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Abstract: The main purpose of this work is the construction of an analytic functional calculus for Cli�ord
operators, which are operators acting on certain modules over Cli�ord algebras. Unlike in some preceding
works by other authors, we use a spectrum de�ned in the complex plane, and also certain stem functions,
analytic in neighborhoods of such a spectrum. The replacement of the slice regular functions, having values
in a Cli�ord algebra, by analytic stem functions becomes possible because of an isomorphism induced by a
Cauchy type transform, whose existence is proved in the �rst part of this work.

Keywords: Cli�ord algebras; stem functions; analytic functional calculus; Cli�ord and complex spectra

MSC: 30G35; 30A05; 47A10; 47A60

1 Introduction
It is unanimously admitted that the analytic functional calculus is a basic tool in the study of linear operators.
While the case of a single operator is settledby theRiesz-Dunford functional calculus (see for instance [4]), the
case of several operators ismore complicate even in the case of commutingones, because of thenon canonical
character of Cauchy type formulas analytic functions in several variables, de�ned in neighborhoods of joint
spectra. Nevertheless, a complete construction for the case of commuting tuples of Banach space operators
can be found in the papers [14, 15], and which was applied, in particular, in investigations related to the local
spectral theory (see [5, 17] etc.).

The case of not necessarily commuting tuples of operators has been approached by several authors,
whose important contributions can be found inworks like [12, 16], and also in [2, 10], where signi�cant results
are obtained by associating the tuples of operators with some Cli�ord algebras, which reduces the discussion
to the case of a single operator.

In the present paper, we also associate the tuples of operators with some Cli�ord algebras but, unlike in
[2, 3, 10], we replace the slice regular functions (see Subsection 2.2), de�ned in some open subsets of Cli�ord
algebras, by analytic stem functions (see De�nition 3), de�ned in the complex plane. This is a consquence of
adopting a di�erent concept of spectrum, that from [2] being de�ned as a subset of a Cli�ord algebra, iden-
ti�ed with an Euclidean space, while the spectrum in this work is de�ned in the complex plane. Neverthe-
less, the analytic functional calculi, obtained in two ways, are shown to be equivalent (see Remark 17). This
equivalence is based on the isomorphism of the corresponding spaces of functions which are used in these
constructions, and it is a consequence of some results proved in the �rst part of this work (see our Theorem 5).

As in the case of Hamilton’s algebra of quaternions, an important investigation in the context of Cli�ord
algebras has been to �nd a convenient manner to express the ”analyticity“ of functions, de�ned on subsets
of such algebras.
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Aconcept of S-monogenic functionwas introduced in [1], generalizing that of slice regularity (see [7]) to the
framework of Cli�ord algebres, leading to a signi�cant development sythesized in the �rst part of [2] (which
contains a large list of references), whose impact is still actual.

Unlike in [1], the basic idea of the present paper is to de�ne the regularity of functions, taking values in
a Cli�ord algebra, via an analytic functional calculus, adapting the corresponding results in the Hamilton
algebra context from [18].

Roughly speaking, andunlike in [7], an ”S-monogenic function“ (which, for simplicity,will be often called
in this text ”slice regular“) can and will be obtained by a pointwise application of the analytic functional
calculus with stem functions on a conjugate symmetric open set U in the complex plane, to some elements of
a given Cli�ord algebra called paravectors (see Subsection 2.1), whose spectra are in U, via thematrix version
of Cauchy’s formula (11), with no need of slice derivatives. In this way, we obtain a whole class of ”regular
functions“ (in fact, Cauchy transforms of stem functions), eventually shown that this is precisely the class of
S-monogenic functions, by Theorem 5.

Then we initiate some elementary spectral theory for what we call Cli�ord operators (de�ned in Subsec-
tion 2.3), acting on two-sided modules over a Cli�ord algebra. A functional calculus with analytic functions
is also presented, which happens to be equivalent to the calculus with S-monogenic functions, as already
mentioned above.

The advantage of our approach is its simplicity, and its connection with the classical theory, using a
spectrum in the complex plane and a Riesz-Dunford type of a kernel.

The structure of this work is the following. Besides this introduction, there is a preliminary section, pre-
sentingmostly well known concepts and result, necessary in the sequel. The rest of the workmay be virtually
divided into two parts. A �rst part (including Sections 3-6) deals with a description of an analytic functional
calculus for stem functions, while the second part (including Sections 7-8) presents elements of spectral the-
ory for Cli�ord operators.

This work is inspired by the author’s articles [18, 19], dedicated to the quaternionic case, several results
having similar proofs to the corresponding one from the quoted papers, via minor modi�cations. Neverthe-
less, for the sake of completeness, and for the convenience of the readrs, we often give full arguments. Some
fairly new results are presented in Corollary 2, where the so-called intrinsic functions (see [2], De�nition 3.5.1
of [3], De�nition 2.1.2) are described in terms of complex-valued stem functions, and in Remark 18, giving a
version of the spectral mapping theorem, which, unlike in [2], Theorem 3.5.9, appears in a classical frame-
work.

2 Preliminaries

2.1 Cli�ord Algebra and its Complexi�cation

First of all, we introduce the concept of (real) Cli�ord algebra, in a restricted sense (as in [2]; see also [9, 10, 13]
etc.). Speci�cally, in this text, by Cli�ord algebra, denoted by Cn for a �xed integer n ≥ 0, we mean the unital
associative real algebra having n + 1 generators, say e0 = 1, e1, . . . , en, satisfying the relations e2

j = −1,
and ejek = −ekej for all j, k = 1, . . . , n, j = ̸ k. In particular, the real algebra R is a subalgebra of Cn. In fact,
C0 = R, C1 = C, and C2 = H, that is, the the real, complex and quaternionic algebras are special cases of
Cli�ord algebras.

Setting Nn = {1, 2, . . . , n}, for every ordered subset J = {j1, j2, · · · , jp} ⊂ Nn, with j1 < j2 < · · · < jp and
1 ≤ p ≤ n, we put eJ = ej1ej2 · · · ejp . We use the symbol J ≺ Nn to indicate that J is an oredered set as above.
We also assume that ∅ ≺ Nn, e∅ = 1, e{j} = ej , j = 1, . . . , n, and that the family {eJ}J≺Nn is a basis of the
vector space Cn. Therefore, an arbitrary element a ∈ Cn can be written as

a =
∑
J≺Nn

aJeJ , (1)
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where aJ ∈ R are uniquely determined for all J ≺ Nn. To simplify the notation, we shall put e0 = e∅ = 1, and
a0 = a∅. The elements of the Cli�ord algebraCn will be sometimes calledCli�ord vectors, or brie�y, Cl-vectors.

The linear subspace ofCn spannedby {ej}nj=0 will be denoted byPn. It plays an important role throughout
this work. The Cl-vectors from the subspacePn, which have the form a = a0 +

∑n
k=0 akek with ak ∈ R for all

k = 0, . . . , n, will be called paravectors (as in [2]). The linear subspace Pn will be often identi�ed with the
Euclidean space Rn+1, via the linear isomorphism

Pn 3
n∑
k=0

akek 7→ (a0, a1, . . . , an) ∈ Rn+1.

For every a =
∑

J≺Nn aJeJ ∈ Cn we have a decomposition a = <(a) + =(a), where <(a) = a0 and =(a) =∑
∅= ̸J≺Nn aJeJ, that is, the real part and the imaginary part of the Cl-vector a ∈ Cn, respectively.
The algebra Cn has a norm de�ned by

|a|2 =
∑
J≺Nn

a2
J , (2)

where a is given by (1).
The algebra Cn also has an involution Cn 3 a 7→ a* ∈ Cn, which is de�ned via the conditions e*j = −ej (j =

1, . . . , n), r* = r ∈ R, and (ab)* = b*a* for all a, b ∈ Cn (see [2], De�nition 2.1.11). According to Proposition
2.1.12 from [2], we therefore have (a*)* = a, and (a + b)* = a* + b*. Particularly, if a = a0 +

∑n
j=1 ajej, then

a* = a0 −
∑n

j=1 ajej, for all a ∈ Pn.

Remark 1. Unlike in [2], we keep the name of conjugation for a di�erent concept (as in [18], for the case of
quaternions).

To de�ne the conjugation, we consider the complexi�cation Kn = C⊗R Cn, identi�ed with the direct sum
Cn + iCn, and so Kn ⊃ C. This is a unital algebra with the involution induced by the involution of Cn:

Kn 3 c = a + ib 7→ c* = a* − ib* ∈ Kn

for all a, b ∈ Cn.
The R-linear map

Kn 3 c = a + ib 7→ c̄ := a − ib ∈ Kn

is a conjugation on Kn, that is, a real automorphism of a unital algebra, whose square is the identity.
An important feature of this construction is that the elements of the real subalgebra Cn commute with

the complex numbers in the algebra Kn. Of course, ā = a if and only if a ∈ Cn, which is useful criterion to
identify the elements of Cn among those of Kn.

2.2 Slice Regular Functions

The subspace Pn of paravectors in a Cli�ord algebra Cn will play an important role in what follows. In fact,
we are particularly interested in functions de�ned on open subsets ofPn (which is identi�edwithRn+1), with
values in Cn.

We shall bedealingwith the concept of "slice regularity“ of such functions,which is a formof holomorphy
(introduced in [1]; see also [2] and several works quoted within).

If a = a0 +
∑n

k=1 akek ∈ Pn is arbitrary, and so a* = a0 −
∑n

k=1 akek ∈ Pn, we have

aa* = a*a =
n∑
k=0

a2
k = |a|2.

This shows that the nonnull paravectors a ∈ Pn are invertible in the algebra Cn and, in fact, a−1 =
|a|−2a* ∈ Pn.
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For Kn-valued functions de�ned on subsets of Pn, the concept of slice regularity (see also [2]) is de�ned
as follows.

Let Sn = {s =
∑n

k=1 skek;
∑n

k=1 s
2
k = 1}, that is, the unit sphere of purely imaginary elements of Pn. It is

clear that s* = −s, s2 = −1, s−1 = −s, and |s| = 1 for all s ∈ Sn. Moreover, every nonnull paravector a can be
written as a = <(a) + |=(a)|sa, with sa = |=(a)|−1=(a) ∈ Sn if =(a) = ̸ 0, and sa = e1 otherwise.

Now, let Ω ⊂ Pn be an open set, and let F : Ω 7→ Kn be a di�erentiable function. In the spirit of [1, 2], we
say that F is right slice regular on Ω if for all s ∈ Sn,

∂̄sF(x + ys) := 1
2

(
∂
∂x + Rs

∂
∂y

)
F(x + ys) = 0,

on the set Ω ∩ (R + Rs), where Rs is the right multiplication of the elements of Kn by s.
Unlike in [2], we use the right slice regularity rather than the left one because of a reason to be later

explained (see Remark 8(1)). Nevertheless, a left slice regularity can also be de�ned via the left multiplication
of the elements ofKn by elements from Sn. In what follows, the right slice regularity will be simply called slice
regularity.

As mentioned before, we are particularly interested by the slice regularity of
Cn-valued functions, but the concept is valid for Kn-valued functions and plays an important role in
our discussion.

Example 1. (1) The convergent series of the form
∑

m≥0 amκm, on balls {κ ∈ Pn; |κ| < r}, with r > 0 and
am ∈ Kn for all m ≥ 0, are Kn-valued slice regular on their domain of de�nition. Of course, when am ∈ Cn for
all m, such functions are Cn-valued slice regular on their domain of de�nition.

Remark 2. The previous discussion is somehow unseemly when considering the quaternionic algebra H =
C2. Indeed, in this case we are mainly interested inH-valued functions, de�ned on subsets ofH. The algebra
C2 is generated by {1, e1, e2}, and the vector spaceP2 generated by this set is strictly included in H. As the
algebra H is also generated by the set {1, e1, e2, e3}, where e3 = e1e2, it is isomorphic to the quotient of
the algebra C3 by the two-sided ideal generated by e3 − e1e2. Consequently, a separate approach concerning
the quaternion algebraH (as in [2]), rather than an approach in the framework of Cli�ord algebras, seems to
be more appropriate, because it is not a particular case (for n = 2) of the present approach. In fact the case
C2 = H is treated in the works [18, 19], strongly related to the present work.

Note also that for C = C1 we haveP1 = C.

2.3 Cli�ord Spaces and Cli�ord Operators

Roughly speaking, by a Cli�ord space (or a Cl-space) we mean a a two-sided module over a given Cli�ord
algebra Cn. A Cli�ord space is, in particular, a real vector space. A more precise terminology will be given in
the following.

Let Cn be a �xed Cli�ord algebra, and let V be a real vector space. Adapting the framework from [2], the
space V is said to be a right Cl-space if it is a right Cn- module, that is, there exists in V a right multiplication
with the elements of Cn, such that x1 = x, (x + y)a = xa + ya, x(a + b) = xa + xb, x(ab) = (xa)b for all x, y ∈ V

and a, b ∈ Cn.
If V is a right Cl-space which is also a Banach space with the norm ‖ * ‖ such that ‖xa‖ ≤ C‖x‖|a| for all

x ∈ V and a ∈ Cn, where C is a positive constant, then V is said to be a right Banch Cl-space.
In a similar way, one de�nes the concept of a left Cl-space and that of a left Banach Cl-space.
A real (Banach) vector space Vwill be said to be a (Banach) Cl-space if it is simultaneously a right and a

left (Banach) Cl-space.
As for the case of quaternionic operators (see [2, 19]), it seems to be the framework of Banch Cl-spaces

an appropriate one for the study of some speci�c linear operators, to be de�ned in the following.
If V is a real or complex Banach space, we denote by B(V) the algebra of all real or complex bounded

linear operators, respectively.



94 | Florian-Horia Vasilescu

Let V be a �xed Banach Cl-space. An operator T ∈ B(V) is said to be right Cl-linear if T(xa) = T(x)a for
all x ∈ V and a ∈ Cn. The set of right Cl-linear operators will be denoted by Br(V), which is, in particular, a
unital real Banach algebra.

We shall denote by Ra (resp. La) the right (resp. left) multiplication operator of the elements ofVwith the
Cl-vector a ∈ Cn. It is clear that Ra, La ∈ B(V) for all a ∈ Cn. Note also that

Br(V) = {T ∈ B(V); TRa = RaT, a ∈ Cn}.

The elements of the algebra Br(V) will be sometimes called right Cli�ord (or Cl-) operators. As we work
especially with such operators, the word ”right“ will be usually omitted. Note that all operators La, a ∈ Cn,
are Cl-operators.

Now, let us consider the complexi�cation VC of V, written as VC = V + iV. Because V is a Cn-bimodule,
the space VC is actually a two-sided Kn-module, via the multiplications

(a + ib)(x + iy) = ax − by + i(ay + bx), (x + iy)(a + ib) = xa − yb + i(ya + xb),

for all a, b ∈ Cn , x, y ∈ V.
For every T ∈ B(V), we consider its natural ”complex extension“ to VC given by TC(x + iy) = Tx + iTy,

for all x, y ∈ V, which is clearly C-linear, so TC ∈ B(VC). In fact, the map B(V) 3 T 7→ TC ∈ B(VC) is a
unital injective morphism of real algebras. Moreover, if T ∈ Br(V), the operator TC is right Kn-linear, that is
TC((x + iy)(a + ib)) = TC(x + iy)(a + ib) for all a + ib ∈ Kn , x + iy ∈ VC, via a direct computation.

The left and right multiplications with a ∈ Cn on VC will be still denoted by La, Ra, respectively, as
elements ofB(VC). We set

Br(VC) = {S ∈ B(VC); SRa = RaS, a ∈ Cn},

which is a unital complex algebra, consisting of all right Kn-linear operators on VC, containing all operators
La, a ∈ Cn. It is easily seen that if T ∈ Br(V), then TC ∈ Br(VC).

3 Spectrum of a Paravector
In the complex algebra Kn, we have a natural concept of spectrum, which can be easily described in the case
of paravectors. In fact, this spectrum is similar to that one introduced in [18] for quaternions. For this reason,
most of the arguments used in [18] apply, with minor modi�catrions, to the actual situation.

Remark 3. We follow the lines of Remark 1 from [18].
(1) Because each paravector commutes in Kn with every complex number, we have the identities

(λ − κ*)(λ − κ) = (λ − κ)(λ − κ*) = λ2 − λ(κ + κ*) + |κ|2 ∈ C, (3)

for all λ ∈ C and κ ∈ Pn. Therefore, if the complex number λ2−2λ<(κ)+|κ|2 is nonnull, the element λ−κ ∈ Kn
is invertible. Conversely, if the element λ − κ ∈ Kn is invertible, assuming λ2 − 2λ<(κ) + |κ|2 = 0, the identity
(3) implies κ* = λ. In other words, λ = κ ∈ R, which is impossible because λ − κ is invertible. Therefore, λ − κ
is invertible if and only if the complex number λ2 − 2λ<(κ) + |κ|2 is nonnull, and thus

(λ − κ)−1 = 1
λ2 − 2λ<(κ) + |κ|2 (λ − κ*).

Hence, the element λ − κ ∈ Kn is not invertible if and only if λ = <(κ) ± i|=(κ)|. In this way, the spectrum of a
paravector κ is given by the equality σ(κ) = {s±(κ)}, where s±(κ) = <(κ) ± i|=(κ)| are the eigenvalues of κ.

The argument from above shows, in fact, that if λ − κ has a left inverse, then λ − κ is invertible.
(2) As usually, the resolvent set ρ(κ) of a paravector κ ∈ Pn is the set C \ σ(κ), while the function

ρ(κ) 3 λ 7→ (λ − κ)−1 ∈ Kn
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is the resolvent (function) of κ, which is a Kn-valued analytic function on ρ(κ).
(3) Note that two paravectors κ, τ ∈ Pn have the same spectrum if and only if <(κ) = <(τ) and |=(κ)| =

|=(τ)|.
(4) We recall that Sn is the unit sphere of purely imaginary paravectors. As already noticed, every par-

avector κ ∈ Pn \ R can be written as κ = x + ys, where x, y are real numbers, with x = <(κ), y ∈ {±|=(κ)|},
and s ∈ {±=(κ)/|=(κ)|} ⊂ Sn. Anyway, we always have σ(κ) = {x ± iy}, because =(κ) = ys. Note that, for �xed
real numbers x, y, the spectrum of κ does not depend on s. Thus, for every λ = u + iv ∈ C with u, v ∈ R, we
have σ(u + vs) = {λ, λ̄} for all s ∈ Sn.

(5) The equality σ(κ) = σ(τ) is clearly an equivalence relation inPn. It is easily seen that the equivalence
class of an element κ0 = x0 + y0s0 ∈ Pn is given by {x0 + y0s; s ∈ Sn}.

(6) Fixing an element s ∈ Sn, we have an isometricR-linearmap from the complex planeC into the space
Pn, say θs, de�ned by θs(u + iv) = u + vs, u, v ∈ R. For every subset A ⊂ C, we put

As = {x + ys; x, y ∈ R, x + iy ∈ A} = θs(A). (4)

Note that, if A is open in C, then As is open in the R-vector space Cs ⊂ Pn.

The corresponding version of De�nition 1 from [18], adapted to the Cli�ordian context, is the following.

De�nition 1. The Kn-valued Cauchy kernel on the open set Ω ⊂ Pn is given by

ρ(κ) × Ω 3 (ζ , κ) 7→ (ζ − κ)−1 ∈ Kn . (5)

Recapturing Example 2 from [18], we get the following.

Example 2. The Kn-valued Cauchy kernel on the open set Ω ⊂ Pn is slice regular. Speci�cally, choosing an
arbitrary relatively open set V ⊂ Ω ∩ (R + Rs), and �xing ζ ∈ ∩κ∈Vρ(κ), we can write for κ = x + ys ∈ V the
equalities

∂
∂x (ζ − x − ys)−1 = (ζ − x − ys)−2,

Rs
∂
∂y (ζ − x − ys)−1 = −(ζ − x − ys)−2,

because s2 = −1, and ζ , s and (ζ − x − ys)−1 commute in Kn. Therefore,

∂̄s((ζ − κ)−1) = ∂̄s((ζ − x − ys)−1) = 0,

implying the assertion.

The next comment is inspired by Remark 2 from [18].

Remark 4. (1) The discussion about the spectrum of a paravector can be enlarged, keeping the same frame-
work. Speci�cally, we may regard an element κ ∈ Pn as a left multiplication operator on the algebra Kn,
denoted by Lκ, de�ned by Lκa = κa for all a ∈ Kn. It is quite clear that σ(Lκ) = σ(κ). In this context, we may
�nd the eigenvectors of Lκ, which will be of interest in what follows. Therefore, we should look for solutions
ν of the equation κν = sν in the algebra Kn, with s ∈ σ(κ). Writing κ = κ0 +=(κ) with κ0 ∈ R, s± = κ0 ± i|=(κ)|
and ν = x + iy with x, y ∈ Cn, we obtain the equivalent equations

=(κ)x = ∓|=(κ)|y, =(κ)y = ±|=(κ)|x,

leading to the solutions

ν±(κ) =
(

1∓ i =(κ)
|=(κ)|

)
x

of the equation κν± = s±ν±, where x ∈ Cn is arbitrary, provided =(κ) = ̸ 0.
When =(κ) = 0, the solutions are given by ν = κ0a, with a ∈ Kn arbitrary.
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(2) Every paravector s ∈ Sn may be associated with two elements ι±(s) = (1 ∓ is)/2 in Kn, which are
commuting idempotents such that ι+(s) + ι−(s) = 1 and ι+(s)ι−(s) = 0. For this reason, setting Ks

± = ι±(s)Cn,
we have a direct sum decomposition Kn = Ks

+ + Ks
−. Explicitly, if a = u + iv, with u, v ∈ Cn, the equation

ι+(s)x + ι−(s)y = a has the unique solution x = u + sv, y = u − sv ∈ Cn, because s−1 = −s.
In particular, if κ ∈ Pn and =(κ) = ̸ 0, setting sκ̃ = κ̃|κ̃|−1, where κ̃ = =(κ), the elements ι±(sκ̃) are idempo-

tents, as above.

The next result provides explicit formulas of the spectral projections (see [4], Section VII.1) associated to the
operator Lκ , κ ∈ Pn . Of course, they are not trivial only if κ ∈ Pn \ R because if κ ∈ R, its spectrum is this
real singleton, and the only spectral projection is the identity.

The statement of the result corresponding to Lemma 1 from [18] sounds like that:

Lemma 1. Let κ ∈ Pn \R be �xed. The spectral projections associated to the eigenvalues s±(κ) are given by

P±(κ)a = ι±(sκ̃)a, a ∈ Kn . (6)

Moreover, P+(κ)P−(κ) = P−(κ)P+(κ) = 0, and P+(κ) + P−(κ) is the identity on Kn.
When κ ∈ R, the corresponding spectral projection is the identity on Kn.

Proof. We shall give a direct argument. Let us �x a paravector κ with =(κ) ≠ 0. Next, we write the general
formulas for its spectral projections. Setting s± = s±(κ), the points s+, s− are distinct and not real. We �x an
r > 0 su�ciently small such that, settingD± := {ζ ∈ ρ(κ); |ζ−s±| ≤ r}, wehaveD±\{s±} ⊂ ρ(κ) andD+∩D− = ∅.
Then the spectral projections are given by

P±(κ) = 1
2πi

∫
Γ±

(ζ − Lκ)−1dζ

where Γ± is the boundary of D±.
Using the equality Lκν±(κ) = s±(κ)ν±(κ) (see Remark 4), for every ζ ∈ ρ(κ) and h ∈ Cn, we obtain

(ζ − Lκ)−1(1∓ isκ̃)x = (ζ − s±)−1(1∓ isκ̃)x,

by Remark 4. Therefore,
P+(κ)(1∓ isκ̃)x = 1

2πi

∫
Γ+

(ζ − s±)−1(1∓ isκ̃)xdζ ,

and
P−(κ)(1∓ isκ̃)x = 1

2πi

∫
Γ−

(ζ − s±)−1(1∓ isκ̃)xdζ .

Using Cauchy’s formula, we deduce that

P+(κ)(1 − isκ̃)x = (1 − isκ̃)x, P+(κ)(1 + isκ̃)x = 0,

and
P−(κ)(1 − isκ̃)x = 0, P−(κ)(1 + isκ̃)x = (1 + isκ̃)x,

for all x ∈ Cn.
Fixing an arbitrary element a = u + iv ∈ Kn and noticing that P±(κ) are C-linear, we clearly obtain

P±(κ)a = ι±(sκ̃)a, a ∈ Kn, which are precisely the formulas (6) from the statement.
The properties P+(κ)P−(κ) = P−(κ)P+(κ) = 0, and P+(κ) + P−(κ) is the identity on Kn are direct conse-

quences of the analytic functional calculus associated to a �xed element κ ∈ Pn in the algebra Kn.

By a slight abuse of terminology, the projections P±(κ) will be also called the spectral projections of κ. In
fact, as formula (6) shows, they depend only on the imaginary part κ̃ of κ.
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Corollary 1. For every κ ∈ Pn and a ∈ Kn we have

Lκa = s+(κ)P+(κ)a + s−(κ)P−(κ)a.

Proof Assume �rst that κ ∈ Pn \R and a ∈ Cn. Then formula (6) implies that

a = P+(κ)a + P−(κ)a = ι+(sκ̃)a + ι−(sκ̃)a.

Therefore,
Lκa = κι+(sκ̃)a + κι−(sκ̃)a = s+(κ)ι+(sκ̃)a + s−(κ)ι−(sκ̃)a =

s+(κ)P+(κ)a + s−(κ)P−(κ)a.

This formula can be extended to elements of Kn because all operations within are C-linear.
Of course, this formula also holds for κ = r ∈ R, leading to Lra = ra

4 A General Functional Calculus for Stem Functions
In this section, some spaces of Kn-valued functions, de�ned on subsets of the complex plane, will be as-
sociated with spaces of functions, de�ned on subsets of Pn, taking values in the Cli�ord algebra Cn, using
spectral methods and functional calculi. As in [18] (in the context of quaternionic valued functions), this is a
general functional calculus, with arbitrary functions (see Theorem 2).

Remark 5. Following [18], Remark 3, an idea from the theory of spectral operators, developed in [4], Part III,
canbe applied to de�ne an appropriate functional calculus, also useful in the Cli�ordian context. Speci�cally,
regarding the algebra Kn as a (complex) Banach space, and denoting byB(Kn) the Banach space of all linear
operators acting on Kn, the operator Lκ , κ ∈ Pn, (see Remark 4(1)) is a particular case of a scalar type op-
erator, as de�ned in [4], Part III, XV.4.1. Its resolution of the identity consists of four projections {0, P±(κ),I},
including the null operator 0 and the identity I, where P±(κ) are the spectral projections of Lκ, and its integral
representation is given by

Lκ = s+(κ)P+(κ) + s−(κ)P−(κ) ∈ B(Kn),

provided by Corollary 1.
For every function f : σ(κ) 7→ C we may de�ne the operator

f (Lκ) = f (s+(κ))P+(κ) + f (s−(κ))P−(κ) ∈ B(Kn).

which provides a functional calculus with arbitrary functions on the spectrum. More generally, regarding the
elements of the algebra Kn as left multiplication operators on Kn, we may extend this formula to functions of
the form F : σ(κ) 7→ B(Kn), putting

F(Lκ) = F(s+(κ))P+(κ) + F(s−(κ))P−(κ), (7)

and keeping this order, which is a ”left functional calculus“, not multiplicative, in general. It is this idea
which leads us to try to de�ne some Cn-valued functions on subsets of Pn associated to certain Kn-valued
functions, de�ned on some subsets of C.

De�nition 2. (1) A subset S ⊂ C is said to be conjugate symmetric if ζ ∈ S if and only if ζ̄ ∈ S.
(2) A subset A ⊂ Pn is said to be spectrally saturated (as in [18]) if whenever σ(θ) = σ(κ) for some θ ∈ Pn

and κ ∈ A, we also have θ ∈ A.
For an arbitrary A ⊂ Pn, we putS(A) = ∪κ∈Aσ(κ) ⊂ C.
Conversely, for an arbitrary subset S ⊂ C, we put Sσ = {κ ∈ Pn; σ(κ) ⊂ S}.

The discussion from [18], Remark 4, can be adapted to this context in the following way.
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Remark 6. (1) If A ⊂ Pn is spectrally saturated, then S = S(A) is conjugate symmetric, and conversely,
if S ⊂ C is conjugate symmetric, then Sσ is spectrally saturated, which can be easily seen. Moreover, the
assignment S 7→ Sσ is injective. Indeed, if λ = u + iv ∈ S, u, v ∈ R, then λ ∈ σ(u + vs) for a �xed s ∈ Sn. If
Sσ = Tσ for some T ⊂ C, we must have κ = u + vs ∈ Tσ. Therefore σ(u + vs) ⊂ T, implying λ ∈ T, and so
S ⊂ T. Clearly, we also have T ⊂ S.

Similarly, the assignment A 7→ S(A) is injective and A = Sσ if and only if S = S(A). These two assertions
are left to the reader.

(2) If Ω ⊂ Pn is an open spectraly saturated set, then S(Ω) ⊂ C is open. To see that, let λ0 = u0 + iv0 ∈
S(Ω) be �xed, with u0, v0 ∈ R, and let κ0 = u0 + v0s, where s ∈ Sn is also �xed. Because Ω is spectrally
saturated, we must have κ0 ∈ Ω. As the set Ω ∩ Cs is relatively open, there is a positive number r such that
the open set

{κ = u + vs; u, v ∈ R, |κ − κ0| < r}

is in Ω ∩ Cs. Therefore, the set of the points λ = u + iv, satisfying |λ − λ0| < r is in S(Ω), implying that it is
open.

Conversely, if U ⊂ C is open and conjugate symmetric, the set Uσ is also open via the upper semi-
continuity of the spectrum (see [4], Part I, Lemma VII.6.3.).

An important particular case is when U = Dr := {ζ ∈ C; |ζ | < r}, for some r > 0. Then Uσ = {κ ∈ Pn; |κ| <
r}. Indeed, if |κ| < r and θ has the property σ(κ) = σ(θ), from the equality {<(κ) ± i|=(κ)|} = {<(θ) ± i|=(θ)|} it
follows that |θ| < r.

(3) A subset Ω ⊂ Cn is said to be axially symmetric if for every κ0 = u0 + v0s0 ∈ Ω with u0, v0 ∈ R and
s0 ∈ Sn, we also have κ = u0 + v0s ∈ Ω for all s ∈ Sn. This concept is introduced in [2], De�nition 2.2.17. In
fact, we have the following.

Lemma 2. A subset Ω ⊂ Cn is axially symmetric if and only if it is spectrally saturated.

The assertion follows easily from the fact that the equality σ(κ) = σ(τ) is an equivalence relation in Pn (see
Remark 3(5)).

Nevertheless, we continue to use the expression ”spectrally saturated set“ to designate an ”axially sym-
metric set“, because the former name is more compatible with our spectral approach.

As noticed in Remark 1, the algebraKn is endowedwith a conjugation given by ā = b− ic, when a = b+ ic, with
b, c ∈ Cn. Note also that, because C is a subalgebra of Kn, the conjugation of Kn restricted to C is precisely
the usual complex conjugation.

The next de�nition has an old origin, seemingly going back to [6].

De�nition 3. Let U ⊂ C be conjugate symmetric, and let F : U 7→ Kn. We say that F is a (Kn-valued) stem
function if F(λ̄) = F(λ) for all λ ∈ U.

For an arbitrary conjugate symmetric subset U ⊂ C, we put

S(U,Kn) = {F : U 7→ Kn; F(ζ̄ ) = F(ζ ), ζ ∈ U}, (8)

that is, theR-vector space of allKn-valued stem functions onU. ReplacingKn byC, we denote by S(U) the real
algebra of allC-valued stem functions, which is anR-subalgebra in S(U,Kn). In addition, the space S(U,Kn)
is a two-sided S(U)-module.

The following de�nition adapts, to our context, De�nition 4 from [18].

De�nition 4. Let U ⊂ C be conjugate symmetric. For every F : U 7→ Kn we de�ne a function Fσ : Uσ 7→ Kn,
via the assignment

Uσ \R 3 κ 7→ Fσ(κ) = F(s+(κ))ι+(sκ̃) + F(s−(κ))ι−(sκ̃) ∈ Kn , (9)

where κ̃ = =(κ), sκ̃ = |κ̃|−1 κ̃, and ι±(sκ̃) = 2−1(1∓ isκ̃), and Fσ(r) = F(r), if r ∈ Uσ ∩R.
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Formula (9) is strongly related to formula (7) because the spectral projections P±(κ) are the leftmultiplications
de�ned by 2−1(1∓ isκ̃) respectively, via formula (6).

The next result is a version of Theorem 2 from [18].

Theorem 1. Let U ⊂ C be a conjugate symmetric subset, and let F : U 7→ Kn. The element Fσ(κ) belongs to Cn
for all κ ∈ Uσ if and only if F ∈ S(U,Kn).

Proof. We �rst assume that Fσ(κ) ∈ Cn for all κ ∈ Uσ. We �x a point ζ ∈ U, supposing that =ζ > 0. Then
we choose a paravector κ ∈ Uσ with σ(κ) = {ζ , ζ̄}. Therefore, s+(κ) = ζ and s−(κ) = ζ̄ . We write F(ζ ) =
F+1 + iF+2, F(ζ̄ ) = F−1 + iF−2, with F+1, F+2, F−1, F−2 ∈ Cn. According to (9), we have

2F(κ) = F+1 + F+2sκ̃ + F−1 − F−2sκ̃ + i(−F+1sκ̃ + F+2 + F−2 + F−1sκ̃),

so
2F(κ) = F+1 + F+2sκ̃ + F−1 − F−2sκ̃ + i(F+1sκ̃ − F+2 − F−2 − F−1sκ̃).

Because F(κ) = F(κ), we must have

−F+1sκ̃ + F+2 + F−2 + F−1sκ̃ = F+1sκ̃ − F+2 − F−2 − F−1sκ̃ ,

which is equivalent to
F+2 + F−2 = (F+1 − F−1)sκ̃

Choosing another paravector θ ∈ Pn with s+(θ) = ζ but with sκ̃ = ̸ sθ̃, we obtain

(F+1 − F−1)(sκ̃ − sθ̃) = 0.

Because the paravector sκ̃ − sθ̃ is nonnull, it must be invertible, and so F+1 = F−1, implying F+2 = −F−2,
meaning that F(ζ ) = F(ζ̄ ).

If =ζ = 0, so ζ = x0 ∈ R, taking κ = x0, we have σ(κ) = {x0}, and F(κ) = F(x0) is a real number.
If=ζ < 0, applying the above argument to ζ̄ we obtain F(ζ̄ ) = F(ζ ). Consequently, F is a stem function on

U.
Conversely, if F(ζ ) = F(ζ̄ ) for all ζ ∈ U, choosing a κ ∈ Pn with =κ ≠ 0, and setting ζ = s+(κ), we obtain

from (9) the equality
2Fσ(κ) = F(ζ ) + F(ζ̄ ) − i(F(ζ ) − F(ζ̄ )sκ̃ .

Therefore,
2Fσ(κ) = F(ζ̄ ) + F(ζ ) + i(F(ζ̄ ) − F(ζ ))sκ̃ ,

showing that Fσ(κ) ∈ Cn for all κ ∈ Uσ, because the case κ = r ∈ R is obvious.

Corollary 2. Let U ⊂ C be a conjugate symmetric subset, and let f : U 7→ C. The following conditions are
equivalent;

(1) f ∈ S(U);
(2) fσ(κ) belongs to Cs, and fσ(κ*) = fσ(κ)* for all κ ∈ Uσ ∩Cs, where Cs = {u + vs; u, v ∈ R}, and s ∈ Sn.

Proof. That f ∈ S(U) implies fσ(κ) belongs to Cn for all κ ∈ Uσ is a direct consequence of Theorem 1. More
precisely, in this case actually (2) holds true. To get (2), let us �rst choose a function f ∈ S(U). It follows from
De�nition 4 that

fσ(κ) = f (s+(κ))ι+(sκ̃) + f (s+(κ))ι−(sκ̃) =

<(f (s+(κ)) + =(f (s+(κ))sκ̃ ∈ Csκ̃

where κ ∈ Uσ , κ̃ = =(κ), sκ̃ = κ̃|κ̃|−1, and ι±(sκ̃) = 2−1(1∓ isκ̃). Because s+(κ*) = s+(κ), and κ̃* = −κ̃, we clearly
have fσ(κ*) = fσ(κ)* for all κ ∈ Uσ.
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Conversely, let g : Uσ 7→ Pn be such that g(κ) ∈ Cs, and g(κ*) = g(κ)* for all κ ∈ Uσ ∩ Cs. We shall look for
a function f ∈ S(U) such that fσ = g. Fixing the points z± = x ± iy ∈ U with x, y(= ̸ 0) ∈ R, and a paravector
s ∈ Sn, we set κ± = x ± ys, so κ*± = κ∓, s+(κ±) = x + i|y|, and s−(κ±) = x − i|y|. Then we de�ne

2f (z+) = g(κ+)(1 − is) + g(κ−)(1 + is),

2f (z−) = g(κ+)(1 + is) + g(κ−)(1 − is).

Because g(κ+) ∈ Cs, there are u, v ∈ R such that g(κ+) = u + vs, and thus, g(κ−) = u − vs. Therefore,
f (z+) = u + iv ∈ C. Similarly, f (z−) = u − iv ∈ C. This shows, in fact, that f : U 7→ C, and f (z) = f (z̄). Using the
equations from above, we derive easily that

2g(κ+) = f (z+)(1 − is) + f (z−)(1 + is),

2g(κ−) = f (z+)((1 + is) + (z−)(1 − is).

implying the equality g(κ) = fσ(κ) for all κ ∈ Uσ, which concludes the proof.

Remark 7. This is a description of all zeros of the functions obtained via Theorem 1, corresponding to Remark
5 from [18].

Let U ⊂ C be a conjugate symmetric set and let F ∈ S(U,Kn) be arbitrary.We can easily describe the zeros
of Fσ. Indeed, if Fσ(κ) = F(s+(κ))ι+(κ̃)+F(s−(κ))ι−(κ̃) = 0, wemust have F(s+(κ))ι+(κ̃) = 0 and F(s−(κ))ι−(κ̃) = 0,
via a direct manipulation with the idempotents ι±(κ̃). In other words, we must have F(s±(κ)) = ±iF(s±(κ))sκ̃.
As in the previous proof, choosing another paravector θ with s+(κ) ∈ σ(θ) and κ̃ ≠ θ̃, we obtain F(s+(κ))(sκ̃ −
sθ̃) = 0. Therefore, F(s+(κ)) = 0 because sκ̃ − sθ̃ is invertible. Similarly, F(s−(κ)) = 0. Conqequently, setting
Z(F) := {λ ∈ U; F(λ) = 0}, and Z(Fσ) := {κ ∈ Uσ; Fσ(κ) = 0}, we must have

Z(Fσ) = {κ ∈ Uσ; σ(κ) ⊂ Z(F)}.

For every subset Ω ⊂ Pn, we denote by F(Ω, Cn) the set of all Cn-valued functions on Ω. Let also

IF(Ω, Cn) = {g : F(Ω, Cn); g(κ*) = g(κ)* ∈ Cs, κ ∈ Ω ∩Cs, s ∈ Sn}, (10)

which is a unital commutative subalgebra of the algebra F(Ω, Cn). The functions from the space IF(Ω,Pn)
are similar to those called intrinsic functions, appering in [2], De�nition 3.5.1, or in [3], De�nition 2.1.2.

The next result provides a Cn-valued general functional calculus for arbitrary stem functions (for the
quaternionic case see [18], Theorem 2).

Theorem 2. Let Ω ⊂ Pn be a spectrally saturated set, and let U = S(Ω). The map

S(U,Kn) 3 F 7→ Fσ ∈ F(Ω, Cn)

is R-linear, injective, and has the property (Ff )σ = Fσ fσ for all F ∈ S(U,Kn) and f ∈ S(U). Moreover, the
restricted map

S(U) 3 f 7→ fσ ∈ IF(Ω, Cn)

is unital and multiplicative.

Proof. The map F 7→ Fσ is clearly R-linear. The injectivity of this map follows from Remark 7. Note also that

Fσ(κ)fσ(κ) = (F(s+(κ))ι+(sκ̃) + F(s−(κ))ι−(sκ̃))×

(f (s+(κ))ι+(sκ̃) + f (s−(κ))ι−(sκ̃) =

(Ff )(s+(κ))ι+(sκ̃) + (Ff )(s−(κ))ι−(sκ̃) = (Ff )σ(κ),

because f is complex valued, and using the properties of the idempotents ι±(sκ̃) In particular, this computa-
tion shows that if f , g ∈ S(U), and so fσ , gσ ∈ IF(Ω, Cn) by Corollary 2, we have (fg)σ = fσgσ = gσ fσ, thus the
map f 7→ fσ is multiplicative. It is also clearly unital.
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5 A Cauchy Transform in the Cli�ord Algebra Context
Having theKn-valued Cauchy kernel (see De�nition 1), wemay introduce a concept of a Cauchy transform (as
in [18] in the quaternionic context), whose some useful properties will be exibited in this section.

The frequent use of versions of the Cauchy formula is simpli�ed by adopting the following de�nition. Let
U ⊂ C be open. An open subset ∆ ⊂ U will be called a Cauchy domain (in U) if ∆ ⊂ ∆̄ ⊂ U and the boundary
∂∆ of ∆ consists of a �nite family of closed curves, piecewise smooth, positively oriented. A Cauchy domain
is bounded but not necessarily connected.

For a given open set U ⊂ C, we denote by O(U,Kn) the complex algebra of all Kn-valued analytic func-
tions on U.

If U ⊂ C is also conjugate symmetric, let Os(U,Kn) be the real subalgebra of O(U,Kn) consisting of all
stem functions from O(U,Kn).

Because C ⊂ Kn, we have O(U) ⊂ O(U,Kn), where O(U) is the complex algebra of all complex-valued
analytic functions on the open set U. Similarly, when U ⊂ C is also conjugate symmetric,Os(U) ⊂ Os(U,Kn),
where Os(U) is the real subalgebra consisting of all functions f from O(U) which are stem functions.

As un example, if ∆ ⊂ C is an open disk centered at 0, each function F ∈ Os(∆,Kn) can be represented
as a convergent series F(ζ ) =

∑
k≥0 akζ

k , ζ ∈ ∆, with ak ∈ Cn for all k ≥ 0.

De�nition 5. Let U ⊂ C be a conjugate symmetric open set, and let F ∈ O(U,Kn). For every κ ∈ Uσ we set

C[F](κ) = 1
2πi

∫
Γ

F(ζ )(ζ − κ)−1dζ , (11)

where Γ is the boundary of a Cauchy domain in U containing the spectrum σ(κ). The function C[F] : Uσ 7→ Kn
is called the (Kn-valued) Cauchy transform of the function F ∈ O(U,Kn). Clearly, the function C[F] does not
depend on the choice of Γ because the function U \ σ(κ) 3 ζ 7→ F(ζ )(ζ − κ)−1 ∈ Kn is analytic.

We shall put
R(Uσ ,Kn) = {C[F]; F ∈ O(U,Kn)}. (12)

Proposition 1. Let U ⊂ C be open and conjugate symmetric, and let F ∈ O(U,Kn). Then function C[F] ∈
R(Uσ ,Kn) is slice regular on Uσ.

Proof. Let F ∈ O(U,Kn), let κ ∈ Uσ and let ∆ 3 σ(κ) be a conjugate symmetric Cauchy domain in U, whose
boundary is denoted by Γ. We use the representation of C[F](κ) given by (11). Because we have

∂̄s((ζ − κ)−1) = ∂̄s((ζ − x − ys)−1) = 0

for κ = x + ys ∈ ∆σ ∩ (R + Rs), via Example 2, we infer that

∂̄s(C[F](κ)) = 1
2πi

∫
Γ

F(ζ )∂̄s((ζ − κ)−1)dζ = 0,

which implies the assertion.

Remark 8. (1) Because the function F does not necessarily commute with the left multiplication by s ∈ Sn,
the choice of the right multiplication in the slice regularity is necessary to get the stated property of C[F].

(2) Let r > 0 and let U ⊃ {ζ ∈ C; |ζ | ≤ r} be a conjugate symmetric open set. Then for every F ∈ O(U,Kn)
one has

C[F](κ) =
∑
n≥0

F(n)(0)
n! κn , |κ| < r,

where the series is absolutely convergent. Of course, using the convergent series (ζ − κ)−1 =
∑

n≥0 ζ
−n−1κn

in {ζ ; |ζ | = r}, the assertion follows easily. Moreover, by Proposition 1, the function C[F] is a slice regular
Kn-valued function in Uσ. Nevertheless, we are particularly interested in slice regular Cn-valued functions.
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The next result is a version of Theorem 4 from [18], stated in a quaternionic context.

Theorem 3. Let U ⊂ C be a conjugate symmetric open set and let F ∈ O(U,Kn). The Cauchy transform C[F] is
Cn-valued if and only if F ∈ Os(U,Kn).

Proof. We �rst �x a paravector κ ∈ Uσ \ R. If σ(κ) = {s+, s−}, the points s+, s− are distinct and not real. We
then choose an r > 0 su�ciently small such that, setting D± := {ζ ∈ U; |ζ − s±| ≤ r}, we have D± ⊂ U and
D+ ∩ D− = ∅. Then

C[F](κ) = 1
2πi

∫
Γ+

F(ζ )(ζ − κ)−1dζ + 1
2πi

∫
Γ−

F(ζ )(ζ − κ)−1dζ ,

where Γ± is the boundary of D±. We may write F(ζ ) =
∑

k≥0(ζ − s+)kak with ζ ∈ D+, ak ∈ Kn for all k ≥ 0,
as a uniformly convergent series. Similarly, F(ζ ) =

∑
k≥0(ζ − s−)kbk with ζ ∈ D−, bk ∈ Kn for all k ≥ 0, as a

uniformly convergent series.
Note that

1
2πi

∫
Γ+

F(ζ )(ζ − κ)−1dζ =
∑
k≥0

ak 1
2πi

∫
Γ+

(ζ − s+)k(ζ − κ)−1dζ

 = a0ι+(sκ̃)

because we have
1

2πi

∫
Γ+

(ζ − s+)k(ζ − κ)−1dζ = (κ − s+)k ι+(sκ̃)

by the analytic functional calculus of κ (see also Lemma 1), which is equal to ι+(sκ̃) when k = 0, and it is equal
to 0 when k ≥ 1, via the equality κι+(sκ̃) = s+ι+(sκ̃)

Similarly

1
2πi

∫
Γ−

F(ζ )(ζ − κ)−1dζ =
∑
k≥0

bk 1
2πi

∫
Γ−

(ζ − s−)k(ζ − κ)−1dζ

 = b0ι−(sκ̃)

because, as above, we have

1
2πi

∫
Γ−

(ζ − s−)k(ζ − κ)−1)dζ = (κ − s−)k ι−(sκ̃),

which is equal ι−(sκ̃) when k = 0, and it is equal to 0 when k ≥ 1. Consequently,

C[F](κ) = F(s+)ι+(sκ̃) + F(s−)ι−(sκ̃),

and the right hand side of this equality coincides with the expression from formula (9).
Assume now that σ(κ) = {s}, where s := s+ = s− ∈ R. Then necessarily κ = s, so �xing an r > 0 such that

the set D := {ζ ∈ U; |ζ − s| ≤ r} ⊂ U, whose boundary is denoted by Γ, we have

C[F](κ) = 1
2πi

∫
Γ

F(ζ )(ζ − κ)−1dζ = F(s),

via the usual analytic functional calculus.
In all of these situations, the element C[F](κ) is equal to the right hand side of formula (9). Therefore, we

must have C[F](κ) ∈ Cn if and only if F(s+) = F(s−), via Theorem 1. As every point λ ∈ U is the eigenvalue of
a certain paravector in Uσ, we deduce that C[F](κ) ∈ Cn for all κ ∈ Uσ if and only if F : U 7→ Kn is a stem
function.

Remark 9. (1) It follows from the proof of the previous theorem that the element C[F](κ), given by formula
(11), coincides with the element Fσ(κ) given by (9). To unify the notation, from now on this element will be
denoted by Fσ(κ), whenever F is a stem function, analytic or not.



Spectrum and Analytic Functional Calculus | 103

(2) An important particular case is when let f : U 7→ C is an analytic function, where U ⊂ C is a conjugate
symmetric open set. In this case we may also consider the Cauchy transform of f given by

C[f ](κ) = 1
2πi

∫
Γ

f (ζ )(ζ − κ)−1dζ , (13)

where Γ is the boundary of a Cauchy domain in U containing the spectrum σ(κ). According to Theorem 5, we
have C[f ](κ) ∈ Cn if and only if f is a stem function, that is f ∈ Os(U). Of course, in this case we may (and
shall) also use the notation C[f ] = fσ, and we have, in fact, fσ ∈ IF(Uσ , Cn), by Corollary 2.

6 Analytic Functional Calculus for Stem Functions
Let Ω ⊂ Pn be a spectrally saturated open set, and let U = S(Ω) ⊂ C (which is conjugate symmetric, and
also open, by Remark 6(2)). We introduce the notation

Rs,n(Ω) = {fσ; f ∈ Os(U)},

Rs(Ω, Cn) = {Fσ; F ∈ Os(U,Kn)},

which are R-vector spaces.
In fact, these R-vector spaces have some important properties, as already noticed in a quaternionic ver-

sion of the next theorem (see Theorem 5 in [18]).

Theorem 4. Let Ω ⊂ Pn be a spectrally saturated open set, and let U = S(Ω). The space Rs,n(Ω) is a unital
commutative R-algebra, the space Rs(Ω, Cn) is a right Rs,n(Ω)-module, the linear map

Os(U,Kn) 3 F 7→ Fσ ∈ Rs(Ω, Cn)

is a right module isomorphism, and its restriction

Os(U) 3 f 7→ fσ ∈ Rs,n(Ω)

is an R-algebra isomorphism.
Moreover, for every polynomial P(ζ ) =

∑m
j=0 ajζ

j , ζ ∈ C, with aj ∈ Cn for all j = 0, 1, . . . ,m, we have
Pσ(κ) =

∑m
j=0 ajκ

j ∈ Cn for all κ ∈ Pn.

Proof. Thanks to Theorem 3, this statement is a particular case of Theorem 2. Indeed, the R-linear maps

Os(U,Kn) 3 F 7→ Fσ ∈ Rs(Ω, Cn), Os(U) 3 f 7→ fσ ∈ Rs,n(Ω),

are restrictions of the maps

S(U,Kn) 3 F 7→ Fσ ∈ F(Ω, Cn), S(U) 3 f 7→ fσ ∈ IF(Ω, Cn),

respectively. Moreover, they are R-isomorphisms, the latter being actually unital and multiplicative. Note
that, in particular, for every polynomial P(ζ ) =

∑m
j=0 ajζ

j with aj ∈ Cn for all j = 0, 1, . . . ,m, we have Pσ(κ) =∑m
j=0 ajκ

j ∈ Cn for all κ ∈ Pn.

Remark 10. For every function F ∈ Os(U,Kn), the derivatives F(m) also belong to Os(U,Kn), where U ⊂ C is
a conjugate symmetric open set.

Now �xing F ∈ Os(U,Kn), we may de�ne its extended derivatives with respect to the paravector variable
via the formula

F(m)
σ (κ) = 1

2πi

∫
Γ

F(m)(ζ )(ζ − κ)−1dζ , (14)
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for the boundary Γ of a Cauchy domain ∆ ⊂ U, n ≥ 0 an arbitrary integer, and σ(κ) ⊂ ∆.
In particular, if ∆ is a disk centered at zero and F ∈ Os(∆,Kn), so we have a representation of F as a

convergent series
∑

m≥0 akζ
k with coe�cients in Cn, then (14) gives the equality F′σ(κ) =

∑
m≥1 mamκ

m−1,
which looks like a (formal) derivative of the function Fσ(κ) =

∑
m≥0 akκ

m.

Remark 11. As already noticed in the framework of [18], Theorem 4 suggests a de�nition for Cn-valued "ana-
lytic functions“ as elements of the setRs(Ω, Cn), whereΩ is a spectrally saturated open subset ofPn. Because
the expression "analytic function“ is quite improper in this context, the elements of Rs(Ω, Cn) will be called
Cn-regular functions on Ω. As shown by Theorem 4, the functions from Rs(Ω, Cn) are the Cauchy transforms
of the stem functions from Os(U,Kn), with U = S(Ω).

Except for Theorem 4, many properties of Cn-regular functions can be obtained directly from the de�ni-
tion, by recapturing the corresponding results from [18]. We omit the details.

Remark 12. Let U ⊂ C be a conjugate symmetric open set, let x, y ∈ R with y ≠ 0 and z± = x ± iy ∈ U, let
F ∈ Os(U,Kn), and let s ∈ Sn. We shall apply some arguments similar to those from Corollary 2, in a non
commuting context.

Assuming y > 0, we consider the paravectors κ± = x ± ys for which s+(κ±) = x + iy, s−(κ±) = x − iy. As we
have κ̃± = ±ys, then sκ̃± = ±s, and ι±(sκ̃+ ) = (1∓ is)/2, ι±(sκ̃− ) = (1 ± is)/2. Therefore,

2Fσ(κ+) = F(z+)(1 − is) + F(z−)(1 + is),

2Fσ(κ−) = F(z+)((1 + is) + F(z−)(1 − is).

From these equations we deduce that

2F(z+) = Fσ(κ+)(1 − is) + Fσ(κ−)(1 + is), (15)

2F(z−) = Fσ(κ+)(1 + is) + Fσ(κ−)(1 − is). (16)

If y < 0, for the paravectors κ± = x ± ys we have s+(κ±) = x − iy, s−(κ±) =
x + iy. Moreover, as κ̃± = ±ys, then sκ̃± = ∓s, and ι±(sκ̃+ ) = (1 ± is)/2,
ι±(sκ̃− ) = (1∓ is)/2. Therefore

2Fσ(κ+) = F(z−)(1 + is) + F(z+)(1 − is),

2Fσ(κ−) = F(z−)((1 − is) + F(z+)(1 + is).

These formulas lead again to equations (15) and (16). Consequently, we have the following (see also [2], The-
orem 2.2.18 for a similar result, and [18] for the corresponding result in the quaternionic context).

The next proposition, and Remark 12 as well, have their counterparts in [18], stated as Proposition 3 and
Remark 10, respectively. For a similar result see also Theorem 2.2.18 from [2].

Proposition 2. Let U ⊂ C be a conjugate symmetric open set, let x, y ∈ R with x ± iy ∈ U, let s ∈ Sn, and let
F ∈ Os(U,Kn). Then we have the formulas

F(x ± iy) = Fσ(x ± ys)
(

1∓ is
2

)
+ Fσ(x ∓ ys)

(
1 ± is

2

)
. (17)

As the proof has been previously done, we only note that equality (17) also holds for y = 0.

Lemma 3. Let U ⊂ C be a conjugate symmetric open set, let s ∈ Sn be �xed, and let Ψ : Us 7→ Cn be such that
∂̄±sΨ = 0. Then there exists a function Φ ∈ Rs(Uσ , Cn) with Ψ = Φ|Us, where Us = {x + ys; x + iy ∈ U}.

Proof. For arbitrary points z± = x ± iy ∈ U with x, y(= ̸ 0) ∈ R, as in Remark 12, we consider the paravectors
κ± = x ± ys, so s+(κ±) = x + i|y|, and s−(κ±) = x − i|y|. Inspired by formula (17), we set

2F(z+) = Ψ(κ+)(1 − is) + Ψ(κ−)(1 + is),



Spectrum and Analytic Functional Calculus | 105

2F(z−) = Ψ(κ+)(1 + is) + Ψ(κ−)(1 − is).

Then we have
2∂F(z+)

∂x = ∂Ψ(κ+)
∂x (1 − is) + ∂Ψ(κ−)

∂x (1 + is),

and
2i ∂F(z+)

∂y = ∂Ψ(κ+)
∂y s(1 − is) + ∂Ψ(κ−)

∂y (−s)(1 + is),

because i(1 − is) = s(1 − is) and i(1 + is) = −s(1 + is).
Therefore,

∂F(z+)
∂x + i ∂F(z+)

∂y = (∂̄sΨ(κ+))(1 − is) + (∂̄−sΨ(κ−))(1 + is) = 0,

showing that the function z+ 7→ F(z+) is analytic in U.
Because F(z−) = F(z+) = F(z+), and when y = 0 we have F(z−) = F(z+) = F(x), we have constructed a

function F ∈ Os(U,Kn). Hence, taking Φ = Fσ, we have Φ ∈ Rs(Uσ , Cn) with Ψ = Φ|Us, via Remark 12.

The next theorem is a version of Theorem 6 from [18].

Theorem 5. Let Ω ⊂ Pn be a spectrally saturated open set, and let Φ : Ω 7→ Cn. The following conditions are
equivalent:

(i) Φ is a slice regular function;
(ii) Φ ∈ Rs(Ω, Cn), that is, Φ is Cn-regular.

Proof. If Φ ∈ Rs(Ω, Cn), then Φ is slice regular, by Proposition 1, so (ii)⇒ (i).
Conversely, let Φ be slice regular in Ω. Fixing an s ∈ Sn, we have ∂̄±sΦs = 0, where Φs = Φ|Us. It follows
from Lemma 3 that there exists Ψ ∈ R(Uσ , Cn) with Ψs = Φs. This implies thatΦ = Ψ , because bothΦ, Ψ are
uniquely determined by Φs, Ψs, respectively, the former by (the right hand version of) Lemma 2.2.24 in [2],
and the latter by Remark 7. Consequently, we also have (i)⇒ (ii).

Remark A concept of ”Cli�ordian holomorphic function“ also appears in [11], in a di�erent context.

7 Spectrum of Cli�ord Operators
Let V be a Banach Cl-space, and let VC = V + iV its complexi�cation, endoved with the norm ‖x + iy‖ =
‖x‖+ ‖y‖, for all x, y ∈ V, where ‖ * ‖ is the norm of V. We denote by C the conjugation on VC, that is, the map
C(x + iy) = x − iy for all x, y ∈ V, which is an R-linear map whose square is the identity.

As in Subsection 2.3, for every T ∈ B(V), we consider its natural ”complex extension“ to VC given by
TC(x + iy) = Tx + iTy, for all x, y ∈ V, which is at least C-linear (if T ∈ Br(V), TC is right Kn-linear), so
TC ∈ B(VC). As already noticed, the map B(V) 3 T 7→ TC ∈ B(VC) is a unital injective morphism of real
algebras.

Assuming that V is a Banach Cl-space implies that Br(V) is a unital real Banach Cl-algebra (that is, a
Banach algebra which also a Banach Cl-space), via the algebraic operations (aT)(x) = aT(x), and (Ta)(x) =
T(ax) for all a ∈ Cn and x ∈ V. The complexi�cationBr(V)C ofBr(V) is, in particular, a unital complex Banach
algebra, with the product

(T1 + iT2)(S1 + iS2) = T1S1 − T2S2 + i(T1S2 + T2S1), T1, T2, S1, S2 ∈ Br(V),
and a �xed norm, say ‖(T1 + iT2)‖ = ‖T1‖ + ‖T2‖, T1, T2 ∈ Br(V).

Also note that the complex numbers, regarded as elements of Br(V)C, commute with the elements of
Br(V).

Remark 13. For every S ∈ B(VC) we put S[ = CSC ∈ B(VC). The assignment S 7→ S[ is a conjugate linear
automorphism of the algebra B(VC), whose square is the identity operator. In fact, the map S 7→ S[ is a
conjugation of B(VC), induced by C. Moreover, S[ = S if and only if S(V) ⊂ V. In particular, we have S =
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S1 + iS2 with Sj(V) ⊂ V, j = 1, 2, uniquely determined. Its action on the space VC is given by S(x + iy) =
S1x − S2y + i(S1y + S2x) for all x, y ∈ V.

Because CRa = RaC for all a ∈ Pn, it follows that if S ∈ Br(VC), then S[ ∈ Br(VC). In particular, we have
(S + S[)(V) ⊂ V, i(S − S[)(V) ⊂ V, and (TC)[ = TC for all T ∈ Br(V). Note also that the map

Br(V) 3 T 7→ TC ∈ {S = S[; S ∈ Br(VC)}

is actually a real unital algebra isomorphism, since its surjectivity follows from the equality (S|V)C = Swhen-
ever S = S[ ∈ Br(VC). This implies that the algebrasBr(VC) andBr(V)C are isomorphic. This isomorphism is
given by the assignment

Br(V)C 3 T1 + iT2 7→ T1C + iT2C ∈ Br(VC)

which is is actually an algebra isomorphism, via a direct calculation.
The continuity of this assignment is also clear, and therefore it is a Banach algebra isomorphism. For this

reason, may identify the algebras Br(VC) and Br(V)C. As already noticed above, the real algebras Br(V) and
{S ∈ Br(VC); S = S[}may and will be also identi�ed.

The operators from the algebraBr(V) will be sometimes called Cli�ord operators, or simply Cl-operators.
Looking at De�nition 3.1.4 from [2], we can give the folowing.

De�nition 6. For a given operator T ∈ Br(V), the set

σCl(T) := {κ ∈ Pn; T2 − 2<(κ)T + |κ|2) not invertible}

is called the Cli�ord (or Cl-)spectrum of T.
The complement ρCl(T) = Pn \ σCl(T) is called the Cli�ord (or Cl-)resolvent of T.

Note that, if a ∈ σCl(T), then {b ∈ Pn; σ(b) = σ(a)} ⊂ σCl(T).
Since every operator T ∈ Br(V) is, in particular, R-linear, we also have a complex resolvent, de�ned by

ρC(T) = {λ ∈ C; (T2 − 2<(λ)T + |λ|2)−1 ∈ Br(V)} =

{λ ∈ C; (λ − TC)−1 ∈ Br(VC)} = ρ(TC),

and the associated complex spectrum σC(T) = σ(TC) as well.
Note that both sets σC(T) and ρC(T) are conjugate symmetric.
There exists a strong connexion between σCl(T) and σC(T). In fact, the set σC(T) looks like a ”complex

border“ of the set σCl(T). Speci�cally, we can prove the following.

Lemma 4. For every T ∈ Br(V) we have the equalities

σCl(T) = {κ ∈ Pn; σC(T) ∩ σ(κ) = ̸ ∅}. (18)

and
σC(T) = {λ ∈ σ(κ); κ ∈ σCl(T)}. (19)

Proof. Let us prove (18). If κ ∈ σCl(T), and so the T2 − 2<(κ)T + |κ|2 is not invertible, choosing λ ∈ {<(κ) ±
i|=(κ)|} = σ(κ), we clearly have T2 − 2<(λ)T + |λ|2 not invertible, implying λ ∈ σC(T) ∩ σ(κ) = ̸ ∅.
Conversely, if for some κ ∈ Pn there exists λ ∈ σC(T)∩ σ(κ), and so T2 − 2<(λ)T + |λ|2 = T2 − 2<(κ)T + |κ|2 is
not invertible, we must have κ ∈ σCl(T).

We now prove (19). Let λ ∈ σC(T), so the operator T2 − 2(<λ)T + |λ|2 is not invertible. Setting κ = <(λ) +
|=λ|s, with s ∈ Sn, we have λ ∈ σ(κ). Moreover, T2 + 2<(κ)T + |κ|2 is not invertible, and so κ ∈ σCl(T).

Conversely, if λ ∈ σ(κ) for some κ ∈ σCl(T), then λ ∈ {<(κ) ± i|=(κ)|}, showing that T2 − 2<(λ)T + |λ|2 =
T2 + 2<(κ)T + |κ|2 is not invertible.
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Remark 14. As expected, the set σCl(T) is nonempty and bounded, which follows from Lemma 4. In fact, we
have the equality

σCl(T) = {<(λ) + |=(λ)|s; λ ∈ σC(T), s ∈ Sn}.

It is also closed, as a consequence of De�nition 6, because the set of invertible elements inBr(V) is open.

Note that the subset σCl(T) is spectrally saturated (see De�nition 2(2)).

8 Analytic Functional Calculus for Cli�ord Operators
Having a concept of spectrum for Cli�ord operators, an important step for further development is the con-
struction of an analytic functional calculus. We follow the main ideas from [19].

IfV is a Banach Cl-space, and so each operator T ∈ Br(V) has a complex spectrum σC(T), one can use the
classical Riesz-Dunford functional calculus, in a slightly generalized form (that is, replacing the scalar-valued
analytic functions by operator-valued analytic ones, which is a well known idea).

Remark 15. If V is Banach Cl-space, and T ∈ B(V), we have the usual analytic functional calculus for the
operator TC ∈ B(VC) (see [4]). That is, in a slightly generalized form, and for later use, if U ⊃ σ(TC) is an
open set in C and F : U 7→ B(VC) is analytic, the (left) Riesz-Dunford analytic functional calculus is given by
the formula

F(TC) = 1
2πi

∫
Γ

F(ζ )(ζ − TC)−1dζ ,

where Γ is the boundary of a Cauchy domain ∆ containing σ(TC) in U. In fact, since σ(TC) is conjugate
symmetric, we may and shall assume that both U and Γ are conjugate symmetric. Because the function
ζ 7→ F(ζ )(ζ − TC)−1 is analytic in U \ σ(TC), the integral does not depend on the particular choice of the
Cauchy domain ∆ containing σ(TC).

A natural question is to �nd an appropriate condition to have F(TC)[ = F(TC), which would imply the
invariance of V under F(TC).

Remark 16. If A is a unital real Banach algebra, AC its complexi�cation, and U ⊂ C is open, we denote by
O(U,AC) the algebra of all analytic AC-valued functions. If U is conjugate symmetric, and AC 3 a 7→ ā ∈
AC is its natural conjugation, we denote by Os(U,AC) the real subalgebra of O(U,AC) consisting of those
functions F with the property F(ζ̄ ) = F(ζ ) for all ζ ∈ U. As in De�nition 3, such functions will be called
(AC-valued ) stem functions.

WhenA = R, soAC = C, the space Os(U,C) will be denoted by Os(U), which is a real algebra. Note that
Os(U,AC) is also a two-sided Os(U)-module.

With the notation of Remark 15, we state and prove the following adapted version of Theorem 1 from [19].

Theorem 6. Let U ⊂ C be open and conjugate symmetric. If F ∈ Os(U,B(VC)), we have F(TC)[ = F(TC) for
all T ∈ B(V) with σC(T) ⊂ U.

Moreover, if F ∈ Os(U,Br(VC)), and T ∈ Br(V), then F(TC) ∈ Br(VC).

Proof. We use the notation from Remark 15, ssuming Γ conjugate symmetric. We put Γ± := Γ ∩ C±, where
C+ (resp. C−) equals to {λ ∈ C;=λ ≥ 0} (resp. {λ ∈ C;=λ ≤ 0}). We write Γ+ = ∪mj=1Γj+, where Γj+ are the
connected components of Γ+. Similarly, we write Γ− = ∪mj=1Γj−, where Γj− are the connected components of
Γ−, and Γj− is the re�exion of Γj+ with respect of the real axis.
As Γ is a �nite union of Jordan piecewise smooth closed curves, for each index j we have a parametrization
ϕj : [0, 1] 7→ C, positively oriented, such that ϕj([0, 1]) = Γj+. Taking into account that the function t 7→ ϕj(t)
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is a parametrization of Γj− negatively oriented, and setting Γj = Γj+ ∪ Γj−, we can write

Fj(TC) := 1
2πi

∫
Γj

F(ζ )(ζ − TC)−1dζ =

1
2πi

1∫
0

F(ϕj(t))(ϕj(t) − TC)−1ϕ′j(t)dt

− 1
2πi

1∫
0

F(ϕj(t))(ϕj(t) − TC)−1ϕ′j(t)dt.

Therefore,

Fj(TC)[ = − 1
2πi

1∫
0

F(ϕj(t))[(ϕj(t) − TC)−1ϕ′j(t)dt

+ 1
2πi

1∫
0

F(ϕj(t))[(ϕj(t) − TC)−1ϕ′j(t)dt.

According to our assumption on the function F, we obtain Fj(TC) = Fj(TC)[ for all j, and therefore

F(TC)[ =
m∑
j=1

Fj(TC)[ =
m∑
j=1

Fj(TC) = F(TC).

Moreover, if T ∈ Br(V), because RaF(ζ )(ζ − TC)−1 = F(ζ )(ζ − TC)−1Ra for all a ∈ Pn, via the de�nition of
Br(VC), it follows that F(TC) ∈ Br(VC).

In the next result, we identify the algebraBr(V) with a real subalgebra ofBr(V)C, in turn identi�ed with
Br(VC) (see Remark 13). In this case, when F ∈ Os(U,Br(V)C), we shall write

F(T) = 1
2πi

∫
Γ

F(ζ )(ζ − T)−1dζ ,

noting that the right hand side of this formula belongs toBr(V), as a consequence of Theorem 6.
The following result expresses the (left) analytic functional calculus of a given operator from Br(V) with

Br(V)C-valued stem functions. It is a version of Theorem 4 from [19], proved in a quaternionic context.

Theorem 7. LetV be a Banach Cl-space, let U ⊂ C be a conjugate symmetric open set, and let T ∈ Br(V), with
σC(T) ⊂ U. Then the assignment

Os(U,Br(V)C) 3 F 7→ F(T) ∈ Br(V)

is an R-linear map, and the map
Os(U) 3 f 7→ f (T) ∈ Br(V)

is a unital real algebra morphism.
Moreover, the following properties hold true:
(1) for all F ∈ Os(U,Br(V)C), f ∈ Os(U), we have (Ff )(T) = F(T)f (T).
(2) for every polynomial P(ζ ) =

∑m
j=0 Ajζ

j , ζ ∈ C, with Aj ∈ Br(V) for all j = 0, 1, . . . ,m, we have P(T) =∑m
j=0 AjT

j ∈ Br(V).

Proof. The arguments are more or less standard (see [4]). The R-linearity of the maps

Os(U,Br(V)C) 3 F 7→ F(T) ∈ Br(V), Os(U) 3 f 7→ f (T) ∈ Br(V),
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is clear. The second one is actually (unital and) multiplicative, which follows from the multiplicativiry of the
usual analytic functional calculus of T.
In fact, we have (Ff )(T) = F(T)f (T) for all F ∈ Os(U,Br(V)C), f ∈ Os(U). This follows from the equalities,

(Ff )(T) = 1
2πi

∫
Γ0

F(ζ )f (ζ )(ζ − T)−1dζ =

 1
2πi

∫
Γ0

F(ζ )(ζ − T)−1dζ


 1

2πi

∫
Γ

f (η)(η − T)−1dη

 = F(T)f (T),

obtained as in the classical case (see [4], Section VII.3), holding because f is C-valued and commutes with
the operators in Br(V). Here Γ , Γ0 are the boundaries of two Cauchy domains ∆, ∆0 respectively, such that
∆ ⊃ ∆̄0, and ∆0 contains σC(T).

Note that, in particular, for every polynomial P(ζ ) =
∑m

j=0 Ajζ
j with Aj ∈ Br(V) for all j = 0, 1, . . . ,m, we

have P(T) =
∑m

j=0 AjT
j ∈ Br(V) for all T ∈ Br(V).

Corollary 3. Let V be a Banach Cl-space, let U ⊂ C be a conjugate symmetric open set, and let T ∈ Br(V),
with σC(T) ⊂ U. There exists an assignment

Os(U,Kn) 3 F 7→ F(T) ∈ Br(V),

which is an R-linear map, such that
(1) for all F ∈ Os(U,Kn), f ∈ Os(U), we have (Ff )(T) = F(T)f (T).
(2) for every polynomial P(ζ ) =

∑m
j=0 ajζ j , ζ ∈ C, with aj ∈ Cn for all j = 0, 1, . . . ,m, we have P(T) =∑m

j=0 ajT j ∈ Br(V).

Proof. Note that the algebra Os(U,Kn), can be regarded as a subalgebra of the algebra Os(U,Br(V)C), whose
elements are identi�ed with left multiplication operators. Therefore, this corollary is a direct consequence of
Theorem 7.

Remark 17. The space Rs(Ω, Cn), introduced in Section 6, can be independently de�ned, and it consists
of the set of all Cn-valued functions, which are slice monogenic in the sense of [2], De�nition 2.2.2 (or slice
regular, as called in this work). They are used in [2] to de�ne a functional calculus for tuples of not necessarily
commuting real linear operators. Speci�cally, with a slightly modi�ed notation, given an arbitrary family
(T0, T1, . . . , Tn) , acting on the real space V, it is associated with the operator T =

∑n
j=0 Tj ⊗ ej, acting on the

two-sided Cn-module Vn = V⊗R Cn. In fact, the symbol ”⊗” may (and will) be omitted. Moreover, as alluded
in [2], page 83, we may work on a Banach Cl- space V, and using operators fromBr(V).

Roughly speaking, after �xing a Cli�ord operator, each regular Cn-valued function de�ned in a neigh-
borhood Ω of its Cl-spectrum is associated with another Cli�ord operator, replacing formally the paravector
variable with that operator. This constraction is explained in Chapter 3 of [2].

For an operator T ∈ Br(V), the right S-resolvent is de�ned via the formula

S−1
R (s, T) = −(T − s*)(T2 − 2<(s)T + ‖s‖)−1, s ∈ ρCl(T) (20)

(which is the right version of formula (3.5) from [2]; see also formula (4.47) from [2]). Fixing an element κ ∈ Sn,
and a spectrally saturated open set Ω ⊂ Pn, for Φ ∈ Rs(Ω, Cn) one sets

Φ(T) = 1
2π

∫
Σκ

Φ(s)dsκS−1
R (s, T), (21)

where Σκ consists of a �nite family of closed curves, piecewise smooth, positively oriented, being the bound-
ary of the set Θκ = {s = u + vκ ∈ Θ; u, v ∈ R}, where Θ ⊂ Ω is a spectrally saturated open set containing
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σCl(T), and dsκ = −κdu ∧ dv. Formula (21) is a slight extension of the (right) functional calculus, as de�ned
in [2], Theorem 3.3.2 (see also formula (4.54) from [2]).

Our Corollary 3 constructs, in particular, an analytic functional calculus with functions from Os(U,Kn),
where U is a neighborhood of the complex spectrum of a given Cli�ordian operator, leading to another Clif-
ford operator, replacing formally the complex variable with that operator. We can show that those functional
calculi are equivalent. This is a consequence of the isomorphism of the spaces Os(U,Kn) and Rs(Uσ , Cn),
implied by Theorems 4 and 5.

Let us give a direct argument concerning the equivalence of those analytic functional calculi. Because the
space VC is also a Cl-space, we may apply these formulas to the extended operator TC ∈ Br(VC), replacing
T by TC in formulas (20) and (21). In fact, using the properties of the morphism T 7→ TC (see beginning of
Section 7), we deduce that S−1

R (s, T)C = S−1
R (s, TC).

For the function Φ ∈ Rs(Ω, Cn) there exists a function F ∈ Os(Ω,Kn) such that Fσ = Φ, by Theorem 4.
Denoting by Γκ the boundary of a Cauchy domain in C containing the compact set ∪{σ(s); s ∈ Θκ}, we can
write

Φ(TC) = 1
2π

∫
Σκ

 1
2πi

∫
Γκ

F(ζ )(ζ − s)−1dζ

 dsκS−1
R (s, TC) =

1
2πi

∫
Γκ

F(ζ )

 1
2π

∫
Σκ

(ζ − s)−1dsκS−1
R (s, TC)

 dζ .
It follows from the complex linearity of S−1

R (s, TC), and via an argument similar to that for getting formula
(4.49) in [2], that

(ζ − s)S−1
R (s, TC) = S−1

R (s, TC)(ζ − TC) − 1,

whence
(ζ − s)−1S−1

R (s, TC) = S−1
R (s, TC)(ζ − TC)−1 + (ζ − s)−1(ζ − TC)−1,

and therefore,

1
2π

∫
Σκ

(ζ − s)−1dsκS−1
R (s, TC) = 1

2π

∫
Σκ

dsκS−1
R (s, TC)(ζ − TC)−1+

1
2π

∫
Σκ

(ζ − s)−1dsκ(ζ − TC)−1 = (ζ − TC)−1,

because
1

2π

∫
Σκ

dsκS−1
R (s, TC) = 1 and 1

2π

∫
Σκ

(ζ − s)−1dsκ = 0,

as in Theorem 4.8.11 from [2], since the Kn-valued function s 7→ (ζ − s)−1 is analytic in a neighborhood of the
set Θκ ⊂ Cκ for each ζ ∈ Γκ, respectively. Therefore Φ(TC) = Φ(T)C = F(TC) = F(T)C, implying Φ(T) = F(T).

Conversely, choosing a function F ∈ Os(Ω,Kn), and denoting by Φ ∈ Rs(Ω, Cn) its Cauchy transform,
the previous computation in reverse order shows that Φ(T) = F(T). Consequently, for a �xed T ∈ Br(V) and
the maps Θ : Rs(Ω, Cn) 7→ Br(V), with Θ(Φ) = Φ(T), and Ψ : Os(Ω,Kn) 7→ Br(V), with Ψ(F) = F(T), we must
have the equality Ψ = Θ ◦C[*], where C[*] is the Cauchy transform.

Remark 18. Unlike in [2, 3], our approach permits to obtain a version of the spectral mapping theorem in a
classical stile, via direct arguments. Recalling that Rs,n(Ω) is the subalgebra of Rs(Ω, Cn) whose elements
are also in IF(Ω, Cn) (see Theorem 4), for every operator T ∈ Br(V) and every function Φ ∈ Rs,n(Ω) one has
σCl(Φ(T)) = Φ(σCl(T)), via Theorem 3.5.9 from [2]. Using our approach, for every function f ∈ Os(U), one has
f (σC(T)) = σC(f (T)), directlly from the corresponding (classical) spectral mapping theorem in [4]. This result
is parallel to that from [2] mentioned above, also giving an explanation for the former, via the isomorphism
of the spaces Os(U) and Rs,n(Ω)
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9 Application to Tuples of Real Operators
The special case exhibited at the beginning of Remark 17 is largely treated in [2], in connection with slice reg-
ular functions and analytic functional calculus. In this section, we shall brie�y present some consequences
of the results from the previous ones, valid, in particular, for not necessarily commuting tuples of linear op-
erators acting on a given real Banach space V. We adapt, with our notation, the framework of [2]. For a �xed
integer n ≥ 1, we consider the real vector space Vn = V ⊗R Cn. The elements of Vn will be written under the
form v =

∑
J vJeJ, with vJ ∈ V, where J ≺ Nn, and the symbol ”⊗“ will be omitted. The spaceVn is a two-sided

Cn-module, with the operations

(
∑
J
uJeJ)(

∑
K
vKeK) =

∑
J,K

uJvKeJeK , (
∑
K
vKeK)(

∑
J
uJeJ) =

∑
K,J

uJvKeKeJ ,

for all elements
∑

J uJeJ ∈ Cn ,
∑

K vKeK ∈ Vn.
Fixing a norm ‖ * ‖ on V, we de�ne a norm on Vn by ‖v‖n =

∑
J ‖vJ‖, where v =

∑
J vJeJ .

Following [2], the space Vn is a Banach Cn-module if there exists a constant C ≥ 1 such that ‖av‖n, ‖va‖n
are both majored by C|a|‖v‖n, for all a ∈ Cn, v ∈ Vn. With our terminology, in this case the space Vn is a
Banach Cl-space.

LetB(V) be the algebra of R-linear operators of the real Banach space V. For a �xed family {TJ}J≺Nn , we
de�ne an operator T =

∑
J TJeJ, acting on Vn via the formula

T(v) =
∑
J

∑
K
TJ(vK)eJeK , v =

∑
K
vKeK ∈ Vn .

The set of all operators of this formwill be denoted byBn(Vn). Setting the norm ‖T‖ =
∑

J ‖TJ‖, the setBn(Vn)
is a unital real Banach algebra (see [2], page 82).

Note that, with T ∈ Bn(Vn) represented as above, and v =
∑

K vKeK ∈ Vn, we have

T(va) =
∑
J,K,L

aLTJ(vK)eJeKeL = T(v)a, a =
∑
L
aLeL ,

showing that T ∈ Br(Vn). In other words, Bn(Vn) ⊂ Br(Vn), and the inclusion is strict, as simple examples
show. An analytic functional calculus for the operator T =

∑
J TJeJ ∈ Br(Vn) can be obtained directly, as

a consequence of Theorem 7. Nevertheless, as in [2], with minor modi�cations, we may replace the algebra
Br(Vn) by the algebraBn(Vn).

First of all, we consider the complexi�cation VnC = Vn + iVn of the real vector space Vn. If T =
∑

J TJeJ ∈
Bn(Vn), and w =

∑
K wKeK ∈ VnC, with wK = uK + ivK , uK , vK ∈ Vn, then

TC(w) =
∑
J,K

(TJ(uK) + iTJ(vK))eJeK =
∑
J,K

TJC(wK)eJeK ∈ Bn(VnC).

The conjugation w =
∑

K wKeK 7→ w̄ =
∑

K w̄KeK on VnC, say C, induces a conjugation S 7→ S[ via the
de�nition S[ = CSC for all S ∈ Bn(VnC). Moreover, S = S[ if and only if S(Vn) ⊂ Vn, and T[

C = TC for all
T ∈ Bn(Vn).

As in the case of real operators (see [19]), we de�ne the complex spectrum of the operator T ∈ Bn(Vn) by
the equality σC(T) = σ((TC).

Theorem 8. Let V be a real Banach space, let T =
∑

J TJeJ acting on Vn, and let U ⊂ C be a conjugate
symmetric open set with σC(T) ⊂ U. Then there exists an assignment

Os(U,Bn(VnC) 3 F 7→ F(T) ∈ Bn(Vn)

is an R-linear map, and the restricted map

Os(U) 3 f 7→ f (T) ∈ Bn(Vn)
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is a unital real algebra morphism.
Moreover, the following properties are true:
(1) for all F ∈ Os(U,Bn(VnC), f ∈ Os(U), we have (Ff )(T) = F(T)f (T).
(2) for every polynomial P(ζ ) =

∑m
j=0 Ajζ

j , ζ ∈ C, with Aj ∈ Bn(Vn) for all j = 0, 1, . . . ,m, we have
P(T) =

∑m
j=0 AjT

j ∈ Bn(Vn).

Proof. The proof follows the lines of that of Theorem 7 (see also Theorem 2 from [19]). We only note that a
suitable version of the �rst part of Theorem 6 (or Theorem 1 and Remark 7 from [19]) is necessary, with minor
modi�cations. The detaile are left to the reader.

Remark 19. As in [2], �xing an arbitrary family {Tj}nj=1, one considers the operator T =
∑n

j=1 Tjej, which acts
on Vn via the formula

T(v) =
n∑
j=1

∑
K
Tj(vK)ejeK , v =

∑
K
vKeK ∈ Vn .

In the previous statement we may replace the algebra Os(U,Bn(VnC)) by the smaller algebra Os(U,Kn), re-
garding its elements as left multiplication operators (see Corollary 3). In this way, we obtain an analytic func-
tional calculus for tuples of real operators, using analytic stem functions.

A parallel version of some results from this section was discussed in the �rst part of [2], using the slice
regular functions to construct functional calculi.

The author is indebted to the referee for a careful reading of the original version of this paper, in particular
for pointing out several typos.

Con�ict of interest: Author states no con�ict of interest.
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