιx for all x ∈ D, ι ∈ I.
Note also that

‖Tιx‖
2 = φT (|zι|

2)(x, x) =

∫

Ω

|zι|
2dFx,x(z) =

∫

Kι

|zι|
2dEx,x(z) = ‖Nιx‖

2.

for all x ∈ D, ι ∈ I, which shows that N = (Nι)ι∈I is a normal extension of
T = (Tι)ι∈I , via the following:

Remark. Let S : D(S) ⊂ H 7→ H be an arbitrary linear operator. If B :
D(B) ⊂ K 7→ K is a normal operator such that H ⊂ K, D(S) ⊂ D(B), Sx =
PBx and ‖Sx‖ = ‖Bx‖ for all x ∈ D(S), where P is the projection of K onto
H, then we have Sx = Bx for all x ∈ D(S). Indeed, 〈Sx, Sx〉 = 〈Sx,Bx〉 and
〈Bx, Sx〉 = 〈PBx, Sx〉 = 〈Sx, Sx〉 = 〈Bx,Bx〉. Hence, we have ‖Sx − Bx‖ = 0
for all x ∈ D(S) (see [2], Remark 3.1).
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We continue the proof of Theorem 5.2.
Conversely, if T = (Tι)ι∈I admits a normal extension N = (Nι)ι∈I , the latter

has a spectral measure E with support in Ω = (C∞)I , via Theorem 4.3. Then for

all α ∈ Z
(I)
+ , the space D is contained in

D(Tα) ⊂ D(Nα) =
{

x ∈ K ;

∫

Ω

|zα|2dEx,x(z) <∞
}

.

It follows that, for all f ∈ C(Ω)/rα, the function f is integrable on Ω with respect
to the positive scalar measure Ex,x. Using the decomposition 4Ex,y = Ex+y,x+y−
Ex−y,x−y+ iEx+iy,x+iy− iEx−iy,x−iy, we see that ψ : C(Ω)/RI 7→ SF (D), defined
by

ψ(f)(x, y) =

∫

Ω

f(z)dEx,y(z), x, y ∈ D, f ∈ C(Ω)/RI ,

is a linear map which is obviously unital and positive. Moreover,

ψ(zαz̄β)(x, y) = 〈Nαx,Nβy〉 = 〈Tαx, T βy〉 = φT (zαz̄β)(x, y),

for all x, y ∈ D and α ∈ Z
(I)
+ , because Nα extends Tα, showing that ψ is an

extension of φT .
Setting φ = φT , ψrα

= ψ|C(Ω)/rα, ψrα,x(∗) = ψrα
(∗)(x, x), φrα

= φ|Srα
,

φrα,x(∗) = ψrα
(∗)(x, x) for all α ∈ Z

(I)
+ and x ∈ D, we have:

φ(r−1
α )(x, x) = ψ(r−1

α )(x, x) = ‖ψrα,x‖ ≥ ‖φrα,x‖ ≥ φ(r−1
α )(x, x),

via Theorem B. This shows that the map φ : SI → SF (D) satisfies condition (a)
in Theorem C. We infer that the condition in the actual statement, derived from
condition (b) in Theorem C, should be also satisfied. This completes the proof of
Theorem 5.2. �

Remark 5.3. Let T = (Tι)ι∈I be a family of linear operators defined on a dense
subspace D of a Hilbert space H. Assume that D is invariant under Tι and that
T is a commuting family on D. If the map φT : SI 7→ SF (D) has the property
(5.5), the family has a proper quasi-invariant subspace. In other words, there
exists a proper Hilbert subspace L of the Hilbert space H such that the subspace
{x ∈ D(Tι) ∩ L;Tx ∈ L} is dense in in L for each ι ∈ I. This is a consequence of
Theorem 5.3 and Theorem 11 from [1].

We use Example 3.5 for the particular case of a single operator. We take
I = {1} and put SI = S1, which is the set of all polynomials in z and z̄, z ∈ C.
The set RI = R1 consists of all functions of the form rk(z) = (1 + |z|2)−k, with
z ∈ C and k ∈ Z+.

Considering a single operator S, we may define a unital linear map φS : S1 →
SF (D) by

φS(zj z̄k)(x, y) = 〈Sjx, Sky〉 , x, y ∈ D, j ∈ Z+,

extended by linearity to the subspace S1. The next result is a version of Corollary

3.5 from [2] (stated for a different basic space of fraction).
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Corollary 5.4. Let S : D(S) ⊂ H 7→ H be a densely defined linear operator such
that SD(S) ⊂ D(S). The operator S admits a normal extension if and only if for
all m ∈ Z+, n ∈ N and x1, . . . , xn, y1, . . . , yn ∈ D(S) with

n
∑

j=1

m
∑

k=0

m!

k!(m− k)!
〈Skxj , S

kxj〉 ≤ 1,

n
∑

j=1

m
∑

k=0

m!

k!(m− k)!
〈Skyj , S

kyj〉 ≤ 1,

and for all p = (pj,k) ∈ Mn(Sm), with supz∈C ‖(1 + |z|2)−mp(z)‖n ≤ 1, we have
∣

∣

∣

∣

∣

∣

n
∑

j,k=1

〈φS(pj,k)xk, yj〉

∣

∣

∣

∣

∣

∣

≤ 1.

Corollary 5.3 is a direct consequence of Theorem 5.2.

The case of one operator, covered by our Corollary 5.3, is also studied in [22],
via a completely different approach.
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