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SPECTRAL MEASURES AND MOMENT PROBLEMS

F.-H. VASILESCU

Dedicated to Professor Ion Colojoarǎ on the occasion of his 70
th birthday

ABSTRACT. In this expository paper we try to emphasize some connections between
functional analysis, in particular operator theory, and moment problems. A central rôle
in this discussion is played by the operator-valued positive measures, in particular the
spectral measures, which are mathematical objects related to the spectral decompositions
of linear operators, domain in which I. Colojoarǎ has important contributions (see, for
instance, the monograph [Col]).

Part I. MOMENTS ON SEMI-ALGEBRAIC COMPACT SETS

I.1. INTRODUCTION

This chapter is a revisited and expanded version of the work [Vas2] (see also [Cla],
[Dem2], [PuVa1], [Vas7] etc.). Results as Theorems I.3.1, I.4.8 and Corollaries I.4.9 and
I.4.10 have been subsequently obtained by the author.

Let t = (t1, . . . , tn) denote the variable in the real Euclidean space Rn, and let
P (Rn) be the algebra of real polynomial functions in t1, . . . , tn. If α = (α1, . . . , αn) ∈
Zn

+ is an arbitrary multi-index, set tα = tα1

1 · · · tαn
n .

For technical reasons, we often use polynomial with complex coefficients. We de-
note by PC(Rn) the space P (Rn) ⊗ C, i.e., the space of all polynomials on R

n having
complex coefficients.

Let γ = (γα)α∈Zn
+

(γ0 > 0) be an n-sequence of real numbers. We set

(I.1.1) Lγ(tα) = γα, α ∈ Z
n
+,

and extend Lγ to PC(Rn) by linearity.
The n-sequence γ = (γα)α∈Zn

+
is said to be positive semi-definite if Lγ is positive

semi-definite (that is, Lγ(pp̄) ≥ 0 for all p ∈ PC(Rn)).
LetK ⊂ Rn be a closed set. The n-sequence γ is said to be aK-moment sequence if

there exists a positive Borel measure µ on K such that tα ∈ L1(µ) and γα =
∫

K
tαdµ(t)
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for all α ∈ Z
n
+. When such a measure µ exists, then it is called a representing measure of

the sequence γ.
To solve the K-moment problem ([Berg]) means to characterize those n-sequences

of real numbers γ = (γα)α∈Zn
+

(γ0 > 0) which possess a representing measure on K.
Let P (K) = {p|K : p ∈ P (Rn)}, and let P+(K) = {p ∈ P (K) : p|K ≥ 0}.
If the sequence γ possesses a representing measure µ on K, then the linear func-

tional Lγ satisfies the condition
(I.1.2) Lγ(p) ≥ 0, p ∈ P+(K),

and Lγ(1) > 0.
Condition (I.1.2) is also sufficient ([Hav]). Nevertheless, except for the cases when

P+(K) can be completely described, this condition is, in practice, difficult to verify. For
this reason, to solve the K-moment problem, one possibility is to seek a ”test subset”
Θ ⊂ P+(K), expressed as explicitly as possible in terms ofK, such that condition (I.1.2)
restricted to Θ imply the existence of a representing measure on K.

Let P = {p1, . . . , pm} be a finite family in P (Rn), and let
(I.1.3) KP = {s ∈ R

n; pj(s) ≥ 0, j = 1, . . . ,m}.

A closed subset K ⊂ Rn will be called (in this text) semi-algebraic if there exists a
family P such that K = KP .

In the next section we shall construct a fairly explicit ”test set” for every semi-
algebraic compact set K, which in turn will lead to an explicit solution to the K-moment
problem.

I.2. MOMENTS ON SEMI-ALGEBRAIC COMPACT SETS

Remark I.2.1. Let P = {p1, . . . , pm} be a finite family in P (Rn). Suppose that K =

KP is compact. We attach to the family P a family P̂ constructed in the following way.
As we clearly have mj = sup

t∈K

pj(t) < ∞, we set p̂j(t) = m−1
j pj(t), t ∈ Rn, if

mj > 0, and p̂j = pj if mj = 0, j = 1, . . . ,m.
We define P̂ = {0, 1, p̂1, . . . , p̂m}.
Note that K = KP = KP̂ , and that 0 ≤ p̂(t) ≤ 1 for all t ∈ K and p̂ ∈ P̂.
We denote by ∆P the set of all products of the form

q1 · · · qk(1 − r1) · · · (1 − rl)

for polynomials q1, . . . , qk, r1, . . . , rl ∈ P̂ and integers k, l ≥ 1 .
We clearly have p|K ≥ 0 for all p ∈ ∆P . Note also that the set ∆P is explicitly

constructed in terms of P .

One can prove the following assertion (practically contained in the proof of Theo-
rem 2.3 from [Vas2]).
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Theorem I.2.2. Let P = {p0 = 1, p1, . . . , pm} be a finite family in P (Rn). Suppose that
K = KP is compact and that the family P generates the algebra P (Rn).

An n-sequence of real numbers γ = (γα)α∈Zn
+

(γ0 > 0) is a K-moment sequence if
and only if the linear form Lγ is nonnegative on the set ∆P .

In addition, the representing measure of a K-moment sequence is uniquely deter-
mined.

Remark I.2.3. An alternate proof of Theorem I.2.2 was given in [PuVa1]. Another proof
can be derived from the representation theorem for real algebras given in [BeSc] (see
also [Kri1] and [Kri2]; see [PrDe] for general representation theorems, leading to solu-
tions to various moment problems, and [BCR] for other connexions). We are indebted to
E. Becker and A. Prestel for some discussions concerning the actual state-of-the-art.

We shall give in the sequel a proof of Theorem I.2.2, following the lines of Theo-
rem 2.3 from [Vas2].

Remark I.2.4. Let P = {p1, . . . , pm} be a finite family in P (Rn) such that K = KP be
compact. Let also P̂ be constructed as in Remark I.2.1.

Let ak = ak(K) = inf{tk : t ∈ K} and bk = bk(K) = sup{tk : t ∈ K}. Then
we set p̂m+k(t) = (tk − ak)/(bk − ak) if bk > ak, p̂±m+k(t) = ±(tk − ak), if bk = ak,
k = 1, . . . , n.

We define P̃ = {0, 1, p̂1, . . . , p̂m, p̂m+k : ak < bk, k = 1, . . . , n}, and P̃0 =
{1, p̂±m+k : ak = bk, k = 1, . . . , n}.

Notice that K = KP = KP̃ , and that 0 ≤ p̂(t) ≤ 1 for all t ∈ K and p̂ ∈ P̃.

Definition I.2.5. Let P = {p1, . . . , pm} ⊂ P (Rn) be such that K = KP be compact,
and let P̃ and P̃0 be as in Remark I.2.4. We denote by ∆̃P the set of all products of the
form

q1 · · · qk(1 − r1) · · · (1 − rl)h1 · · ·hu

for polynomials q1, . . . , qk, r1, . . . , rl ∈ P̃ , h1, . . . , hu ∈ P̃0 and integers k, l, u ≥ 1.

The next result is a version of Theorem I.2.2, holding for a set P = {p1, . . . , pm}
in P (Rn) not necessarily containing a family of generators.

Theorem I.2.6. Let P = {p1, . . . , pm} be a finite family in P (Rn) such that K = KP

be compact. An n-sequence of real numbers γ = (γα)α∈Zn
+

, γ0 > 0, is a K-moment

sequence if and only if the linear form Lγ is nonnegative on the set ∆̃P .

Proof. We shall show that Theorem I.2.6 can be obtained as a consequence of Theorem
I.2.2.

We keep the notation from the Remark I.2.4. As the condition from the statement
is clearly necessary, we shall deal only with its sufficiency.
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If {k : ak = bk} 6= ∅, without loss of generality we may suppose the existence of
an integer d ∈ {0, 1, . . . , n− 1} such that ak = bk for all k ≥ d+ 1. We first discuss the
case d ≥ 1.

Let u = (u1, . . . , ud) be the variable of Rd. Let also κ : Rd → Rn be given by
κ(u) = (u, a), where a = (ad+1, . . . , an) ∈ Rn−d. If Q = {p ◦ κ : p ∈ P}, and
Kd = κ−1(K), then Kd is compact (in fact, K = Kd × {a}) and Kd = KQ. Moreover,
∆̃Q = {p ◦ κ : p ∈ ∆̃P}, as one can easily check.

Let us denote, for simplicity, rk(t) = (tk − ak)/(bk − ak), k = 1, . . . , d, rk(t) =
tk − ak, k = d+ 1, . . . , n. As rk ∈ ∆P for k = d+ 1, . . . , n, it follows that

Lγ(rk1

1 · · · rkd

d r
kd+1

d+1 · · · rkn

n ) = 0

for all integers k1 ≥ 0, . . . , kn ≥ 0, provided kd+1 + · · · + kn 6= 0. Because the algebra
P (Rn) is generated by 1, r1, . . . , rn, we derive the formula

Lγ(t(ξ,η)) = Lγ(t(ξ,0))aη, ξ ∈ Z
d
+, η ∈ Z

n−d
+ .

Setting δξ = Lγ(t(ξ,0)), δ = (δξ)ξ∈Zd
+

, we infer that

Lγ(p) = Lδ(p ◦ κ), p ∈ P (Rn).

In particular, Lδ is positive on ∆̃Q, and the latter contains d linearly independent poly-

nomials of first degree. In fact, Kd ⊂
d
∏

j=1

[aj , bj ] and we may apply Theorem I.2.2.

Consequently, there exists a positive measure ν on Kd such that δξ =
∫

Kd
uξ dν(u),

ξ ∈ Zd
+. If θa is the Dirac measure concentrated at a, then µ = ν ⊗ θa is a representing

measure for γ.
The case d = 0 is obtained in a similar manner, and a representing measure for γ is

γ0θa. �

We shall prepare the proof of Theorem I.2.2, which needs some auxiliary results.

Definition I.2.7. Let K = KP be a semi-algebraic compact set. We denote by π(P) the
family of all linear mappings L : P (Rn) → R such that L(1) = 1 and L(r) ≥ 0 for all
r ∈ ∆P . Clearly, π(P) is a convex set.

Lemma I.2.8. For all L ∈ π(P) and r ∈ ∆P one has 0 ≤ L(r) ≤ 1.

Proof. (See also [Cas], Lemme 2.) Let r = r1 · · · rk ∈ ∆P , where either rj ∈ P̂ or
1 − rj ∈ P̂ for all j. As we have

1 − r1 · · · rn = (1 − r1) + r1(1 − r2) + · · · + r1 · · · rk−1(1 − rk),

one obtains L(1− r) ≥ 0, whence L(r) ≤ 1. �
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Remark I.2.9. (1) Let Γ+(K) be the positive cone generated by ∆P . The previous proof
shows that if r ∈ ∆P , then 1 − r ∈ Γ+(K). A similar argument also shows that if
p, q ∈ ∆P , then (1 − p)q ∈ Γ+(K). In particular, if L : P (Rn) → R is positive on ∆P ,
then L((1 − p)q) ≥ 0 for all p, q ∈ ∆P . If, in addition, L(1) = 0, then L = 0.

(2) As in [Cas], we identify the set π(P) with a subset of the compact space X =

[0, 1]∆P , which is possible via the fact that the unital algebra generated by P̂ in P (Rn)
coincides with P (Rn), and by Lemma I.2.8. This subset is also closed, for if L0 is a
cluster point of π(P) in X , then L0(r) ≥ 0, r ∈ ∆P , L0(1) = 1, and L0 can be extended
by linearity to P (Rn). Therefore, in the algebraic dual of P (Rn), endowed with the weak
topology induced by ∆P , the set π(P) is convex and compact.

Lemma I.2.10. Let L be an extreme point of π(P). Then L is multiplicative on P (Rn).

Proof. We proceed as in the proof of [Cas], Lemme 3. Let p ∈ ∆P be fixed. It suffices to
prove that L(pq) = L(p)L(q) for all q ∈ ∆P . Let α = L(p). We have three possibilities:

If 0 < α < 1, we consider the linear functionals L1(r) = α−1L(pr) and L2(r) =
(1 − α)−1L((1 − p)r), r ∈ P (Rn). It is easily seen that L1, L2 ∈ π(P), via Re-
mark I.2.9 (1). As we have L = αL1 + (1 − α)L2, and L is an extreme point of π(P),
we must have L = L1, whence L(pq) = L(p)L(q).

If α = 0, then L0(r) = L(pr) is positive on ∆P , and L0(1) = 0, whence L0 = 0,
by Remark I.2.9 (1). This implies that L(pq) = 0 = L(p)L(q).

If α = 1, we apply the previous argument to the functional L1(r) = L((1 − p)r),
and obtain L(pq) = L(q) = L(p)L(q). �

Lemma I.2.11. For every L ∈ π(P) there exists a uniquely determined probability mea-
sure µ on K such that L(p) =

∫

K
pdµ for all p ∈ P (K).

Proof. This assertion coincides with [Cas], Théorème 1. Here is a different proof.
Let L0 ∈ π(P) be an extreme point. Then L0 is multiplicative on P (Rn), by

Lemma I.2.10. Thus, if c = (c1, . . . , cn) ∈ Rn is given by cj = L0(tj), then we have
L0(p) = p(c) for all p ∈ P (Rn). Since 0 ≤ L0(p) ≤ 1, p ∈ ∆P , by Lemma I.2.8, we
obtain that c ∈ K, and that

|L0(p)| = |p(c)| ≤ ‖p‖K = sup
t∈K

|p(t)|, p ∈ P (Rn).

If L ∈ π(P) is of the form L =
∑

j∈J

λjLj , where λj ≥ 0,
∑

j∈J

λj = 1, Lj an

extreme point of π(P), J finite, then

|L(p)| ≤
∑

j∈J

λj |Lj(p)| ≤
∑

j∈J

λj‖p‖K = ‖p‖K , p ∈ P (Rn),

by the first part of the proof.
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Since the set π(P) is convex and compact (see Remark I.2.9(2)), by virtue of the
Krein-Milman theorem we have that every L ∈ π(P) is in the closure of the convex hull
of the set of extreme points of π(P), whence we deduce that

|L(p)| ≤ ‖p‖K, L ∈ π(P), p ∈ P (Rn),

by the previous similar estimates. This implies the existence and uniqueness of the mea-
sure µ for each L ∈ π(P), by the Riesz representation theorem, via the density of P (K)
in the space of all real-valued continuous functions on K, given by the Weierstrass ap-
proximation theorem. �

Proof of Theorem I.2.2. Let γ = (γα)α∈Zn
+

(γ0 > 0) be a K-moment sequence. Then
the linear form L = γ−1

0 Lγ is an element of π(P), and the conclusion follows from
Lemma I.2.11. �

The representing measure previously obtained is always uniquely determined, as a
consequence of the theorem of Weierstrass asserting the density of the space P (K) in the
space of all continuous functions on K.

Remark I.2.12. (1) For n = 1, if P = {p1, . . . , pm} ⊂ P (R) and if K = KP is
compact, a positive semi-definite n-sequence γ = (γα)α∈Z+

is a K-moment sequence if
and only if each sequences pk(S)γ are positive semi-definite for all k = 1, . . . ,m, where
(Sγ)α = γα+1 for all α ∈ Z+, as shown in [BeMa].

(2) Let K = KP , and let ΣP be the family of all polynomial functions in P+(K)
of the form q21 + q22pj1 · · · pjk

, where q1, q2 ∈ P (Rn) are arbitrary, and {j1, . . . , jk}
⊂ {1, . . . ,m}. It is shown in [Sch1] that if K = KP is compact, then a sequence
γ = (γα)α∈Zn

+
(γ0 > 0) is a K-moment sequence if and only if Lγ(p) ≥ 0 for all

p ∈ ΣP .
(3) A certain ”test set” is constructed in [Cas], in a rather intricate manner (using

extremal points of some spaces of polynomial functions), for an arbitrary compact set
with nonempty interior. Although that ”test set” is hard to describe in explicit terms, it is
the method of [Cas] which has been adapted to obtain a proof for Theorem I.2.2 above.

(4) The case of an arbitrary compact set is treated in [Dem2], by extending the
techniques from [Vas2].

For some applications, it is useful to have a better localization of the support of the
representing measure of a moment sequence. In this respect, we have the following (see
Theorem 2.9 from [Vas2]; see also [McG]).

Theorem I.2.13. Let P = {p1, . . . , pm} be a finite family in P (Rn) such that K = KP

is compact. Let also γ = (γα)α∈Zn
+

(γ0 > 0) be a K-moment sequence, and let µ be the
representing measure of γ. Assume that there exists an r ∈ P (Rn) such that Lγ(rp) ≥ 0

for all p ∈ ∆̃P . Then
supp(µ) ⊂ {s ∈ K : r(s) ≥ 0}.
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If Lγ(rp) = 0 for some r ∈ P (K) and for all p ∈ ∆̃P , then

supp(µ) ⊂ {s ∈ K : r(s) = 0}.

Proof. Assume first that Lγ(r) > 0. Then the sequence γ ′α = Lγ(tαr), α ∈ Zn
+,

is a K-moment sequence, by Theorem I.2.2. Let µ′ be the representing measure of
γ′ = (γ′α)α∈Zn

+
. Since

∫

p dµ′ =
∫

pr dµ for all p ∈ P (K), we obtain the equality
∫

f dµ′ =
∫

fr dµ for all continuous functions f on K, by the Weierstrass approxima-
tion theorem. This implies that µ′ = rµ. As µ′ is a positive measure, an easy measure
theoretic argument shows that µ(B) = 0, where B = {s ∈ K : r(s) < 0}.

Assume now that Lγ(r) = 0. We have two cases:
a) There is a q0 ∈ ∆P such that Lγ(q0r) > 0. As Lγ((q0 + ε)r) = Lγ(q0r) > 0

for any ε > 0, we may assume that q0(s) > 0 for all s ∈ K. Then, by the first part of the
proof,

supp(µ) ⊂ {s ∈ K : q0(s)r(s) ≥ 0} = {s ∈ K : r(s) ≥ 0}.

b) If Lγ(pr) = 0 for all p ∈ ∆P , then the measure rµ = 0, whence, again by a
measure theoretic argument, we deduce that supp(µ) ⊂ {s ∈ K : r(s) = 0}. �

Remark I.2.14. With the notation of Theorem I.2.13, assuming the existence of a poly-
nomial r ∈ PC(Rn) such that Lγ(rp) ≥ 0 for all p ∈ ∆̃P , writing r = r′ + ir′′, with
r′, r′′ ∈ P (Rn), we obtain Lγ(r′p) ≥ 0 and Lγ(r′′p) = 0 for all p ∈ ∆P . Consequently,

supp(µ) ⊂ {s ∈ K : r′(s) ≥ 0, r′′(t) = 0},

via Theorem I.2.13.

Example I.2.15. (1) Let K = [0, 1]n ⊂ Rn. If pj(t) = tj , pn+j(t) = 1 − tj , j =

1, . . . , n, and P = {1, p1, . . . , pn}, then P̂ = {0, 1, p1, . . . , pn} and K = KP . It is
easily seen that the condition Lγ(r) ≥ 0 (r ∈ ∆P) from our Theorem I.2.2 is equivalent
to the condition (13) from Theorem 1 in [HiSc] (stated in n dimensions). Therefore,
Theorem I.2.2 provides, in particular, a new proof for the existence of a solution to the
Hausdorff moment problem in several variables. In other words, γ = (γα)α∈Zn

+
(γ0 > 0)

is a K-moment sequence, with K = [0, 1]n ⊂ Rn, if and only if

Lγ(tk1

1 · · · tkn

n (1 − t1)
`1 · · · (1 − tn)`n) ≥ 0,

for all integers k1 ≥ 0, . . . , kn ≥ 0, `1 ≥ 0, . . . , `n ≥ 0. This condition is equivalent to
∑

0≤ξ≤β

(−1)|ξ|
(

β

ξ

)

γα+ξ ≥ 0, α, β ∈ Z
n
+.

Conversely, using the above mentioned result from [HiSc], one can give a different
proof of Theorem I.2.2 (see [PuVa1] for details).

(2) Let K = {t ∈ Rn : t21 + · · · + t2n ≤ 1}, i.e., the unit ball in Rn. Let
pj(t) = (1 + tj)/2, pn+j(t) = (1 − tj)/2, j = 1, . . . , n, p2n+1(t) = 1 − t21 − · · · − t2n,
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and p2n+2(t) = t21 + · · · + t2n. If P = {1, p1, . . . , pn, p2n+1}, then K = KP , and
P̂ = {0, 1, p1, . . . , p2n+1}.

By virtue of Theorem I.2.2, γ = (γα)α∈Zn
+

(γ0 > 0) is a K-moment sequence,
with K = {t ∈ Rn; t21 + · · · + t2n ≤ 1}, if and only if

Lγ(pk1

1 · · · p
k2n+2

2n+2 ) ≥ 0,

for all integers k1 ≥ 0, . . . , k2n+2 ≥ 0.
Using Theorem I.2.13, we obtain that γ = (γα)α∈Zn

+
(γ0 > 0) is a K-moment

sequence, with K = {t ∈ Rn : t21 + · · · + t2n = 1}, if and only if

Lγ(pk1

1 · · · p
k2n+2

2n+2 ) ≥ 0,

for all integers k1 ≥ 0, . . . , k2n ≥ 0, k2n+1 = 0, k2n+2 ≥ 0, and

Lγ(pk1

1 · · · p
k2n+2

2n+2 ) = 0,

for all integers k1 ≥ 0, . . . , k2n ≥ 0, k2n+1 > 0, k2n+2 ≥ 0.

Remark I.2.16. The methods developed in this section also allow us to approach some so-
called ”complex moment problems”, that is, moment problems in the complex Euclidean
space Cn. Identifying the space Cn with the space R2n, we may derive easily some
useful assertions, stated only in terms of complex variables. We shall briefly present the
necessary changes for this transfer of information.

If z = (z1, . . . , zn) is the variable in the complex Euclidean space Cn, we denote
by P (Cn) the algebra of all complex polynomial functions in z̄1, . . . , z̄n, z1, . . . , zn. The
algebra P (Cn) can be identified with the algebra PC(R2n).

Let γ = (γα,β)α,β∈Zn
+

be an 2n-sequence of complex numbers. We set

(I.2.1) Lγ(z̄αzβ) = γα,β, α, β ∈ Z
n
+,

and extend Lγ to P (Cn) by linearity.
The concepts of K-moment sequence (K ⊂ Cn a compact subset) and of positive

semi-definiteness are defined as for real sequences.
Let P = {p1, . . . , pm} be a finite family in P (Cn) such that pj is a real valued

function on Cn for all j = 1, . . . , n. We set KP := {w ∈ Rn : pj(w) ≥ 0, j =
1, . . . ,m}. Suppose that K = KP is compact. As in Remarks I.2.1 and I.2.4, we attach
to the family P a family P̂ constructed in the following way.

Because we have havemj = sup
w∈K

pj(w) <∞, we set p̂j(z) = m−1
j pj(z), z ∈ C

n,

if mj > 0, and p̂j = pj if mj = 0, j = 1, . . . ,m.
Now, let ak = inf{<zk : t ∈ K}, bk = sup{<zk : t ∈ K}, ck = inf{=zk : t ∈

K}, dk = sup{=zk : t ∈ K}. We put p̂m+k(z̄, z) = (<zk − ak)/(bk − ak) if bk > ak,
and p̂m+k(z̄, z) = (<zk − ak) if bk = ak, k = 1, . . . , n. Similarly p̂m+n+k(z̄, z) =
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(=zk − ck)/(dk − ck) if dk > ck, and p̂m+n+k(z̄, z) = (=zk − ck) if dk = ck, k =
1, . . . , n. Define

P̂ = {0, 1, p̂1, . . . , p̂m},

P̃ = {0, 1, p̂1, . . . , p̂m, p̂m+j , p̂m+n+k : aj < bj , ck < dk, j, k = 1, . . . , n}

and
P̃0 = {1,±p̂m+j, ±p̂m+n+k : aj = bj , ck = dk, j, k = 1, . . . , n}.

We have K = KP = KP̂ and 0 ≤ p̂(w̄, w) ≤ 1 for all w ∈ K and p̂ ∈ P̂.
As in Remark I.2.1, we denote by ∆P the set of all products of the form

q1 · · · qk(1 − r1) · · · (1 − rl)

for polynomials q1, . . . , qk, r1, . . . , rl ∈ P̂ and integers k, l ≥ 1. We also denote by ∆̃P

the set of all products of the form
q1 · · · qk(1 − r1) · · · (1 − rl)h1 · · ·hu

for polynomials q1, . . . , qk, r1, . . . , rl ∈ P̃ , h1, . . . , hu ∈ P̃0 and integers k, l, u ≥ 1.

Theorems I.2.2 and I.2.13 lead to the following assertion (not explicitly mentioned
in [Vas2]; see also [Vas7]).

Theorem I.2.17. Let P = {p1, . . . , pm} be a finite family in P (Cn) such that pj is a real
valued function on Cn for all j = 1, . . . , n. Suppose that K = KP is compact.

(i) A 2n-sequence of complex numbers γ = (γα,β)α,β∈Zn
+

with γ̄α,β = γβ,α for all
α, β ∈ Zn

+ and γ0,0 > 0 is a K-moment sequence if and only if the linear form
Lγ is nonnegative on the set ∆̃P .

When the family {1, p1, . . . , pm} generates the algebra P (Cn), the set ∆̃P

may be replaced by ∆P .
(ii) Assume that γ = (γα,β)α,β∈Zn

+
(γ0,0 > 0) is a K-moment sequence, and let µ

be the representing measure of γ. Also assume that there exists a real valued
polynomial r ∈ P (Cn) such that Lγ(rp) ≥ 0 for all p ∈ ∆P . Then

supp(µ) ⊂ {w ∈ K : r(w̄, w) ≥ 0}.

If Lγ(rp) = 0 for some r ∈ P (Cn) and for all p ∈ ∆P , then

supp(µ) ⊂ {w ∈ K : r(w̄, w) = 0}.

Proof. (i) Writing zj = tj + isj , i.e., tj = <zj , sj = =zj , j = 1, . . . , n, we have a
natural map, say θ, given by

C
n 3 z = (z1, . . . , zn) → (t1, . . . , tn, s1, . . . , sn) = (t, s) ∈ R

n × R
n,

which allows the identification of Cn with R2n.
The hypothesis on γ implies the equality Lγ(p̄) = Lγ(p) for all p ∈ P (Cn).

Therefore, Lγ(p) is a real number whenever p̄ = p. In particular, setting γ̃α,β :=
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Lγ(tαsβ), α, β ∈ Z
n
+, and γ̃ = (γ̃α,β)α,β∈Zn

+
, we get a 2n-sequence of real numbers

with γ̃0,0 > 0. We have in fact Lγ̃(q) = Lγ(q ◦ θ−1) for all q ∈ PC(R2n).
If P̃ := {p ◦ θ−1 : p ∈ P}, then ∆P̃ = {r ◦ θ−1 : r ∈ ∆P} and K̃ := θ(K) =

(θ(K))P̃ . Therefore, γ̃ is a K̃-moment sequence if and only if γ is aK-moment sequence.
Moreover, µ̃ is a representing measure for γ̃ if and only if µ := µ̃ ◦ θ−1 is a representing
measure for γ. Consequently, the assertion follows directly from Theorem I.2.2.

(ii) Using the discussion from (i), we infer easily the assertion, as a consequence of
Theorems I.2.2 and I.2.13. We only note that, without loss of generality, the polynomial
r ∈ P (Cn) may be assumed to be a real-valued function. �

Example I.2.18. Let Dn = {z ∈ Cn : |zj | ≤ 1, j = 1, . . . , n}, i.e. the unit polydisc in
C

n. We consider the following polynomials:
p1,j(z̄, z) = (1 + <zj)/2, p2,j(z̄, z) = (1 + =zj)/2,
p3,j(z̄, z) = (1 −<zj)/2, p4,j(z̄, z) = (1 −=zj)/2,
p5,j(z̄, z) = 1 − |zj |2, p6,j(z̄, z) = |zj |2,

for all j = 1, . . . , n. Note that, if P = {1, p1,j, p2,j , p5,j , : j = 1, . . . , n}, then P̂ =
{0, 1, p1,j, p2,j , p5,j : j = 1, . . . , n}, and D

n = KP .
Let γ = (γα,β)α,β∈Zn

+
be a 2n-sequence of complex numbers with γ̄α,β = γβ,α

for all α, β ∈ Zn
+ and γ0,0 > 0. By Theorem I.2.17, γ is a K-moment sequence, with

K = Dn if and only if

Lγ(p
k1,1

1,1 p
k1,2

1,2 · · · p
k1,n

1,n p
k2,1

2,1 · · · p
k6,n

6,n ) ≥ 0

for all integers k1,1 ≥ 0, k1,2 ≥ 0, . . . , k6,n ≥ 0. As we have the obvious identity
2+ zj + zj = |zj +1|2 +1−|zj |

2, it follows that each expression pk1,1

1,1 p
k1,2

1,2 · · · p
k6,n

6,n can
be written as a linear combination with positive coefficients of expressions of the form
(1 − |z1|2)η1 · · · (1 − |zn|2)ηn |p(z)|2, where η = (η1, . . . , ηn) ∈ Zn

+ and p is an analytic
polynomial. Consequently, if

(I.2.2) Lγ((1 − |z1|
2)η1 · · · (1 − |zn|

2)ηn)|p(z)|2) ≥ 0

for all η = (η1, . . . , ηn) ∈ Zn
+ and all p ∈ Pa(C

n), then γ is a K-moment sequence,
where Pa(C

n) is the algebra of analytic polynomials on Cn. Condition (I.2.2) is equiva-
lent to

(I.2.3)
∑

α,β∈Zn
+

∑

ξ≤η

(−1)|ξ|
(

η

ξ

)

cαcβγα+ξ,β+ξ ≥ 0

for all η ∈ Zn
+ and all sequences of complex numbers (cα)α∈Zn

+
with only finitely many

nonzero terms.
Condition (I.2.2) is also necessary.
For n = 1, a different characterization is given in [Atz], where Hilbert space meth-

ods are used.
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Example I.2.19. Let T
n = {z ∈ C

n : |zj | = 1, j = 1, . . . , n}, i.e., the torus in C
n.

It follows from Theorem I.2.17 (ii), as well as from the previous example, that γ is a
K-moment sequence, with K = Tn if and only if

(I.2.4) Lγ(|p(z)|2) ≥ 0

and

(I.2.5) Lγ((1 − |z1|
2)η1 · · · (1 − |zn|

2)ηn)|p(z)|2) = 0,

for all η = (η1, . . . , ηn) ∈ Zn
+, η 6= 0, and all p ∈ Pa(C

n). Condition (I.2.5) can be
considerably simplified. Namely, it can be replaced by the condition

(I.2.6) Lγ((1 − |z1|
2)η1 · · · (1 − |zn|

2)ηn)|p(z)|2) = 0,

for all η = (η1, . . . , ηn) ∈ Zn
+, |η| = 1, and all p ∈ Pa(C

n). Indeed, from (I.2.6) we infer
easily thatLγ(|z1|2k1 · · · |zn|2kn |p(z)|2) = Lγ(|p(z)|2) for all integers k1 ≥ 0, . . . , kn ≥
0, and this last equality leads us easily to (I.2.5).

Conditions (I.2.4) and (I.2.6) can be used to recapture the classical solutions to
trigonometric moment problems in one or several variables. For instance, if c = (cα)α∈Zn

is an n-sequence of complex numbers with c0 > 0 and c−α = c̄α for all α ∈ Zn, we
define the 2n-sequence γ = (γα,β)α,β∈Zn

+
by γα,β = cα−β for all α, β ∈ Zn

+. The
2n-sequence γ has a representing measure concentrated in Tn (which clearly implies
the existence of a representing measure for c on Tn) if (i) Lγ(|p(z)|2) ≥ 0 and (ii)
Lγ((1−|zj |2)|p(z)|2) = 0 for all j = 1, . . . , n and p ∈ Pa(C). Condition (i) is equivalent
to the classical Carathéodory-Féjer condition

∑

α,β

cα−βλαλ̄β ≥ 0

for each finite family (λα)α of complex numbers, while (ii) follows from the fact that
γα+ej ,β+ej

= γα,β for all α, β ∈ Z
n
+, with ej = (δ1j , . . . , δnj) and δkj the Kronecker

symbol.

I.3. DECOMPOSITION OF POSITIVE POLYNOMIALS

In this section we give an application of Theorem I.2.2, which describes the struc-
ture of those polynomials that are positive on a semi-algebraic compact set.

Let K = KP be a semi-algebraic compact set. As in the previous section, we
denote by Γ+(K) the positive cone generated by ∆P in P (Rn). Then we have the fol-
lowing decomposition theorem (a version of which is stated in [Vas2], without proof, as
Theorem 2.10):

Theorem I.3.1. Let P = {p0 = 1, p1, . . . , pm} be a finite family in P (Rn). Suppose that
K = KP is compact and that the family P generates the algebra P (Rn).

If p ∈ P (Rn) is strictly positive on K, then p ∈ Γ+(K).
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The proof of Theorem I.3.1 is based on Lemma I.3.2 below, which is a version of
Lemma 4 from [AmVa].

The linear space A = P (Rn) will be endowed with the finest locally convex topol-
ogy. A basis of the topology of the space A consists of all convex, absorbent and sym-
metric subsets of A.

Lemma I.3.2. With the conditions of Theorem I.3.1, the constant polynomial 1 ∈ A
belongs to the interior of Γ+(K).

Proof. Let A′ ⊂ A consist of all p ∈ A for which there is an ε = εp > 0 with 1 + λp ∈
Γ+(K) for any λ ∈ (−ε, ε). The set A′ is a linear space. Indeed, 1 + λ(p + q) =
(1/2)(1 + 2λp + 1 + 2λq) ∈ A+, if |λ| < min{εp/2, εq/2}, p, q ∈ A′. Similarly,
1 + λcp ∈ A+ for all c ∈ R if |λ| is sufficiently small.

Note that ∆P generates the linear space A, as a direct consequence of the hypothe-
sis. In particular, for every fixed multi-index α ∈ Zn

+ there exists a finite family (gj)j∈J

in ∆P ⊂ Γ+(K) such that

tα =
∑

j∈J

cjgj =
∑

j∈J+

cjgj +
∑

j∈J−

cjgj ,

where ±cj > 0 for j ∈ J±. Set ε =
(

∑

j∈J

|cj |
)−1

. If 0 ≤ λ ≤ ε, then

1 + λtα =
∑

j∈J+

cjgj + 1 +
∑

j∈J−

λcj +
∑

j∈J−

(−λcj)(1 − gj),

showing that 1+λtα ∈ Γ+(K), since 1−gj ∈ Γ+(K) for all j ∈ J , by Remark I.2.9(1).
Similarly, 1 + λtα ∈ Γ+(K) if −ε ≤ λ ≤ 0. Hence any monomial tα ∈ A′. Conse-
quently, A′ = A.

Set A+ = Γ+(K) and U = (A+ −1)∩ (1−A+), which is a convex set containing
zero. Let f ∈ A. Then 1+λf ∈ A+ for |λ| < ε. Therefore,λf ∈ A+−1,−λf ∈ 1−A+,
and so λf ∈ U for all |λ| < ε. In other words, U is absorbent. Since U is clearly
symmetric, it follows that U is a neighbourhood of the origin. Hence V = U + 1 ⊂ A+

is a neighbourhood of 1 in A. �

Corollary I.3.3. If p /∈ Γ+(K), there exists a linear functional L : A → R such that
L(p) ≤ 0 and L|Γ+(K) ≥ 0.

Proof. As the interior of A+ = Γ+(K) is nonempty, Mazur’s theorem implies the ex-
istence of a linear functional L : S → R such that L(p) ≤ inf

x∈A+

L(x). Since A+

is a cone, we cannot have inf
x∈A+

L(x) < 0. Therefore L|Γ+(K) ≥ 0. Moreover,

inf
x∈A+

L(x) ≤ inf
ε>0

L(ε1) = 0, whence L(p) ≤ 0. �
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Proof of Theorem I.3.1. Let p ∈ P (Rn) be such that p(t) > 0 for all t ∈ K. Assuming
p /∈ Γ+(K), from Corollary I.3.3 we derive the existence of a linear functionalL : S → R

such that L(p) ≤ 0 and L|Γ+(K) ≥ 0. As ∆P ⊂ Γ+(K), Theorem I.2.2 implies the
existence of a positive measure µ on K such that L(q) =

∫

K
q dµ for all q ∈ P (Rn).

Therefore, 0 <
∫

K
p dµ = L(p) ≤ 0, which is a contradiction, and completes the proof

of Theorem I.3.1. �

Remark I.3.4. A decomposition theorem via positive linear functions on compact convex
polyhedra was given in [Han]. Theorem I.3.1 above seems to give an answer to a question
from [Han]. A particular case of Theorem I.3.1 is stated in [Kri2]. See also [Cas], [Put],
[Sch1] etc. for related results.

I.4. MOMENTS AND SUBNORMALITY

That there exists a strong connection between the moment problem and subnormal-
ity has been known for a longtime (see [SzN1], [Emb], [Atz], [Agl2], [Ath], [AtPe], to
quote only a few).

In this section we apply the results from the second section to refine some results
from [AtPe].

Let H be a complex Hilbert space, and let L(H) be the algebra of all bounded linear
operators acting on H.

If T = (T1, . . . , Tn) ∈ L(H)n is a commuting multioperator (briefly, a c.m.), then
for every p ∈ P (Cn), p(z, z) =

∑

α,β

cα,βz
αzβ, we set

(I.4.1) p(T ∗, T ) =
∑

α,β

cα,βT
∗αT β

(with Tα = Tα1

1 · · ·Tαn
n for all α = (α1, . . . , αn) ∈ Z

n
+; this is part of the so-called

”hereditary functional calculus”, considered in [Agl1] and [Ath]).
Formula (I.4.1) can be expressed in a slightly different manner, at least for polyno-

mial functions from PC(Rn) = P (Rn) ⊗ C.
Let MTj

: L(H) → L(H) be the operatorX → T ∗
j XTj , X ∈ L(H), j = 1, . . . , n,

and let MT = (MT1
, . . . ,MTn

), which is a c.m. on L(H).
For every p ∈ PC(Rn), p(t) =

∑

α

aαt
α, we define

(I.4.2) p(MT ) =
∑

α

aαM
α
T ,

which is, in fact, a unital algebra homomorphism. Note also that

(I.4.3) p̂(T ∗, T ) = p(MT )(1), p ∈ PC(Rn),

where p̂(z, z) =
∑

α

aαz
αzα, and 1 is the identity on H.



186 F.-H. VASILESCU

We recall that a c.m. T ∈ L(H)n is said to be subnormal if there exist a Hilbert
space K ⊃ H and a c.m. N ∈ L(K)n consisting of normal operators (which is called a
normal extension of T ) such that Tj = Nj |H, j = 1, . . . , n. Among all normal exten-
sions of a subnormal c.m. T there exists a minimal one, which is unique up to unitary
equivalence. In that case one also have ‖Tj‖ = ‖Nj‖, j = 1, . . . , n (see [Ito] for details).

Let K = KP be a semi-algebraic compact subset of Rn. Let also τ be the mapping

(I.4.4) C
n 3 z = (z1, . . . , zn) → (|z1|

2, . . . , |zn|
2) ∈ R

n.

Note that the set τ−1(K) ⊂ Cn is also compact.
With this notation, we have the following (see Theorem 3.1 from [Vas2]):

Theorem I.4.1. The commuting multioperator T ∈ L(H)n has a normal extension N ∈
L(K)n (K ⊃ H), whose joint spectrum lies in τ−1(K), if and only if (p ◦ τ)(T ∗, T ) ≥ 0

for all p ∈ ∆̃P .

Proof. If N is a normal extension of T , and if E is the spectral measure of N whose
support lies in L = τ−1(K), then for all p ∈ ∆P , p(t) =

∑

α

aαt
α, and x ∈ H we have:

〈(p ◦ τ)(T ∗, T )x, x〉 =
∑

α

aα‖T
αx‖2

=
∑

α

aα‖N
αx‖2

=

∫

L

∑

α

aαz
αzα d〈E(z)x, x〉

=

∫

K

p(t) dµ(t) ≥ 0,

since p|K ≥ 0, where µ(A) = 〈E(τ−1(A))x, x〉 for all Borel sets A ⊂ Rn.
Conversely, we proceed as in [Ath], Theorem 4.1. The major change is the use of

Theorem I.2.6 instead of the corresponding result from [HiSc].
Let x ∈ H, x 6= 0, and let

γα = 〈T ∗αTαx, x〉, α ∈ Z
n
+.

Then
Lγ(p) = 〈(p ◦ τ)(T ∗, T )x, x〉, p ∈ P (K).

In particular, Lγ(p) ≥ 0 if p ∈ ∆P , and γ0 = ‖x‖2 > 0. According to Theorem I.2.6,
there exists a positive Borel measure µx on K such that

〈T ∗αTαx, x〉 =

∫

K

tα dµx(t).
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The support of µx is, in fact, contained in K ∩ R
n
+ for all x ∈ H, since

Lγ(tjp) = 〈(p ◦ τ)(T ∗, T )Tjx, Tjx〉 ≥ 0, j = 1, . . . , n,

implying the desired inclusion, via Theorem I.2.13.
A standard polarization argument, the uniqueness of the representing measure and

an obvious change of variable implies the existence of a positive operator-valued measure
FT on K ∩ Rn

+ such that

(I.4.5) T ∗αTα =

∫

K∩Rn
+

t2αdFT (t), α ∈ Z
n
+.

Then the assertion follows from [Lub], Theorem 3.2. �

Remark I.4.2. As noticed in [AtPe] (referring to the proof of [Lub], Theorem 3.2), if E
is the spectral measure of the minimal normal extension N ∈ L(K)n of the subnormal
c.m. T ∈ L(H)n, then one has the equality

(I.4.6) FT (A) = PHE(τ−1(A))|H

for all Borel subsets A ⊂ K, where PH is the orthogonal projection of K onto H, and FT

is as in (I.4.5).
Moreover, if E′(A) = E(τ−1(A)), A ⊂ K a Borel subset, then the measures E ′

and FT have the same support.
The uniquely determined positive operator-valued measure that satisfies (I.4.5) is

called the representing measure of the subnormal c.m. T ∈ L(H)n.

The next result is a enlarged version of Theorem 3.4 from [Vas2].

Theorem I.4.3. Let Γ = (Γα)α∈Zn
+

be a sequence of bounded self-adjoint operators on
H, with Γ0 = 1. Let also LΓ : P (Rn) → L(H) be the mapping

LΓ(p) =
∑

α

cαΓα if p(t) =
∑

α

cαt
α.

Assume that K = KP is a semi-algebraic compact subset of Rn. Then there exists
a uniquely determined positive operator-valued measure FΓ on K such that LΓ(p) =
∫

K
pdFΓ for all p ∈ P (K) if and only if LΓ(p) ≥ 0 for all p ∈ ∆̃P .

In the affirmative case, assume, moreover, that there exists an r ∈ P (Rn) such that
LΓ(rp) ≥ 0 for all p ∈ ∆̃P . Then

supp(FΓ) ⊂ {s ∈ K : r(s) ≥ 0}.

If LΓ(rp) = 0 for some r ∈ P (Rn) and for all p ∈ ∆̃P , then

supp(FΓ) ⊂ {s ∈ K : r(s) = 0}.
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Proof. The construction of the measure FΓ is performed as in the first part of the proof of
Theorem I.3.1, using Theorem I.2.6. The uniqueness of the measure FΓ follows from the
uniqueness of each measure µx = 〈FΓ(∗)x, x〉, x ∈ H.

The remaining assertions are obtained via Theorem I.2.13. �

Remark I.4.4. Theorem I.4.3 contains, as a particular case, the following classical result
of [SzN1]:

A sequence (Γk)k∈Z+
in L(H) can be represented under the form Γk =

∫ 1

0 t
k dF (t), k ≥ 0, for a certain operator-valued positive measure on

[0, 1] if and only if we have
m
∑

j=0

(−1)j
(

m
j

)

Γj+k ≥ 0 for all integers

m, k ≥ 0.
See also [MaN] for further connections.

A consequence of Theorem I.4.3 is the following fact (see also Theorem 3.4 from
[Vas2]).

Corollary I.4.5. Let T ∈ L(H)n be a subnormal c.m., and assume that the support of the
representing measure FT de T is contained in the semi-algebraic compact set K = KP .

If there exists an r ∈ P (Rn) such that ((pr) ◦ τ)(T ∗, T ) ≥ 0 for all p ∈ ∆̃P , then

supp(FT ) ⊂ {s ∈ K : r(s) ≥ 0}.

If there exists r ∈ PC(K) such that (r◦τ)(T ∗, T ) = 0, then one also has (r◦τ)(N ∗, N) =
0, where N is the minimal normal extension of T .

Proof. The inclusion supp (FT ) ⊂ {t ∈ K : r(t) ≥ 0} follows from Theorem I.4.3.
Assume now that (r ◦ τ)(T ∗, T ) = 0. Then for every p ∈ ∆̃P we have

((pr) ◦ τ)(T ∗, T ) = (pr)(MT )(1) = p(MT )r(MT )(1) = 0,

because of the relation (r ◦ τ)(T ∗, T ) = r(MT )(1) = 0. From Theorem I.4.3 (see
also Remark I.2.14), we deduce that supp (FT ) ⊂ {s : r(s) = 0}. According to
Remark I.4.2, supp (E ′) = supp (FT ). This shows that (r ◦ τ)(z, z) = 0 for all z ∈
supp (E), and so (r ◦ τ)(N∗, N) = 0. �

Most of the assertions from [AtPe] (Propositions 4–8 ; see also [McG] and [Lem2])
are now consequences of our Theorem I.4.3.

Example I.4.6. Let us consider (as in [Vas2]) a family of polynomials {p1, . . . , pm},
where

pj(t) = 1 −
n

∑

k=1

cjktk, j = 1, . . . ,m,

with the following properties:
(i) cjk ≥ 0 for all indices j, k;
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(ii) for every k ∈ {1, . . . , n} there exists a j ∈ {1, . . . ,m} such that cjk 6= 0;
(iii) pj 6= 1 for all j ∈ {1, . . . , n}.

Let P = {1, p1, . . . , pm, pm+1, . . . , pm+n}, where pm+k(t) = tk, k = 1, . . . , n.
It is easily seen that K = KP is compact. From Theorem I.2.2 we derive the following
assertion (see Proposition 3.6 from [Vas2]):

Proposition I.4.7. Let T ∈ L(H)n be a c.m. and let K = KP . Then T has a normal
extension N ∈ L(K)n (K ⊃ H), whose joint spectrum lies in τ−1(K), if and only if

pα(MT )(1) := p1(MT )α1 · · · pm(MT )αm(1) ≥ 0

for all α = (α1, . . . , αm) ∈ Zm
+ .

Proof. It is easy to check that every polynomial function from ∆P is a linear combination
with positive coefficients of expressions of the form tβp1(t)

α1 · · · pm(t)αm for all α ∈
Zm

+ , β ∈ Zn
+.

Since Mβ
T is positive on the space L(H) for all β, the hypothesis implies that

Mβ
T p(MT )α(1) ≥ 0, α ∈ Zm

+ , β ∈ Zn
+, which is equivalent to the condition (r ◦

τ)(T ∗, T ) ≥ 0 for all r ∈ ∆P via the above remark. Hence the assertion is a conse-
quence of Theorem I.4.1. �

The next result is not explicitly stated in [Vas2].

Theorem I.4.8. Let P = {p1, . . . , pm} be a finite family in P (Cn) such that pj is a real
valued function on Cn for all j = 1, . . . , n. Suppose that K = KP is compact.

Let also Γ = (Γα,β)α,β∈Zn
+

be a sequence of bounded operators acting on H, such
that Γ∗

α,β = Γβ,α for all α, β ∈ Z
n
+, and Γ0,0 = 1. Set

LΓ(zαzβ) := Γα,β, α, β ∈ Z
n
+,

and extend LΓ to P (Cn) by linearity.

(i) The 2n-sequence Γ = (Γα,β)α,β∈Zn
+

can be represented as

Γα,β =

∫

z̄αzβ dFΓ(z), α, β ∈ Z
n
+,

where FΓ is an operator-valued positive measure with compact support in C
n, if

and only if LΓ is nonnegative on the set ∆P .
(ii) Assume that Γ has a representing measure FΓ. Also assume that there exists a

real valued polynomial r ∈ P (Cn) such that Lγ(rp) ≥ 0 for all p ∈ ∆P . Then

supp(µ) ⊂ {w ∈ K : r(w̄, w) ≥ 0}.

If Lγ(rp) = 0 for some r ∈ P (Cn) and for all p ∈ ∆P , then

supp(µ) ⊂ {w ∈ K : r(w̄, w) = 0}.

Proof. We proceed as in the proof of Theorem I.4.3, replacing the use of Theorems
I.2.6 and I.2.13 by that of Theorem I.2.17. �
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The next result is a characterization of completely monotonic (multi-)sequences
of operators (i.e., sequences satisfying condition (I.4.7) below) (see Theorem 3.7 from
[Vas2]; see also [SzN1] and [MaN]).

Corollary I.4.9. Let Γ = (Γα,β)α,β∈Zn
+

be a sequence of bounded operators acting on H,
such that Γ∗

α,β = Γβ,α for all α, β ∈ Zn
+, and Γ0,0 = 1. There exists an operator-valued

positive measure FΓ on D
n = {z ∈ C

n : |zj | ≤ 1, j = 1, . . . , n} such that

Γα,β =

∫

Dn

zαzβ dFΓ(z), α, β ∈ Z
n
+

if and only if

(I.4.7)
∑

α,β∈Zn
+

∑

ξ≤η

(−1)|ξ|
(

η

ξ

)

cαcβΓα+ξ,β+ξ ≥ 0

for all η ∈ Z
n
+ and all sequences of complex numbers (cα)α∈Zn

+
with only finitely many

nonzero terms.

Proof. As in Example I.2.18, condition (I.4.7) is equivalent to

(I.4.8) LΓ((1 − |z1|
2)η1 · · · (1 − |zn|

2)ηn |p(z)|2) ≥ 0

for all η = (η1, . . . , ηn) ∈ Zn
+ and all p ∈ Pa(C

n). In particular, this shows that (I.4.7) is
necessary.

Condition (I.4.7) is also sufficient. An argument from Example I.2.18 shows that
(I.4.7) implies the positivity of LΓ on ∆P . Then the existence of an operator valued
positive measure FΓ on Dn with the desired properties follows by Theorem I.4.8. �

Then next two results are seemingly new.

Corollary I.4.10. Let Θ = (Θα)α∈Zn be a sequence of bounded operators acting on H,
such that Θ∗

α = Θ−α for all α ∈ Zn, and Θ0 = 1. There exists an operator-valued
positive measure FΓ on Tn such that

Θα =

∫

Tn

zα dFΓ(z), α ∈ Z
n

if and only if

(I.4.9)
∑

α,β∈Zn
+

cαcβΘα−β ≥ 0

for all sequences of complex numbers (cα)α∈Zn
+

with only finitely many nonzero terms.
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Proof. Let Γ = (Γα,β)α,β∈Zn
+

be given by Γα,β = Θα−β. Note that Γ∗
α,β = Γβ,α for all

α, β ∈ Zn
+, and Γ0,0 = 1. As in Example I.2.19, there exists an operator-valued positive

measure FΓ on Tn such that

Γα,β =

∫

Tn

zαzβ dFΓ(z), α, β ∈ Z
n
+

if and only if

(I.4.10)
∑

α,β∈Zn
+

cαcβΓα,β ≥ 0

and

(I.4.11)
∑

α,β∈Zn
+

∑

ξ≤η

(−1)|ξ|
(

η

ξ

)

cαcβΓα+ξ,β+ξ ≥ 0

for all η ∈ Zn
+ with |η| = 1, and all sequences of complex numbers (cα)α∈Zn

+
with

only finitely many nonzero terms. It is easily seen that condition (I.4.10) is equivalent to
condition (I.4.9), while condition (I.4.11) follows from the fact that Γα+ej ,β+ej

= Γα,β

for all α, β ∈ Zn
+ and j = 1, . . . , n. �

Corollary I.4.11. The multioperator T = (T1, . . . , Tn) consisting of commuting bounded
operators in H has a unitary dilation if and only if there exists an n-sequence Θ =
(Θα)α∈Zn of bounded operators in H, such that:

(1) Tα = Θα for all α ∈ Z
n
+;

(2) Θ∗
α = Θ−α for all α ∈ Zn, and Θ0 = 1;

(3)
∑

α,β∈Zn
+

cαcβΘα−β ≥ 0 for all of the sequences of complex numbers (cα)α∈Zn
+

with only finitely many nonzero terms.

Proof. The assertion is a consequence of the previous corollary, via the Naimark dilation
theorem (see [Nai]). �

Remark I.4.12. The positivity condition (I.4.9) (as well as condition (3) from Corol-
lary I.4.11) may be checked on a considerably smaller family of sequences (cα)α∈Zn

+
(see

[Vas7] for details).

Part II. MOMENTS ON UNBOUNDED SEMI-ALGEBRAIC SETS

II.1. INTRODUCTION

This chapter contains a synthesis of the results from [Vas6], [Vas5] and [PuVa4].
Some results (e.g., Theorems II.2.3 and II.2.4) appear in a more general form.

Let R be an algebra of complex-valued functions, defined on the Euclidean space
Rn, such that the constant function 1 ∈ R, and if f ∈ R then f̄ ∈ R. We recall that a
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linear map L : R → C is said to be of positive type if L(f f̄) ≥ 0 for all f ∈ R. If L is of
positive type on R, we shall always assume that L(1) > 0 (i.e., L is not degenerate).

A linear map L : R → C is said to be a moment form if there exists a finite positive
Borel measure µ on Rn such that L(f) =

∫

Rn fdµ, f ∈ R. In that case, µ is called a
representing measure for L.

Every moment form is obviously of positive type.
Let R be an algebra as above, and let L : R → C be of positive type. As it is well

known (see the classical paper [GeNa]), this pair can be associated, in a canonical way,
with a Hilbert space which will be called here the associated GN-space.

We shall be particularly interested in the sequel by the following case. Let Pn =
PC(Rn) be the algebra of all polynomial functions on Rn, with complex coefficients.

An n-sequence γ = (γα)α∈Zn
+

is said to be positive semi-definite if the associated
linear map Lγ : Pn → C (see the first chapter) is positive semi-definite, where Lγ(tα) =
γα, α ∈ Zn

+.
An n-sequence γ = (γα)α∈Zn

+
is said to be a moment sequence when it is a Rn-

moment sequence (in the sense of the first chapter). This is equivalent to saying that the
form Lγ is a moment form.

We shall describe in the following some solutions to the (determined) moment prob-
lem for the algebra Pn, with support in a not necessarily compact semi-algebraic set, in
particular solutions to what is usually called the Hamburger moment problem (in several
variables), via extended sequences. Let us explain what we mean by this in the case of
the plane. We obtain, as a particular case, the following result:

A 2-sequence γ = (γm1,m2
)m1,m2∈Z+

(γ0,0 > 0) is a moment sequence if and only
if there exists a positive semi-definite 4-sequence δ = (δm1,m2,m3,m4

)m1,m2,m3,m4∈Z+

with the following properties:
(1) γm1,m2

= δm1,m2,0,0 ;
(2′) δm1,m2,m3,m4

= δ(m1,m2,m3+1,m4) + δm1+2,m2,m3+1,m4
;

(2′′) δm1,m2,m3,m4
= δ(m1,m2,m3,m4+1) + δm1,m2+2,m3,m4+1

for all m1, m2, m3, m4 ∈ Z+ It is clear that the positive semi-definite 4-sequences δ,
having the properties (2′), (2′′), are completely determined, and the 2-sequences γ have
a representing measure if and only if they are restrictions of such 4-sequences.

The passage from a 2-sequence to an extended one is partially motivated by the fact
that there are 2-sequences which are positive semi-definite and which are not moment
sequences (see, for instance, [Fug]). Therefore, some new parameters must be introduced.
In addition, when the moment problem has several solutions, a parameterization of all
solutions is also of interest. The existence of ”optimal” choices for such parameters is
still to be investigated.

When one seeks, in this context, representing measures whose support is concen-
trated in Rn

+, then the corresponding moment problem is called the Stieltjes moment prob-
lem (in several variables).
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Solutions to Hamburger and Stieltjes moment problems, in several variables, by
extended sequences, are provided, in particular, in the next sections. For a thorough
discussion concerning these problems in one variable, as well as for historical remarks,
we refer to the monographs [Akh] and [ShTa] (see also [BCR], [Dev], [Esk], [Fug], [Hav],
[KoMi], [Sch2], etc. for various solutions in several variables).

A solution to the Hausdorff moment problem with operator data is recorded as early
as 1952 (see [SzN1]). Since then, there have occurred many other contributions in this
area. See [AtPe], [Fri], [MaN], [Nar], [Sch2], [StSz2], [Vas2], [Vas4] etc. for further
development.

In the third section of this chapter we present operator versions of the results from
[Vas6] and [PuVa4], which extend the corresponding results concerning the solutions of
the moment problems of Hamburger and Stieltjes type, in several variables, to the case of
operator data. Such assertions were already discussed in [Vas5], and they were obtained
replacing the numerical data by sequences of hermitian (or even sesquilinear) forms as
moment data. Characterizations of unbounded subnormal tuples of operators, also devel-
oped in [Vas5], will be discussed in the last section of this chapter.

II.2. SCALAR MOMENT PROBLEMS IN UNBOUNDED SETS

In the first part of this section we present extensions of some results from [Vas6]
(see also [Dem5]).

The next result is well known.

Lemma II.2.1. Assume that S is a symmetric densely defined operator in the Hilbert
space H. If the sets R(S ± i) are dense in H, then the closure of S is a self-adjoint
operator.

Proof. Let A be the closure of S, which is also a symmetric operator. From the classical
identity

‖(A± i)x‖2 = ‖Ax‖2 + ‖x‖2, x ∈ D(A),

it follows that R(A ± i) are closed subspaces of H. As we have R(A ± i) ⊃ R(S ± i),
our hypothesis implies R(A± i) = H.

Let V be the Cayley transform of A (see [Rud], 13.17). Since D(V ) = R(A +
i), R(V ) = R(A − i), the operator V is unitary, and so A must be selfadjoint (via
[Rud], 13.19). �

The next assertion is an extension of [Vas6], Lemma 2.2.

Lemma II.2.2. Let θj(t) = (1 + t2j )
−1, 1 ≤ j ≤ n, t = (t1, . . . , tn) ∈ R

n. Let
also {p1, . . . , pm} be a finite subset in Pn consisting of polynomial functions with real
coefficients. We set θj(t) = (1 + pj(t)

2)−1, n+ 1 ≤ j ≤ n+m, t = (t1, . . . , tn) ∈ R
n,

and let θ = (θj)1≤j≤n+m. Denote by Rθ the complex algebra generated by Pn and
by (θj)1≤j≤n+m. Let ρ : P2n+m → Rθ be given by ρ : p(t, s) → p(t, θ(t)). Then ρ is
a surjective unital algebras homomorphism, whose kernel is the ideal generated by the
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polynomials σj(t, s) = sj(1 + t2j ) − 1, 1 ≤ j ≤ n, σj(t, s) = sj(1 + pj(t)
2) − 1,

n+ 1 ≤ j ≤ n+m.

Proof. That ρ is a surjective unital algebra homomorphism is obvious. We have only to
determine the kernel of ρ.

Let p ∈ P2n+m be a polynomial with the property p(t, θ(t)) = 0, t ∈ Rn. We
write p(t, s) =

∑

β∈Z
n+m
+

pβ(t)sβ , with pβ ∈ Pn \ {0} only for a finite number of indices

β. Then we have
p(t, s) = p(t, s) − p(t, θ(t))

=
∑

β 6=0

pβ(t)(sβ − θ(t)β)

=
∑

1≤j≤n+m

(sj − θj(t))`j(t, s, θ(t)),

where `j are polynomials.
Let aj = max{βj : pβ 6= 0}, 1 ≤ j ≤ n, and let

τ(t) =
∏

1≤j≤n+m

(1 + ζj(t)
2)aj ,

where ζj(t) = tj , j = 1, . . . , n, ζj(t) = pj(t), j = n + 1, . . . , n + m. Then, from the
above calculation, we deduce the equation

(II.2.1) τ(t)p(t, s) =
∑

1≤j≤n+m

(sj(1 + ζj(t)
2) − 1)qj(t, s),

with qj ∈ P2n+m for all indices j.
If aj = 0 for all j, then p(t, s) = p0(t) = p(t, θ(t)) = 0. Therefore, with no loss

of generality, we may assume aj 6= 0 for some indices j.
It is easily seen that the polynomials τ, σj , 1 ≤ j ≤ n + m, have no common

zero in C2n+m. By a special case of Hilbert’s Nullstellensatz (see, for instance, [Wae],
Section 16.5), there are polynomials τ̃ , (σ̃j)1≤j≤n+m in P2n+m such that

(II.2.2) τ τ̃ +
∑

1≤j≤n+m

σj σ̃j = 1.

If we multiply (II.2.2) by p, and use (II.2.1), we obtain the relation

p =
∑

1≤j≤n+m

σj(qj τ̃ + σ̃jp),

which is precisely our assertion. �

In the next statement, the algebra Rθ will have the meaning from Lemma II.2.2.
This statement does not appear explicitly in [Vas6], and it extends Remark 2.4 from that
paper (see also Theorem 2.5 from [PuVa4]).
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Theorem II.2.3. Let L : Rθ → C be a linear map of positive type such that L(pk|r|
2) ≥

0, r ∈ Rθ, k = 1, . . . ,m. ThenL has a uniquely determined representing measure whose

support lies in the set
m
⋂

k=1

p−1
k (R+).

If µ is the representing measure of L, then the algebra Rθ is dense in L2(µ).

Proof. The pair Rθ, L can be associated with a GN-space H, obtained as a completion of
the quotient Rθ/N , with N = {r ∈ Rθ; Λ(rr̄) = 0}.

We have in H the operators

(II.2.3)
Tj(r + N ) = tjr + N , r ∈ Rθ, j = 1, . . . , n,

Sk(r + N ) = pkr + N , r ∈ Rθ, k = 1, . . . ,m,

which are symmetric and densely defined, with D(Tj) = D(Sk) = Rθ/N for all j, k.
We note that Tj satisfies the conditions of Lemma II.2.1 for each j. Indeed, if r ∈ Rθ is
arbitrary, then the functions u±(t) = (tj∓ i)θj(t)r(t) are solutions in Rθ of the equations
(tj ± i)u±(t) = r(t). This implies the equalities R(Tj ± i) = D(Tj), and therefore
Lemma II.2.1 applies to Tj . Hence Tj is essentially selfadjoint, and let Aj be the closure
of Tj .

Similarly, Sk is essentially self-adjoint, and let Bk be the closure of Sk, k =
1, . . . ,m.

We shall show that the operators
(i − A1)

−1, . . . , (i −An)−1, (i − S1)
−1, . . . , (i − Sm)−1

mutually commute. Indeed, the previous argument shows that the maps (i − Tj)
−1 and

(i − Sk)−1 are well defined on D = D(Tj) = D(Sk), and leave this space invariant,
for all j, k. Moreover, the maps (i − T1)

−1, . . . , (i− Tn)−1, (i− S1)
−1, . . . , (i− Sm)−1

mutually commute on D. Since Aj extends Tj , we clearly have

(i −Aj)((i −Aj)
−1 − (i − Tj)

−1)ξ = 0, ξ ∈ D,

implying (i−Aj)
−1|D = (i−Tj)

−1. Similarly, (i−Bk)−1|D = (i−Sk)−1. Therefore,
for all j, l = 1, . . . , n, j 6= l, we have

(i −Aj)
−1(i −Al)

−1ξ = (i − Tj)
−1(i − Tl)

−1ξ

= (i − Tl)
−1(i − Tj)

−1ξ

= (i −Al)
−1(i −Aj)

−1ξ

where ξ ∈ D is arbitrary. Similarly,
(i −Bk)−1(i −Bl)

−1ξ = (i −Bl)
−1(i − Bk)−1ξ

for all k, l = 1, . . . ,m, k 6= l, and
(i −Aj)

−1(i −Bk)−1ξ = (i −Bk)−1(i −Aj)
−1ξ

for all j = 1, . . . , n, k = 1, . . . ,m.
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Since (i−A1)
−1, . . . , (i−An)−1, (i−B1)

−1, . . . , (i−Bm)−1 are bounded andD
is dense, this implies that they mutually commute. In particular, the selfadjoint operators
A1, . . . , An have a joint spectral measure (see, for instance, [Vas1]). If E is the joint
spectral measure of A1, . . . , An, then µ(∗) := 〈E(∗)(1 + N ), 1 + N〉 is a representing
measure for L. In other words, we have the equality

(II.2.4) L(r) =

∫

Rn

r(t) dµ(t), r ∈ Rθ.

Indeed, if r(T ) is the linear map on D given by r(T )(f + N ) = rf + N , for all r, f ∈
Rθ, then we have θ(A)β ⊃ θ(T )β , for all β ∈ Z

n+m
+ , where θ(A)β is given by the

functional calculus ofA. This follows from the obvious relations θ(A)−β ⊃ θ(T )−β , and
θ(A)−β(θ(A)β − θ(T )β) = 0. Therefore:

〈Tαθ(T )β(1 + N ), 1 + N〉 = 〈Aαθ(A)β(1 + N ), 1 + N〉

=

∫

Rn

tαθ(t)βd〈E(t)(1 + N ), 1 + N〉.

We prove now the assertion concerning the support of the representing measure.
Note that B̄k = pk(A), k = 1, . . . ,m, where pk(A) is given by the functional calculus of
A. Indeed, as we clearly have Sk ⊂ pk(A), andSk is essentially selfadjoint, we must have
S̄k = pk(A) for all k. Condition Λ(pk|r|2) ≥ 0, r ∈ Rθp

, k = 1, . . . ,m, implies that
Sk is positive for all k. Therefore, pk(A) is positive for all k. The spectral measure Fk

of pk(A) is given by Fk(B) = E(p−1
k (B)) for all Borel sets B ⊂ R. Since the spectral

measure Fk must be concentrated in R+ for all k, it follows that the spectral measure E
of A is concentrated in the set

m
⋂

k=1

p−1
k (R+), which implies that the representing measure

of L itself is concentrated in the same set
m
⋂

k=1

p−1
k (R+).

We have only to discuss the uniqueness of the representing measure of L.
Let ν be an arbitrary representing measure ofL. Then the space H can be identified

with a subspace of L2(ν). Indeed, we must have 〈r1, r2〉θ =
∫

r1r̄2 dν for all r1, r2 ∈
Rθ. Therefore, as the functions from N are null ν-almost everywhere, the space H is
identified with the closure of Rθ in L2(ν).

We proceed now as in [Fug], Theorem 7. The operators (Hjf)(t) = tjf(t), t =
(t1, . . . , tn) ∈ Rn, f ∈ D(Hj) = {g ∈ L2(ν) : tjg ∈ L2(ν)}, j = 1, . . . , n, are
commuting selfadjoint in L2(ν). Clearly, Hj ⊃ Tj , and so Hj ⊃ Aj for all j. Therefore,
since (Aj +iu)−1 = (Hj +iu)−1|H for all u ∈ R, it follows that the spectral measureEj

ofHj leaves invariant the space H, as a consequence of [DuSc], Theorem XII.2.10, for all
j. If EH is the joint spectral measure ofH = (H1, . . . , Hn), thenEH (B1 ×· · ·×Bn) =
E1(B1) · · ·En(Bn) for all Borel sets B1, . . . , Bn in R. This implies that the space H
is invariant under EH . Hence, χB = EH (B)1 ∈ H for all Borel subsets B of Rn,
where χB is the characteristic function of B. This shows that L2(ν) = H, since the
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simple functions form a dense subspace of L2(ν). In particular, we have the equalities
Hj = Aj , j = 1, . . . , n. Therefore, with µ and E as above, µ(B) = 〈E(B)1, 1〉 =
〈EH (B)1, 1〉 =

∫

χBdν, for all Borel sets B. Consequently, µ = ν, showing that the
representing measure is unique.

Finally, since the space H is identified with the closure of Rθ inL2(µ), the previous
discussion shows that Rθ must be dense in L2(µ). �

For the sake of simplicity, for any integer N ≥ 1, we denote by ej ∈ ZN
+ , j =

1, . . . , N , the multi-index whose coordinates are null except for the j-th coordinate (where
j ≤ N ), which is equal to one.

A solution to the multivariate moment problem in a not necessarily bounded semi-
algebraic set is given by the following, which is a new version of Theorem 2.7 from
[PuVa4].

Theorem II.2.4. Let {p1, . . . , pm} a finite subset in Pn consisting of polynomial func-
tions with real coefficients. Write pk(t) =

∑

α

ckαt
α, t ∈ Rn, k = 1, . . . ,m.

An n-sequence γ = (γα)α∈Zn
+

(γ0 > 0) is a moment sequence and has a repre-

senting measure whose support lies in the set
m
⋂

k=1

p−1
k (R+) if and only if there exists a

positive semi-definite (2n+m)-sequence δ = (δ(α,β))(α,β)∈Zn
+
×Z

n+m
+

with the following

properties:

(1) γα = δ(α,0) for all α ∈ Z
n
+;

(2) δ(α,β) = δ(α,β+ej) +δ(α+2ej ,β+ej) for all (α, β) ∈ Zn
+ ×Z

n+m
+ , 1 ≤ j ≤ n, and

δ(α,β) = δ(α,β+ek) +
∑

ξ,η ckξckηδ(α+ξ+η,β+ek) for all (α, β) ∈ Zn
+ × Z

n+m
+ ,

n+ 1 ≤ k ≤ n+m;
(3)

∑

α,ξ,ξ′,η,η′

ckαaξη āξ′η′δ(α+ξ+ξ′,η+η′) ≥ 0 for all k = 1, . . . ,m and all finite col-

lections of complex numbers (aξη)ξ,η .

In the affirmative case, the n-sequence γ has a uniquely determined representing measure
in Rn if and only if the (2n+m)-sequence δ is unique.

Proof. We prove first that conditions (1), (2) and (3) are necessary. Assume that the
sequence γ = (γα)α∈Zn

+
has a representing measure µ. Define

δ(α,β) =

∫

Rn

tαθ(t)β dµ(t), (α, β) ∈ Z
n
+ × Z

n+m
+ ,

where θj(t) = (1+ζj(t)
2)−1, 1 ≤ j ≤ n+m, with ζj(t) = tj , 1 ≤ j ≤ n, ζj(t) = pj(t),

n + 1 ≤ j ≤ n +m, and θ = (θj)1≤j≤n+m. Clearly, δ = (δ(α,β))(α,β)∈Zn
+
×Z

n+m
+

is a
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positive semi-definite (2n+m)-sequence, satisfying (1). Since
∫

Rn

(θj(t)(1 + ζj(t)
2) − 1)tαθ(t)β dµ(t) = 0

for all (α, β) ∈ Zn
+ ×Z

n+m
+ , 1 ≤ j ≤ n+m, we also have (2). Moreover, as the support

of µ lies in
m
⋂

k=1

p−1
k (R+), we have

∫

Rn

pk(t)
∣

∣

∣

∑

ξ,η

aξηt
ξθ(t)η

∣

∣

∣

2

dµ(t) ≥ 0

for all k = 1, . . . ,m and all polynomials
∑

ξ,η

aξηt
ξsη ∈ P2n+m, showing that (3) also

holds.
Conversely, assume that the 2n+m-sequence δ = (δ(α,β))(α,β)∈Zn

+
×Zn

+
exists. Let

θj be as above, and let Rθ be the algebra generated by Pn, and θ = (θj)1≤j≤n+m. We
shall define a positive semi-definite map Λ on Rθ, via the equality

Λ(r) = Lδ(p), r ∈ Rθ,

where Lδ : P2n → C is the linear map associated with δ, and p ∈ P2n+m satisfies
r(t) = p(t, θ(t)), t ∈ Rn.

Notice first that Λ is correctly defined. Indeed, by virtue of Lemma II.2.2, the
algebra Rθ is isomorphic to the quotient P2n+m/Iσ, where Iσ is the ideal generated in
P2n by the polynomials σj(t, s) = sj(1 + ζj(t)

2) − 1, 1 ≤ j ≤ n + m. Note that
condition (2) implies Lδ|Iσ = 0. Therefore, the map Λ, which can be identified with the
map induced by Lδ on the quotient P2n+m/Iσ, is correctly defined, and positive semi-
definite as well, on Rθ. By virtue of Theorem II.2.3, there exists a uniquely determined
representing measure µ for Λ. In particular

γα = δ(α,0) =

∫

tαdµ(t), α ∈ Z
n
+,

showing that γ has a representing measure.
We have only to discuss the uniqueness of the representing measure of γ.
If δ is uniquely determined, and if µ′, µ′′ are two representing measures for γ, then

we must have
∫

Rn

tαθ(t)βdµ′(t) =

∫

Rn

tαθ(t)βdµ′′(t)

by the uniqueness of δ. Therefore
∫

Rn r(t)dµ
′(t) =

∫

r
(t)dµ′′(t) for all r ∈ Rθ, implying

µ′ = µ′′, by Theorem II.2.3.
Conversely, if the representing measure µ of γ is unique, and if the sequences δ ′, δ′′

satisfy (1), (2), (3), then we have δ′α,β =
∫

Rn t
αθ(t)βdµ(t) = δ′′α,β for all indices α, β,

which completes the proof of the theorem. �



SPECTRAL MEASURES AND MOMENT PROBLEMS 199

The main result of [Vas6] is now a consequence of Theorem II.2.4.

Corollary II.2.5. An n-sequence γ = (γα)α∈Zn
+

(γ0 > 0) is a moment n-sequence if and
only if there exists a positive semi-definite 2n-sequence δ = (δ(α,β))(α,β)∈Zn

+
×Zn

+
with the

following properties:

(1) γα = δ(α,0) for all α ∈ Zn
+.

(2) δ(α,β) = δ(α,β+ej) + δ(α+2ej ,β+ej) for all α, β ∈ Z
n
+, 1 ≤ j ≤ n.

In the affirmative case, the n-sequence γ has a uniquely determined representing measure
in R

n if and only if the 2n-sequence δ is unique.

This is a particular case of Theorem II.2.4, obtained for p1 = · · · = pm = 0.

Corollary II.2.6. A sequence γ = (γα)α∈Z+
(γ0 > 0) is a moment sequence, and has

a uniquely determined representing measure, if and only if there exists a uniquely deter-
mined positive semi-definite 2-sequence δ = (δ(α,β))(α,β)∈Z2

+
, with the following proper-

ties:

(1) γα = δ(α,0) for all α ∈ Z+.
(2) δ(α,β) = δ(α,β+1) + δ(α+2,β+1) for all α, β ∈ Z+.

The next result is a solution to the Stieltjes moment problem in several variables
(see also Theorem 2.6 from [Vas6]).

Corollary II.2.7. An n-sequence γ = (γα)α∈Zn
+

(γ0 > 0) is a moment sequence, and
has a representing measure in R

n
+, if and only if there exists a positive semi-definite 2n-

sequence δ = (δ(α,β))(α,β)∈Zn
+
×Zn

+
with the following properties:

(1) γα = δ(α,0) for all α ∈ Zn
+.

(2) δ(α,β) = δ(α,β+ej) + δ(α+2ej ,β+ej) for all α, β ∈ Zn
+, 1 ≤ j ≤ n.

(3) (δ(α+ej ,β))(α,β)∈Zn
+
×Zn

+
is a positive semi-definite 2n-sequence for j = 1, . . . , n.

In the affirmative case, the n-sequence γ has a uniquely determined representing measure
in R

n
+ if and only if the 2n-sequence δ is unique.

This is a particular case of Theorem II.2.4, obtained for pk(t) = tk, k = 1, . . . , n.

Corollary II.2.8. A sequence γ = (γα)α∈Z+
(γ0 > 0) is a moment sequence, and has

a uniquely determined representing measure in R+, if and only if there exists a uniquely
determined positive semi-definite 2-sequence δ = (δ(α,β))(α,β)∈Z+

, with the following
properties:

(1) γα = δ(α,0) for all α ∈ Z+.
(2) δ(α,β) = δ(α,β+1) + δ(α+2,β+1) for all α, β ∈ Z+.
(3) The sequence (δ(α+1,β))α,β∈Z+

is positive semi-definite.

There is an alternate approach developed in [PuVa4]. We shall shortly present it in
the remaining part of this section. We start with Proposition 2.1 from [PuVa4].
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Theorem II.2.9. Let T1, . . . , Tn be symmetric operators in H. Assume that there exists

a dense linear space D ⊂
n
⋂

j,k=1

D(TjTk) such that TjTkx = TkTjx, x ∈ D, j 6= k;

j, k = 1, . . . , n. If the operator (T 2
1 + · · · + T 2

n)|D is essentially self-adjoint, then the
operators T1, . . . , Tn are essentially self-adjoint, and their closures T̄1, . . . , T̄n commute.

The proof of this result, stated for n = 2, can be found in [Nel], Corollary 9.2. For
a different approach and an arbitrary n see [EsVa], Theorem 3.2.

Lemma II.2.10. If A is a positive densely defined operator in H, then A is essentially
self-adjoint if and only if the range of I + A is dense in H.

The proof can be found in [StZs], Lemma 9.5.

Lemma II.2.11. Let p = (p1, . . . , pm) be a given m-tuple of real polynomials from Pn,
and let

θp(t) = (1 + t21 + · · · + t2n + p1(t)
2 + · · · + pm(t)2)−1, t ∈ R

n.

Denote by Rθp
the C-algebra generated by Pn and θp. Let ρ : Pn+1 → Rθp

be given
by ρ : p(t, s) 7→ p(t, θp(t)). Then ρ is a surjective unital algebra homomorphism, whose
kernel is the ideal generated by the polynomial σ(t, s) = s(1 + t21 + · · · + t2n + p1(t)

2 +
· · · + pm(t)2) − 1.

The result above is precisely Lemma 2.3 from [PuVa4].

Remark II.2.12. Set θ(t) = (1 + t21 + · · ·+ t2n)−1, t = (t1, . . . , tn) ∈ R
n, and let Rθ be

the C-algebra of rational functions generated by Pn and θ. Let ρ : Pn+1 → Rθ be given
by ρ : p(t, s) 7→ p(t, θ(t)). Then ρ is a surjective unital algebra homomorphism, whose
kernel is the ideal generated by the polynomial σ(t, s) = s(1 + t21 + · · · + t2n) − 1. This
is a particular case of the previous lemma, obtained for p = (0).

A key result in this approach is the following (see [PuVa4], Theorem 2.5).

Theorem II.2.13. Let p = (p1, . . . , pm) be a given m-tuple of real polynomials from Pn,
and let

θp(t) = (1 + t21 + · · · + t2n + p1(t)
2 + · · · + pm(t)2)−1, t ∈ R

n.

Denote by Rθp
the C-algebra generated by Pn and θp. Let Λ be a positive type map on

Rθp
such that Λ(pk|r|2) ≥ 0, r ∈ Sθp

, k = 1, . . . ,m. Then Λ has a uniquely determined

representing measure whose support is in the set
m
⋂

k=1

p−1
k (R+). Moreover, the algebra

Rθp
is dense in L2(µ).

The proof follows the lines of the proof of Theorem II.2.3, using Theorem II.2.9
instead of Lemma II.2.1. We omit the details.
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Corollary II.2.14. Let Rθp
be the C-algebra generated by Pn and θ(t) = (1+ t21 + · · ·+

t2n)−1, t = (t1, . . . , tn) ∈ Rn, and let Λ: Sθ → C be an arbitrary positive semi-definite
map. Then Λ has a uniquely determined representing measure µ in Rn, and the algebra
Rθ is dense in L2(µ).

Moreover, if Λ(tj |r|
2) ≥ 0, r ∈ Rθp

, j = 1, . . . , n, then the support of µ is
contained in Rn

+.

We apply the previous theorem with p = (0).
The next result is another general moment theorem, holding on arbitrary semi-

algebraic sets (see [PuVa4], Theorem 2.7).
Theorem II.2.15. Let γ = (γα)α∈Zn

+
(γ0 > 0) be an n-sequence of real numbers, and let

p = (p1, . . . , pm) ∈ Pm
n , where pk(t) =

∑

ξ∈Ik

akξt
ξ, k = 1, . . . ,m, with Ik ⊂ Zn

+ finite

for all k. Then γ is moment sequence, and it has a representing measure whose support is

in the set
m
⋂

k=1

p−1
k (R+), if and only if there exists a positive semi-definite (n+1)-sequence

δ = (δ(α,β))(α,β)∈Zn
+
×Z+

with the following properties:

(1) γα = δ(α,0) for all α ∈ Zn
+.

(2) δ(α,β) = δ(α,β+1) +
n
∑

j=1

δ(α+2ej ,β+1) +
m
∑

k=1

∑

ξ,η∈Ik

akξakηδ(α+ξ+η,β+1) for all

α ∈ Z
n
+, β ∈ Z+.

(3) The (n+ 1)-sequences (
∑

ξ∈Ik

akξδ(α+ξ,β))(α,β)∈Zn
+
×Z+

are positive semi-definite

for all k = 1, . . . , n.

The n-sequence γ has a uniquely determined representing measure on
m
⋂

k=1

p−1
k (R+) if

and only if the (n+ 1)-sequence δ is unique.

The proof follows the lines of Theorem II.2.4, using Theorem II.2.13 instead of
Theorem II.2.3. We omit the details.

Theorem II.2.15 shows that for a given n-sequence γ = (γα)α∈Zn
+

there exists a
one-to-one correspondence between the convex set Mγ,p of all representing measures

of γ, with support in
m
⋂

k=1

p−1
k (R+), and the convex set Eγ,p of all extensions δ =

(δ(α,β))(α,β)∈Zn
+
×Z+

with the properties (1), (2), (3) from this theorem. This correspon-
dence obviously preserves the extremal points. In addition, if ε : Rn → Rn+1 is given by
ε(t) = (t, θp(t)), t ∈ Rn, then for every µ ∈ Mγ,p the measure µε(B) = µ(ε−1(B)), B
a Borel set in Rn+1, is a representing measure for δ.

Theorem II.2.15 (as well as Theorem II.2.4) applies, in particular, for compact semi-
algebraic sets, providing alternate solutions to the corresponding moment problems.

Another solution of the Hamburger moment problem in several variables is given
by the following.
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Corollary II.2.16. An n-sequence γ = (γα)α∈Zn
+

(γ0 > 0) is a moment sequence if and
only if there exists a positive semi-definite (n + 1)-sequence δ = (δ(α,β))(α,β)∈Zn

+
×Z+

with the following properties:

(1) γα = δ(α,0) for all α ∈ Zn
+.

(2) δ(α,β) = δ(α,β+1) + δ(α+2e1,β+1) + · · ·+ δ(α+2en,β+1) for all α ∈ Zn
+, β ∈ Z+.

The n-sequence γ has a uniquely determined representing measure in R
n if and only if

the (n+ 1)-sequence δ is unique.

This is a consequence of Theorem II.2.15, with p = (0) (see [PuVa4], Theo-
rem 2.8).

We also have an alternate solution to the Stieltjes moment problem in several vari-
ables.

Corollary II.2.17. An n-sequence γ = (γα)α∈Zn
+

(γ0 > 0) is a moment sequence, and
it has a representing measure in Rn

+, if and only if there exists a positive semi-definite
(n+ 1)-sequence δ = (δ(α,β))(α,β)∈Zn

+
×Z+

with the following properties:

(1) γα = δ(α,0) for all α ∈ Zn
+.

(2) δ(α,β) = δ(α,β+1) + δ(α+2e1,β+1) + · · ·+ δ(α+2en,β+1) for all α ∈ Zn
+, β ∈ Z+.

(3) (δ(α+ej ,β))(α,β)∈Zn
+
×Z+

is a positive semi-definite (n + 1)-sequence for all j =
1, . . . , n.

The n-sequence γ has a uniquely determined representing measure in Rn
+ if and only if

the (n+ 1)-sequence δ is unique.

Corollary II.2.17 is a particular case of Theorem II.2.15, with p(t) = (t1, . . . , tn)
(see [PuVa4], Theorem 2.9).

II.3. MORE ABOUT THE UNIQUENESS

The uniqueness of a representing measure of a moment n-sequence is characterized
in Theorem II.2.4 by the uniqueness of the associated (2n +m)-sequence. Using some
of the previous assertions and techniques, we shall discuss in this section an operator
theoretic characterization of the uniqueness of the representing measure, as well as some
related results, in the spirit of [Vas6], Section 3.

Definition II.3.1. Let S = (S1, . . . , Sn) be a tuple consisting of symmetric operators
in a Hilbert space H. We say that S has a smallest selfadjoint extension if there exist a
Hilbert space K ⊃ H and a tuple A = (A1, . . . , An) consisting of commuting selfadjoint
operators in K with the following properties:

(1) Aj ⊃ Sj , j = 1, . . . , n;
(2) if B = (B1, . . . , Bn) is a tuple consisting of commuting selfadjoint operators

in a Hilbert space L ⊃ H such that Bj ⊃ Sj , j = 1, . . . , n, then L ⊃ K and
Bj ⊃ Aj , j = 1, . . . , n.
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Remark II.3.2. (i) In the previous definition, we write K ⊃ H when there exists a linear
isometry from H into K, which allows the identification of H with a closed subspace of
K. In particular, the smallest selfadjoint extension, when exists, is uniquely determined.

(ii) If S = (S1, . . . , Sn) is a tuple consisting of symmetric operators in a Hilbert
space H such that the closures A1, . . . , An of S1, . . . , Sn are commuting selfadjoint op-
erators, then A = (A1, . . . , An) is the smallest selfadjoint extension of S.

If n = 1, and the deficiency indices are equal, this condition is also necessary.
Indeed, if S = S1 is a closed symmetric operator whose deficiency indices are equal,
then D(S) equals the intersection of the domains of all selfadjoint extensions of S, as
proved in the Appendix of [Dev]. Assuming that S has a smallest selfadjoint extension
A = A1, we infer readily that S = A.

For n > 1, the smallest selfadjoint extension, whose structure is not yet well un-
derstood, may have unexpected properties. For instance, it follows from Theorem 4.4 of
[BeTh] (see also Theorem II.3.4 below) that, for some tuples of symmetric operators, the
smallest selfadjoint extension may exist in a Hilbert space strictly larger than the given
one.

The next result is Theorem 3.3 from [Vas6].

Theorem II.3.3. Let S1, . . . , Sn be symmetric operators in a Hilbert space H, such that
D = D(S1) = · · · = D(Sn), is invariant under S1, . . . , Sn. Let also A1, . . . , An be
commuting selfadjoint operators in a Hilbert space K ⊃ H, with Aj ⊃ Sj , j = 1, . . . , n.
Let

K0 = {(1 +A2
1)

−m · · · (1 +A2
n)−mx : x ∈ D,m ∈ Z+},

which is a linear subspace of K invariant under A1, . . . , An.

The tuple A = (A1, . . . , An) is a smallest selfadjoint extension of the tuple S =
(S1, . . . , Sn) if and only if

(1) the subspace K0 is dense in K;
(2) if B1, . . . , Bn are commuting selfadjoint operators in a Hilbert space L ⊃ H,

such that Bj ⊃ Sj , j = 1, . . . , n, then

‖(1 +B2
1)−m · · · (1 +B2

n)−mx‖ = ‖(1 +A2
1)

−m · · · (1 +A2
n)−mx‖

for all x ∈ D,m ∈ Z+.

Proof. Since D is invariant under S1, . . . , Sn and Aj ⊃ Sj for all j, it is easily seen that
K0 is a linear subspace of K, invariant under A1, . . . , An.

Assume thatA is the smallest selfadjoint extension of S. Let G be the closure of K0

in K, and set Cj = Aj |K0, j = 1, . . . , n. We shall show that the closures of C1, . . . , Cn

are commuting selfadjoint operators in G.
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Put rm(A) = (1+A2
1)

−m · · · (1+A2
n)−m,m ∈ Z+, and let y = rm(A)x, x ∈ D,

be fixed. For every index j we have:

y = rm(A)x = (Cj ± i)rm+1(A)
∏

k 6=j

(1 + S2
k)(Sj ∓ i)x.

This shows that R(Cj ± i) = K0. According to Lemma II.2.1, the closure C̄j of the
operatorCj is selfadjoint in G. Clearly, C̄j ⊂ Aj , implying that (i− C̄j)

−1 ⊂ (i−Aj)
−1

for all indices j. From commutation of (i−Aj)
−1, (i−Ak)−1 we obtain the commutation

of (i − C̄j)
−1, (i − C̄k)−1 for all indices j, k.

The hypothesis on A implies that C̄j = Aj for all j. Therefore, the closure of
Aj |K0 coincides with Aj for all j. In particular, the subspace K0 is dense in K, which is
condition (1).

If B1, . . . , Bn are commuting selfadjoint operators in a Hilbert space L ⊃ H such
that Bj ⊃ Sj , j = 1, . . . , n, then, by the hypothesis on A, one must have L ⊃ K and
Bj ⊃ Aj for all j. Hence (1+B2

1)
−m · · · (1+B2

n)−mx = (1+A2
1)

−m · · · (1+A2
n)−mx

for all x ∈ D and m ∈ Z+, i.e., condition (2) also holds.
Conversely, suppose that conditions (1) and (2) are satisfied. We shall show that A

is the smallest selfadjoint extension of S.
Let B1, . . . , Bn be commuting selfadjoint operators in a Hilbert space L ⊃ H such

that Bj ⊃ Sj , j = 1, . . . , n. We may define a linear map from K0 into L via the formula

(II.3.1)
K0 → L,

(1 +A2
1)

−m · · · (1 +A2
n)−mx 7→ (1 +B2

1)−m · · · (1 +B2
n)−mx.

Condition (2) shows that the map (II.3.1) is well defined and isometric. Moreover, K0

is dense in K via condition (1). Therefore, the map (II.3.1) extends to a linear isometry
from K into L, and we may identify K with a closed subspace of L. Note that Aj |K0 =
Bj |K0 for all j, via this identification. Let us show that the closure of Aj |K0 is Aj .
Indeed, assuming the existence of a pair u ⊕ Aju in the graph of Aj orthogonal to all
pairs rm(A)x ⊕ Ajrm(A)x with x ∈ D and m ≥ 0 arbitrary (see the notation above),
we infer that 〈u, (1 + A2

j )rm(A)x〉 = 0. This implies u = 0 because of the equality
(1 + A2

j )K0 = K0. Therefore, Bj ⊃ Aj , j = 1, . . . , n, showing that A is the smallest
selfadjoint extension of S. �

Let γ = (γα)α∈Zn
+

be a positive semi-definite n-sequence and let Lγ : Pn → C be
the associated linear map, given by Lγ(tα) = γα, α ∈ Zn

+. Then we have a GN-space
H associated with the pair (Pn, Lγ), which is obtained as the completion of the quotient
Pn/N , where N = {p ∈ Pn : Lγ(pp̄) = 0}.

As in some previous discussions, we define in H the operators
(II.3.2) Tj(p+ N ) = tjp+ N , p ∈ Pn, j = 1, . . . , n,

which are symmetric and densely defined, with D(Tj) = Pn/N for all j.
The next result is Theorem 3.4 from [Vas6].



SPECTRAL MEASURES AND MOMENT PROBLEMS 205

Theorem II.3.4. Let γ = (γα)α∈Zn
+

be a moment n-sequence. The representing mea-
sure of γ is unique if and only if the tuple T = (T1, . . . , Tn) has a smallest selfadjoint
extension.

Proof. Suppose that the tuple T = (T1, . . . , Tn) has a smallest selfadjoint extensionA =
(A1, . . . , An), acting in a Hilbert space K ⊃ H = Hγ . If EA is the spectral measure of
A, then µ(∗) = 〈EA(∗)(1 + N , 1 + N〉 is a representing measure for γ (see the proof of
Theorem II.2.3).

Let ν be another representing measure for γ. Let Bjf(t) = tjf(t), t ∈ Rn, f ∈
D(Bj) = {g ∈ L2(ν) : tjg ∈ L2(ν)}, j = 1, . . . , n. Since

∫

|p|2dµ =
∫

|p|2dν for
all polynomials p ∈ Pn, the space H may be regarded as a closed subspace of L2(ν),
and Bj ⊃ Tj for all j. Moreover, B1, . . . , Bn are commuting selfadjoint operators. The
hypothesis implies that L2(ν) ⊃ K and Bj ⊃ Aj , j = 1, . . . , n. Therefore, if EB is the
spectral measure of B = (B1, . . . , Bn), then EA = EB |K, and

ν(∗) = 〈EB(∗)1, 1〉 = 〈EA(∗)(1 + N ), 1 + N〉 = µ(∗).

Conversely, suppose that γ has a unique representing measure µ. Then Pn ⊂ L2(µ), and
let Ajf(t) = tjf(t), t ∈ Rn, f ∈ D(Aj) = {g ∈ L2(µ) : tjg ∈ L2(µ)}, j = 1, . . . , n,
and A = (A1, . . . , An). We shall use Theorem II.3.3 to prove that A is the smallest
selfadjoint extension of T .

First of all, note that the space K0 from Theorem II.3.3 is equal in this case to the
space Rθ (defined in Lemma II.2.2). Since Rθ is dense in L2(µ), condition (1) from
Theorem II.3.3 is fulfilled.

Next, let B = (B1, . . . , Bn) be a tuple consisting of commuting selfadjoint opera-
tors in a Hilbert space L ⊃ H, such that Bj ⊃ Tj , j = 1, . . . , n. If EB is the spectral
measure of B, then ν(∗) = 〈EB(∗)1, 1〉 is a representing measure for γ, and we must
have ν = µ.

Let r ∈ Rθ be arbitrary. We have

‖r(A)1‖2 =

∫

|r(t)|2dµ(t) =

∫

|r(t)|2d〈EB(t)1, 1〉 = ‖r(B)1‖2.

Particularly, if rm(t) = (1 + t21)
−m · · · (1 + t2n)−m and p ∈ Pn, we obtain the equalities

‖rm(A)p‖ = ‖rm(A)p(A)1‖ = ‖rm(B)p(B)1‖ = ‖rm(B)p‖,

showing that condition (2) from Theorem II.3.3 is also fulfilled. By virtue of this theorem,
the tuple A is the smallest selfadjoint extension of T . �

Corollary II.3.5. A positive semi-definite sequence γ = (γk)k∈Z+
has a uniquely de-

termined representing measure, say µ, if and only if the operator T given by (II.3.2) is
essentially selfadjoint. In this case, the space of polynomial functions is dense in L2(µ).

Proof. The fact that T is essentially selfadjoint is well-known (see, for instance, [Dev]).
It can be obtain from Theorem II.3.4, via Remark II.3.2(ii) and the fact that the operator
T commutes with the natural involution on H, and so its deficiency indices are equal (see
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[DuSc], Theorem XII.4.18). As for the last assertion, we identify the space Hγ with a
closed subspace of L2(µ). Since the closure of T , say A, is selfadjoint in Hγ , we obtain
that (1 + A2)−mp ∈ Hγ for all p ∈ P1 and all integers m ≥ 0. But (1 + A2)−mp =
(1+ t2)−mp, implying that Rθ is in Hγ . The density of Rθ in L2(µ) concludes the proof
(see also [Fug]). �

Other uniqueness results, related to [Vas3], can be found in [Vas6] as well.

II.4. OPERATOR MOMENT PROBLEMS IN UNBOUNDED SEMI-ALGEBRAIC SETS

We recall the notation from Lemma II.2.2. Let Pn = P(Rn) be the complex algebra
of all polynomial functions on R

n. Let θj(t) = (1+t2j)
−1, 1 ≤ j ≤ n, t = (t1, . . . , tn) ∈

Rn. Let also {p1, . . . , pm} be a finite subset inPn consisting of polynomial functions with
real coefficients. We set θj(t) = (1 + pj(t)

2)−1, n+ 1 ≤ j ≤ n+m, t = (t1, . . . , tn) ∈
Rn, and let θ = (θj)1≤j≤n+m. Denote by Rθ the complex algebra generated by Pn and
by (θj)1≤j≤n+m.

We fix a Hilbert space H and a dense linear subspace D in H. Let also L(H) be the
algebra of all bounded linear operators on H.

As in [Vas5], a sesquilinear map Λ on Rθ ⊗D is said to be a moment form if there
exists a finite positive L(H)-valued measure F on Rn (see [Ber]) such that

Λ(φ, ψ) =
∑

j,k

∫

Rn

fj(t)ḡk(t)d〈F (t)xj , yk〉

for all φ =
∑

j

fj ⊗ xj , ψ =
∑

k

gk ⊗ gk ∈ Rθ ⊗ D. In this case, F is a representing

measure for Λ.
If Λ is a moment form, then Λ is positive semi-definite, i.e., Λ(φ, φ) ≥ 0 for all

φ ∈ Rθ ⊗D.
A sesquilinear form Λ on Rθ ⊗D is said to be unital (respectively Rθ-symmetric)

if Λ(1 ⊗ x, 1 ⊗ x) = ‖x‖2, x ∈ D (respectively Λ(r · φ, ψ) = Λ(φ, r̄ · ψ), r ∈ Rθ,
φ, ψ ∈ Rθ ⊗D); see [Vas5] for more details.

Of course, in the definitions above, one can replace the algebra Rθ by another
algebra of functions, in particular by Pn.

The next assertion is an operator version of Theorem II.2.3 (see also Theorem 2.2
and Theorem 2.8 from [Vas5]).

Theorem II.4.1. Let Λ be a positive semi-definite form on Rθ ⊗ D, which is unital and
Rθ-symmetric. Then Λ is a moment form having a uniquely determined representing
measure.

If, moreover, Λ(pkϕ, ϕ) ≥ 0 for all ϕ ∈ Rθ ⊗ D and k = 1, . . . ,m, then the

support of the representing measure of Λ is concentrated in the set
m
⋂

k=1

p−1
k (R+).
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One can follow the lines of the proof of Theorem II.2.3. We omit the details.
Remark II.4.2. Let Θ = (Θα)α∈Zn

+
be an n-sequence consisting of sesquilinear forms

on D , with Θ0 the restriction to D of the scalar product of H. The sequence Θ can be
associated with a sesquilinear form ΛΘ given by

ΛΘ(φ, ψ) =
∑

α,β

Θα+β(xα, yβ)

for all φ =
∑

α

tα ⊗ xα, ψ =
∑

β

tβ ⊗ yβ ∈ Pn ⊗D.

We say that Θ is of positive type, respectively a moment sequence, if ΛΘ is of
positive type, respectively ΛΘ is a moment sequence.

Let Γ = (Γα)α∈Zn
+

be an n-sequence of self-adjoint operators in L(H), with Γ0 the
identity on H. The sequence Γ is associated with the hermitian form

ΛΓ(ϕ, ψ) =
∑

α,β∈Zn
+

〈Γα+βxα, yβ〉,

where ϕ =
∑

α

tα ⊗ xα, ψ =
∑

β

tβ ⊗ yβ are arbitrary elements from Pn ⊗H.

We say that Γ is of positive type, respectively a moment sequence, if ΛΓ is of positive
type, respectively ΛΓ is a moment sequence.
Theorem II.4.3. Let Θ = (Θα)α∈Zn

+
be an n-sequence consisting of sesquilinear forms

on D, with Θ0 the restriction to D of the scalar product of H.

The n-sequence Θ is a moment sequence if and only if there exists a 2n-sequence
Ω = (Ω(α,β))(α,β)∈Zn

+
×Zn

+
consisting of sesquilinear forms on D, which is of positive

type, with the following properties:

(1) Θα = Ω(α,0) for all α ∈ Zn
+.

(2) Ω(α,β) = Ω(α,β+ej) + Ω(α+2ej ,β+ej) for all α, β ∈ Zn
+, 1 ≤ j ≤ n.

In the affirmative case, the n-sequence Θ has a uniquely determined representing measure
in Rn if and only if the 2n-sequence Ω is unique.

The n-sequence Θ has a representing measure whose support is concentrated in Rn
+

if and only if there exists a 2n-sequence Ω satisfying (1) and (2), and which, in addition,
has the property ΛΩ(tjϕ, ϕ) ≥ 0 for all ϕ ∈ P2n ⊗D and j = 1, . . . , n.

This is an operator version of Corollaries II.2.5 and II.2.7 (see also Theorem 2.4
and Theorem 2.9 from [Vas5]). It can be directly proved or obtained from an operator
version of Theorem II.2.4. We omit the details.
Corollary II.4.4. Let Γ = (Γα)α∈Zn

+
(Γ0 = 1H) be an n-sequence of self-adjoint oper-

ators in L(H).

The n-sequence Γ is a moment sequence if and only if there exists 2n-sequence ∆ =
(∆(α,β))(α,β)∈Zn

+
×Zn

+
consisting of self-adjoint operators in L(H), which is of positive

type, with the following properties:
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(1) Γα = ∆(α,0) for all α ∈ Z
n
+.

(2) ∆(α,β) = ∆(α,β+ej) + ∆(α+2ej ,β+ej) for all α, β ∈ Zn
+, 1 ≤ j ≤ n.

In this case, the n-sequence Γ has a uniquely determined representing measure in Rn if
and only if the 2n-sequence ∆ is unique.

The n-sequence Γ has a representing measure whose support is concentrated in Rn
+

if and only if there exists a 2n-sequence ∆ satisfying (1) and (2), and which, in addition,
has the property that the 2n-sequence (∆(α+ej ,β))(α,β)∈Zn

+
×Zn

+
is of positive type for all

j = 1, . . . , n.

This assertion coincides with Corollary 2.6 from [Vas5].
Following some ideas from [PuVa4], we may discuss a slightly different point of

view, which reduces the number of parameters and gives a good control of the support of
the representing measures.

Let Rθp
be as in Lemma II.2.11.

Theorem II.4.5. Let Λ be a positive semi-definite form on Rθp
⊗D, which is unital and

Rθp
-symmetric. Then Λ is a moment form having a uniquely determined representing

measure.

If, moreover, Λ(pkϕ, ϕ) ≥ 0 for all ϕ ∈ Rθp
⊗ D and k = 1, . . . ,m, then the

support of the representing measure of Λ is concentrated in the set
m
⋂

k=1

p−1
k (R+).

The proof follows the line of Theorem II.2.13. We omit the details. See also Theo-
rem 2.8 from [Vas5].

Theorem II.4.6. Let Θ = (Θα)α∈Zn
+

be an n-sequence consisting of hermitian forms on
D, with Θ0 the restriction to D of the scalar product of H. Let also p = (p1, . . . , pm) be
an m-tuple of real polynomials from Pn, where pk(t) =

∑

ξ∈Ik

akξt
ξ, k = 1, . . . ,m, with

Ik ⊂ Zn
+ finite for all k.

The n-sequence Θ is a moment sequence and has a representing measure whose

support is in the set
m
⋂

k=1

p−1
k (R+) if and only if there exists a (n+1)-sequence of positive

type Ω = (Ω(α,β))(α,β)∈Zn
+
×Z+

, consisting of hermitian forms on D, with the following
properties:

(1) Θα = Ω(α,0) for all α ∈ Zn
+.

(2) Ω(α,β) = Ω(α,β+1) +
n
∑

j=1

Ω(α+2ej ,β+1) +
m
∑

k=1

∑

ξ,η∈Ik

akξakηΩ(α+ξ+η,β+1) for all

α ∈ Zn
+, β ∈ Z+.

(3) ΛΩ(pkϕ, ϕ) ≥ 0 for all ϕ ∈ Pn+1 ⊗D and k = 1, . . . ,m.

The n-sequence Θ has a uniquely determined representing measure on
m
⋂

k=1

p−1
k (R+) if

and only if the (n+ 1)-sequence Ω is unique.
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This is the operator version of Theorem II.2.15. See Theorem 2.9 from [Vas5].

II.5. SUBNORMAL MULTIOPERATORS

In this section, the techniques developed in the previous ones are used to describe
the existence of normal extensions for some tuples of unbounded operators. We mainly
discuss the results from [Vas5] (see also [StSz1], [StSz2], [Dem3], [Dem4] for similar
topics).

Two operators Tj : D(Tj) ⊂ H → H, j = 1, 2, are said to be permutable ([IoVa])
if

T1T2x = T2T1x, x ∈ D(T1T2) ∩D(T2T1).

A multioperator T = (T1, . . . , Tn) in H is said to be permutable ([IoVa]) if Tj , Tk

are permutable for all j, k = 1, . . . , n.
According to [IoVa], Corollary 3.4, every multioperator consisting of commuting

self-adjoint operators is permutable.

Remark II.5.1. Let S = (S1, . . . , Sm) be permutable. Denote by Πm the group of
permutations of the set {1, . . . ,m}. If

D =
⋂

π∈Πm

D(Sπ(1) · · ·Sπ(m)),

then one can easily see that

S1 · · ·Smx = Sπ(1) · · ·Sπ(m)x, x ∈ D.

Particularly, given a permutable multioperator T = (T1, . . . , Tn) and a multi-index
α = (α1, . . . , αn) ∈ Zn

+, we can define, unambiguously, the operator T α = Tα1

1 · · ·Tαn
n

by setting S1 = · · · = Sα1
= T1, Sα1+1 = · · · = Sα1+α2

= T2, Sα1+···+αn−1+1 =
· · · = Sα1+···+αn

= Tn, on the subspace

Dα(T ) =
⋂

π∈Πm

D(Sπ(1) · · ·Sπ(m)),

with m = |α|. We also set
D∞(T ) =

⋂

α∈Zn
+

Dα(T ).

The direct extension of the concept of bounded subnormal (multi)operator (see also
[StSz1]) leads to the following.

Definition II.5.2. Let T = (T1, . . . , Tn) be a multioperator in H. We say that T is
subnormal if there exists a Hilbert space K ⊃ H and a multioperatorN = (N1, . . . , Nn)
in K consisting of commuting normal operators such that Tj ⊂ Nj for all j = 1, . . . , n.
In this case, N is said to be a normal extension of T .
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We shall identify in the following the complex Euclidean space C
n with the real

Euclidean space R2n via the map

R
2n 3 (t1, . . . , tn, s1, . . . , sn) → (z1, . . . , zn) ∈ C

n,

where zj = tj + isj , j = 1, . . . , n. With this identification, the space P2n is itself
identified with the space of all finite sums of the form

∑

α,β

cα,β z̄
αzβ.

The function z → zj will be denoted by zj , j = 1 . . . , n.

Remark II.5.3. Suppose that the multioperator T = (T1, . . . , Tn) is subnormal in H
and let N = (N1, . . . , Nn) be a normal extension of T in K. As mentioned before, the
multioperator N is permutable. This implies that T is also permutable. Then we have
Dα(T ) ⊂ Dα(N) and Tαx = Nαx for all x ∈ Dα(T ) and α ∈ Zn

+. In particular,
TαT β = Tα+β on D∞(T ) for all multi-indices α, β.

Let D ⊂ D∞(T ) be a linear subspace dense in H. Then the equation

ΛT (z̄αzβ ⊗ x, z̄ξzη ⊗ y) = 〈T β+ξx, Tα+ηy〉, α, β, ξ, η ∈ Z
n
+, x, y ∈ D,

(extended by linearity) defines a sesquilinear form on P2n ⊗ D. As a matter of fact,
the form ΛT is positive semi-definite. Indeed, if E be the spectral measure attached to
N , because P2n ⊂ L2(Ex,x) for each x ∈ D∞(N), it follows that E is a representing
measure for the corresponding form ΛN on the space P2n ⊗D∞(N). Therefore, ΛN is
positive semi-definite. Since ΛT is the restriction of ΛN to P2n ⊗ D, it follows that ΛT

must be positive semi-definite too.

Remark II.5.4. The identification of R2n+1 with Cn × R permits the identification of
P2n+1 with the algebra generated by the family of (linearly independent) monomials

G = {z̄αzβuk : z ∈ C
n, u ∈ R, α, β ∈ Z

n
+, k ∈ Z+}.

The basis G is invariant under the involution

Z
2n+1
+ 3 (α, β, k) → (β, α, k) ∈ Z

2n+1
+ ,

and under multiplication as well.
Let Ω = (Ω(α,β),k)α,β∈Zn

+
,k∈Z+

be a (2n + 1)-sequence of sesquilinear forms on
D ⊂ H such that Ω(0,0),0 is the restriction of the scalar product to D. Setting

ΛΩ(z̄α′

zβ′

uk′

⊗ x′, z̄α′′

zβ′′

uk′′

⊗ x′′) = Ω(α′+β′′,α′′+β′),k′+k′′(x′, x′′)

for all α′, α′′, β′β′′ ∈ Zn
+, k′, k′′ ∈ Z+, x′, x′′ ∈ D, we obtain, by extension, a sesquilin-

ear form on P2n+1 ⊗ D. We say that the sequence Ω is of positive semi-definite is the
form ΛΩ is positive semi-definite. Note that if Ω is of positive type, then

(II.5.1) Ω(α,β),k(x, y) = Ω(β,α),k(y, x), α, β ∈ Z
n
+, k ∈ Z+, x, y ∈ D,

via a standard argument of positive semi-definiteness.
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Theorem II.5.5. Let T = (T1, . . . , Tn) be a multioperator in H and let D ⊂ D(T1) ∩
· · · ∩ D(Tn) be a linear subspace. Assume that D is dense in H and invariant under
T1, . . . , Tn.

Then there exist a Hilbert space K ⊃ H and a multioperatorN = (N1, . . . , Nn) in
K consisting of commuting normal operators such that Nj ⊃ Tj |D for all j = 1, . . . , n if
and only if there exists a (2n+ 1)-sequence Ω = (Ω(α,β),k)α,β∈Zn

+
,k∈Z+

of sesquilinear
forms on D with the following properties:

(1) Ω(0,0),0 is the restriction of the scalar product to D.
(2) Ω is of positive type.
(3) Ω(0,ej),0(x, y) = 〈Tjx, y〉 for all x, y ∈ D and j = 1, . . . , n.
(4) Ω(ej ,ej),0(x, x) = ‖Tjx‖

2, j = 1, . . . , n, x ∈ D.

(5) Ω(α,β),k = Ω(α,β),k+1 +
n
∑

j=1

Ω(α+ej ,β+ej),k+1 for all α, β ∈ Zn
+, k ∈ Z+.

In the affirmative case, if in addition the closure of Tj |D extends Tj for all j = 1, . . . , n,
then T is subnormal.

Sketch of proof. Assume first that there exists a multioperator N with the stated proper-
ties. Let also E be the spectral measure of N , which acts on the Borel subsets in C

n. We
define the maps

(II.5.2)
Ω(α,β),k(x, y)

=
〈

∫

z̄αzβ(1 + ‖z‖2)−k dE(z)x, y
〉

, α, β ∈ Z
n
+, k ∈ Z+, x, y ∈ D.

We shall verify that the sequence Ω = (Ω(α′,α′′),k)α′,α′′∈Zn
+

,k∈Z+
has proper-

ties (1)–(5).
Properties (1), (3) and (4) are easily verified.
Let us show that Ω is of positive type (see Remark II.5.4). Indeed, if τ(z) = (z, (1+

‖z‖2)−1), z ∈ C
n, then F τ (∗) = PE(τ−1(∗))|H is a representing measure for the form

ΛΩ, where P is the orthogonal projection of K onto H, which follows from (II.5.2).
Property (5) is a consequence of the identity

[(1 + ‖z‖2)(1 + ‖z‖2)−1 − 1]z̄αzβ(1 + ‖z‖2)−k = 0.

Conversely, if the (2n+1)-sequence Ω is given, and if ΛΩ is the associated positive
semi-definite form on P2n+1 ⊗ D (see Remark II.5.4), we use the GN-procedure to get
the result. �

Remark II.5.6. (1) Although the previous theorem is not an explicit characterization of
the power subnormal multioperators (i.e., a characterization only in terms of the given
multioperator), it leads to explicit characterizations, provided one can construct directly
the sequence Ω. Such cases do exist, as will be shown in some work in progress.
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(2) Our methods permit the control of the support of the spectral measure of a nor-
mal extension of a subnormal multioperator. As in Theorem II.2.15, let p = (p1, . . . , pm)
be an m-tuple of real polynomials from P2n, where pk(z̄, z) =

∑

ξ,η∈Ik

akξη z̄
ξzη, k =

1, . . . ,m, with Ik ⊂ Zn
+ finite for all k. If we replace condition (5) from Theorem II.5.5

by the stronger condition

Ω(α,β),` = Ω(α,β),`+1 +

n
∑

j=1

Ω(α+ejβ+ej ),`+1

+

m
∑

k=1

∑

ξ,η,λ,µ∈Ik

akξλākηµΩ(ξ+µ+α,η+λ+β),`+1

for all α, β ∈ Zn
+, ` ∈ Z+, and add the condition

(6) ΛΩ(pkϕ, ϕ) ≥ 0 for all ϕ ∈ P2n+1 ⊗D and k = 1, . . . ,m,

then we obtain that the support of a normal extension of T may be chosen to lie in
m
⋂

k=1

p−1
k (R+).
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de Lille I, 2002.
[Dev] A. DEVINATZ: Two parameter moment problems, Duke Math. J., 24(1957), 481–498.
[DuSc] N. DUNFORD, J.T. SCHWARTZ: Linear operators. Part II: Spectral Theory. Self Adjoint Operators in

Hilbert Space, with the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers
John Wiley & Sons, New York-London, 1963.

[Emb] M. EMBRY A generalization of the Halmos-Bram criterion for subnormality, Acta. Sci. Math. (Szeged),
35(1973), 61–64.

[EsVa] J. ESCHMEIER, F.-H. VASILESCU: On jointly essentially self-adjoint tuples of operators, Acta Sci.
Math. (Szeged), 67(2001), no. 1–2, 373–386.

[Esk] G.I. ESKIN: A sufficient condition for the solvability of the moment problem in several dimensions,
[Russian], Dokl. Akad. Nauk SSSR, 133, 540–543, translated as Soviet Math. Dokl., 1(1960), 895–898.

[Fri] J. FRIEDRICH: Operator moment problems, Math. Nachr., 151(1991), 273–293.
[Fug] B. FUGLEDE: The multidimensional moment problem, Expo. Math., 1(1983), no. 1, 47–65.
[GeNa] I.M. GELFAND, M.A. NAIMARK: On the imbedding of normed rings into the ring of operators in

Hilbert space, [Russian], Rec. Math. [Mat. Sbornik] N.S., 12(54)(1943), 197–213.
[Halm] P.R. HALMOS: Normal dilations and extensions of operators, Summa Brasil. Math., 2(1950), 125–134.
[Han] D. HANDELMAN: Representing polynomials by positive linear functions on compact convex polyhe-

dra, Pacific J. Math., 132(1988), no. 1, 35–62.
[Hav] E.K. HAVILAND: On the momentum problem for distribution functions in more than one dimension,

Amer. J. Math., 57(1935), 562–568; ibidem II, Amer. J. Math., 58(1935), 164–168.
[HiSc] T.H. HILDEBRANDT, I.J. SCHOENBERG: On linear functional operations and the moment problem

for a finite interval in one or several dimensions, Ann. Math., 34(1933), 317–328.
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[Ito] T. ITÔ: On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I,

14(1958), 1–15.
[KoMi] A.G. KOSTYUCHENKO, B.S. MITYAGIN: The multi-dimensional problem of moments, [Russian],

Dokl. Akad. Nauk SSSR, 131(1960), 1249–1252, translated as Soviet Math. Dokl., 1(1960), 415–419.



214 F.-H. VASILESCU
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