
Quaternionic Cayley Transform Revisited

F.-H. Vasilescu

Introduction

The classical Cayley transform

κ(t) =
t− i
t+ i

=
t2 − 1− 2it

1 + t2

is a bijective map between the real line R and the set T \ {1}, where T is
the unit circle in the complex plane C. This formula can be extended to
more general situations as, for instance, that of (not necessarily bounded)
symmetric operators in Hilbert spaces, replacing formally the real variable
by such an operator, which yields a homonymic transform whose construction
is due to von Neumann [20] (see also [12]). A Cayley type transform may be
actually de�ned for larger classes of operators, which are no longer symmetric,
as well as for other objects, in particular for some linear relations (see for
example [5]).

In order to �nd a formula of this type, valid for normal or formally nor-
mal operators (see [3]), one is leaded to consider a quaternionic framework.
An attempt to extend this transform using the context of quaternions has
been made in [18]. In the present paper, we modify the basic de�nitions
from [18], which allows us to get (in a simpler way) the properties of the
quaternionic Cayley transform directly from those of von Neumann's Cayley
transform, and re�ne some results from the quoted work. Unlike in [18], our
construction does not require densely de�ned operators, which might be use-
ful for potential applications; moreover, it can be associated to larger classes
of operators (in particular, to some di�erential operators having matrix co-
e�cients, related to the so-called Dirac operator; see Example 2.2(2) as well
as [9]).

We found it useful to include an approach to the quaternionic Cayley
transform in the algebra of quaternions, which is the simplest yet signi�cant
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case, for a better understanding of the general topics, exhibited in the �rst
section. In addition, some computations from this section are later used.

In the second section of this paper, we revisit the construction of the
Cayley transform for some operators, in the quaternionic context, as we
already mentioned above. The main result from this section (Theorem 2.7)
is an extended version of Theorem 2.14 from [18], valid for not necessarily
densely de�ned operators.

We recall that the image of a (not necessarily bounded) self-adjoint oper-
ator by the usual Cayley transform is a unitary operator U with the property
that I −U is injective, where I is the identity. The converse is also true [12].
Inspired by this property, in the third section of this paper, we describe the
unitary operators lying in the range of the quaternionic Cayley transform,
which are images of some (not necessarily bounded) normal operators. As
a matter of fact, it is Theorem 3.7 from this section the main result of the
present paper. An example related to this result is given in the last section.

A characterization of those Hilbert space (bounded) operators having nor-
mal extensions (on a possibly larger Hilbert space) was given many years ago
(see [6] and [2]). The corresponding problem, stated for unbounded operators
(see [3], [15], [16], etc.), happened to be more resistant. Nevertheless, there
are some criteria, more or less explicit, describing certain unbounded opera-
tors (or families of unbounded operators) having normal extensions (see [1],
[3], [17], [18], etc.). In fact, the main motivation of the introduction of the
quaternionic Cayley transform in [18] was precisely to try to give an answer
to this extension problem, with applications to some moment problems. In
the fourth section of this work, we deal again with this extension problem,
trying to improve the corresponding results from [18]. In particular, we do
not require the invariance of the domain of de�nition under the given oper-
ator, and get results for both densely de�ned operators (Theorem 4.7) and
not necessarily densely de�ned ones (Corollary 4.8). An application of these
results is Theorem 4.10, extending Theorem 3.8 from [18], using quite a mild
commutativity condition (designated by (c)), and continuing a series of re-
lated results appearing in [11], [7], [8], [14], etc. Other applications are to be
expected in future work.

Finally, the last section of this work exhibits an example related to The-
orem 3.7, showing that some moment problems with constraints may be
approached with our methods.

Let us brie�y recall the strategy from [18] concerning the normal exten-
sions (see also Remark 4.9). Let D be a dense subspace in a Hilbert space
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H. Let also T be a densely de�ned linear operator in H, with the property
that T and its adjoint T ∗ are both de�ned on D. Writing T = A + iB,
with A = (T + T ∗)/2 and B = (T − T ∗)/2i, and so A and B are symmetric
operators on D, we can associate the operator T with the matrix operator

QT =

(
A B
−B A

)
.

It is known (see [18], Theorem 3.7) that T is normal in H if and only if
if the operator QT is normal in the Hilbert space H ⊕ H. Because our
techniques, based on a quaternionic Cayley transform, give conditions to
insure the existence of a normal extension for a matrix operator resembling
to QT , we can go back to the operator T , which satis�es only some veri�able
conditions. In fact, we have such results actually for the case when A and
B are symmetric operators, de�ned on a not necessarily dense domain in H.
More information in this respect will be given in the last section of this work.

Let us �nally note that the quaternionic algebra is intimately related also
to the spectral theory of pairs of commuting operators (see [19]).

1 Cayley transforms in the algebra of

quaternions

In this section, we present an approach to the Cayley transform in the algebra
of quaternions.

Consider the 2× 2-matrices

I =

(
1 0
0 1

)
, J =

(
1 0
0 −1

)
, K =

(
0 1
−1 0

)
, L =

(
0 1
1 0

)
.

The Hamilton algebra of quaternions H will be identi�ed with the R-
subalgebra of the algebra M2 of 2×2-matrices with complex entries, generated
by the matrices I, iJ, K and iL. The embedding H ⊂M2 allows us to regard
the elements of H as matrices and to perform some operations in M2 rather
than in H. (The matrices J, −iK and L, which are called the Pauli matrices
in mathematical physics, do not belong to H. Nevertheless, the matrices J
and L play an important role in our development.)

If we put
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Q(z) = Q(z1, z2) =

(
z1 z2

−z̄2 z̄1

)
for every z = (z1, z2) ∈ C2, the set {Q(z); z ∈ C2} is precisely the algebra of
quaternions, because of the decomposition

Q(z) = (Rez1)I + i(Imz1)J + (Rez2)K + i(Imz2)L.

Note that

J∗ = J, K∗ = −K, L∗ = L, J2 = −K2 = L2 = I,

JK = L = −KJ, KL = J = −LK, JL = K = −LJ,

where the adjoints are computed in the Hilbert space C2 (endowed with the
usual Euclidean norm).

Note also that Q(z)Q(z)∗ = Q(z)∗Q(z) = ‖z‖2I for all z ∈ C2, and so
Q(z) is normal for each z ∈ C2. Moreover, ‖Q(z)‖ = ‖z‖ for all z ∈ C2 and
Q(z)−1 = ‖z‖−2Q(z)∗ for all z ∈ C2 \ {0}. In other words, every nonnull
element of the algebra H is invertible.

Setting E = iJ, we have E∗ = −E, E2 = −I and

Q(z) = (Rez1)I + (Rez2)K + E((Imz1)I + (Imz2)K)

for every z = (z1, z2) ∈ C2.
Similarly, setting F = iL, we have F∗ = −F, F2 = −I and

Q(z) = (Rez1)I + (Rez2)K + ((Imz2)I + (Imz1)K)F

for every z = (z1, z2) ∈ C2.

De�nition 1.1 Let a, b, c ∈ R, and let

S = Sa,b,c =

(
a b+ ic

−b+ ic a

)
= aI + bK + icL.

The E�Cayley transform of S is the matrix

U = (S − E)(S + E)−1 ∈ H.
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Let again a, b, c ∈ R, and let

T = Ta,b,c =

(
a+ ic b
−b a− ic

)
= aI + bK + icJ.

The F�Cayley transform of T is the matrix

V = (T − F)(T + F)−1 ∈ H.

Remark 1.2 (1) The matrices U, V are well de�ned since S 6= −E and
T 6= −F.

(2) The concepts from De�nition 1.1 have similar properties to those of
the quaternionic Cayley transform from [18], de�ned for matrices of the form
S = aI+bK, via the formula (S−Q′)(S+Q′)−1, with Q′ = Q(i

√
2/2, i

√
2/2).

(3) Let Q = aI+ ibJ+ cK+ idL, with a, b, c, d ∈ R. We have b = 0 if and
only if JQ = Q∗J, and d = 0 if and only if LQ = Q∗L.

Proposition 1.3 Let a, b, c ∈ R, and let S = Sa,b,c. The matrix

U = (S − E)(S + E)−1

is unitary and U 6= I .
Conversely, given a unitary matrix U ∈ H with U 6= I, there are a, b, c ∈ R

such that S = Sa,b,c, where

S = (I + U)(I− U)−1E.

Moreover, the E�Cayley transform of the matrix S is the unitary matrix U .

Proof. The proof uses some properties of the Cayley transform for self-
adjoint matrices in M2 (which can be easily derived from [12], 13.17-13.21).
Let S = Sa,b,c, and let U = (S − E)(S + E)−1. The matrix A = JS is self-
adjoint, via Remark 1.2(3). Threfore, the matrix W = (A − iI)(A + iI)−1,
which is the Cayley transform of A, is unitary and I−W is invertible. But
we have

W = (JS − iJ2)(JS + iJ2)−1 = J(S − E)(S + E)−1J.

Consequently, U = JWJ is a unitary matrix. Moreover, I− U = J(I−W )J
is invertible, which in H is equivalent to U 6= I .
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Conversely, let U ∈ H be unitary, with U 6= I. Set W = JUJ, which
is a unitary matrix with I − W invertible. Therefore, the matrix A =
i(I + W )(I − W )−1 is well de�ned and self-adjoint, as an inverse Cayley
transform. Setting S = (I + U)(I− U)−1E, we have S ∈ H and

JS = J(J2 + JWJ)(J2 − JWJ)−1E = A.

In particular, we have S = Sa,b,c for some a, b, c ∈ R, via Remark 1.2(3).
Finally, the equation

S = (I + U)(I− U)−1E = (I− U)−1(I + U)E.

has a unique solution U = (S−E)(S+E)−1, which is precisely the E�Cayley
transform of S.

Remark 1.4 Let a, b, c ∈ R, and let S = Sa,b,c. A direct calculation shows
that the E�Cayley transform of S is given by

U = (a2 + b2 + c2 + 1)−1((a2 + b2 + c2 − 1)I− 2cK− 2aiJ + 2biL)

=
1

a2 + b2 + c2 + 1

(
a2 + b2 + c2 − 1− 2ai −2c+ 2bi

2c+ 2bi a2 + b2 + c2 − 1 + 2ai

)
.

Conversely, we give a unitary matrix U ∈ H such that I 6= U . In fact, a
unitary matrix U ∈ H is necessarily of the form

U =

(
z1 z2

−z̄2 z̄1

)
,

with z1, z2 ∈ C and |z1|2 + |z2|2 = 1. As we also have I 6= U , and so Rez1 6= 1,
the matrix S = (I + U)(I− U)−1E is given by

S =
1

Rez1 − 1

(
Imz1 iz2

iz̄2 Imz1

)
.

This shows, in particular, that S = Sa,b,c, with a = (Rez1 − 1)−1Imz1, b =
−(Rez1 − 1)−1Imz2 and c = (Rez1 − 1)−1Rez2.

In fact, the matrix S = (I + U)(I− U)−1E may be called the inverse E�
Cayley transform of the unitary matrix U (see also [18] for a similar concept).

For the F�Cayley transform, we have the following.
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Proposition 1.5 Let a, b, c ∈ R, and let T = Ta,b,c. The matrix

V = (T − F)(T + F)−1

is unitary and V 6= I .
Conversely, given a unitary matrix V ∈ K with V 6= I, there are a, b, c ∈ R

such that T = Ta,b,c, where

T = (I + V )(I− V )−1F.

Moreover, the F�Cayley transform of the matrix T is the unitary matrix V .

The proof is similar to that of Proposition 1.3 and will be omitted.

Remark 1.6 (1) Let R[K] = {aI + bK ∈ H; a, b ∈ R}, which is a commuta-
tive and involutive R�subalgebra of H. In fact, the assignment

C 3 a+ ib 7→ aI + bK ∈ R[K]

is an isometric ∗�isomorphism, allowing us to identify the complex �eld C
with the subalgebra R[K] ⊂ H. Moreover, for a matrix Q ∈ H, we have
Q ∈ R[K] if and only if Q = −KQK.

(2) Let also

UK(H) = {U ∈ H;U 6= I, U unitary, U∗ = −KUK}.

As we have, Q∗ = −KQK for an arbitrary Q = aI + ibJ + cK + idL with
a, b, c, d ∈ R if and only if c = 0, it follows

UK(H) = {Q ∈ H;Q = aI + ibJ + idL, a, b, d ∈ R,

a2 + b2 + d2 = 1, a 6= 1}.

Theorem 1.7 The map κE : R[K] 7→ UK(H) given by the formula κE(S) =
(S − E)(S + E)−1 is bijective.

Similarly, the map κF : R[K] 7→ UK(H) given by κF(S) = (S−F)(S+F)−1

is bijective.
In addition, κF(S) = κE(−SK) for all S ∈ R[K].
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Proof. If S ∈ R[K], then U = κE(S) is unitary and U 6= I, via Proposition
1.3. Moreover, as S ∈ R[K], and so S = −KSK, we have:

U∗ = U−1 = (−KSK + KEK)(−KSK−KEK)−1 = −KUK.

Conversely, if U ∈ H, U 6= I, U is unitary and U∗ = −KUK, then the
matrix S = (I + U)(I− U)−1E has the property

S = (U−1 + I)(U−1 − I)−1E = (−KUK−K2)(−KUK + K2)−1E =

−K(I + U)(I− U)−1EK = −KSK.

The similar properties of the map κF : R[K] 7→ UK(H), which follow
from the Proposition 1.5, as well as the veri�cation of the equality κF(S) =
κE(−SK) for all S ∈ R[K] are left to the reader.

Remark 1.8 We have already noted in Remark 1.6(1) that the map
C 3 a + ib 7→ aI + bK ∈ R[K] is an isometric ∗�isomorphism, allowing
us to identify the complex �eld C with the subalgebra R[K] ⊂ H. Therefore,
the E�Cayley transform may be regarded as a map from C into (the unit
ball of) H. Speci�cally, the E�Cayley transform of C into H may be de�ned
as

K(w) =
1

|w|2 + 1

(
(|w|2 − 1)I− 2(Rew)E + 2(Imw)F)

)
, w ∈ C,

a formula derived from Remark 1.4. In particular, for w = t ∈ R, we obtain

K(t) =
1

t2 + 1

(
(t2 − 1)I− 2itE

)
= (tI− E)(tI + E)−1,

which allows us to recapture the classical Cayley transform, via the identi�-
cation of C with {uI + vE ∈ H, u, v ∈ R}.

Similar formulas hold if we use the F�Cayley transform instead of the
E�Cayley transform.

Remark 1.9 Most of the results from this section can be easily extended by
replacing the real numbers with bounded commuting self-adjoint operators in
a Hilbert space. We omit the details. In fact, such results are also particular
cases of the corresponding statements in the next section.
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2 Quaternionic Cayley transform of

unbounded operators revisited

In this section, we extend the quaternionic Cayley transform(s), de�ned in
the previous section, to some class of unbounded operators, acting on the
Cartesian product of two Hilbert spaces. We shall mainly deal with the
extension of the E�Cayley transform, the properties of the corresponding
extension of the F�Cayley transform being similar.

Let H be a complex Hilbert space, whose scalar product is denoted by
〈∗, ∗〉, and whose norm is denoted by ‖∗‖. We especially work in the Hilbert
space H2 = H ⊕ H, whose scalar product, naturally induced by that from
H, is denoted by 〈∗, ∗〉2, and whose norm is denoted by ‖ ∗ ‖2.

The matrices from M2 naturally act on H2 simply by replacing their
entries with the corresponding multiples of the identity on H. In particular,
the matrices I,J,K,L,E,F, de�ned in the previous section, naturally act on
H2, and we still have the relations

J∗ = J, K∗ = −K, L∗ = L, J2 = −K2 = L2 = I,

JK = L = −KJ, KL = J = −LK, JL = K = −LJ,

E∗ = −E, E2 = −I, F∗ = −F, F2 = −I.

We �x some notation and terminology for Hilbert space (always linear)
operators. For an operator T acting in H, we denote by D(T ) its domain of
de�nition. The range of T is denoted by R(T ), while N(T ) stands for the
kernel of T . If T is closable, the closure of T will be denoted by T̄ . If T is
densely de�ned, let T ∗ be its adjoint. If T2 extends T1, we write T1 ⊂ T2.

Lemma 2.1 Let S : D(S) ⊂ H2 7→ H2. Suppose that the operator JS is
symmetric. Then we have

‖(S ± E)x‖2
2 = ‖Sx‖2

2 + ‖x‖2
2, x ∈ D(S).

If, in addition, JD(S) ⊂ D(S), we have

‖(S ± E)Ex‖2
2 = ‖Sx‖2

2 + ‖x‖2
2, x ∈ D(S),

if and only if ‖SJx‖2 = ‖Sx‖2 for all x ∈ D(S).
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Proof. Note that

‖(S ± E)x‖2
2 = ‖Sx‖2

2 + 〈Sx,±iJx〉2 + 〈±iJx, Sx〉2 + ‖ ± Ex‖2
2

= ‖Sx‖2
2 + ‖x‖2

2,

because JS is symmetric and E is unitary.
Now, if in addition we have JD(S) ⊂ D(S), and so JD(S) = D(S)

because J2 = I, we can write as above:

‖(S ± E)Ex‖2
2 = ‖SEx‖2

2 + 〈SEx,±iJEx〉2 + 〈±iJEx, SEx〉2 + ‖x‖2
2

= ‖SJx‖2
2 + ‖x‖2

2,

from which we derive easily the assertion.

Example 2.2 (1) Let A,B : D ⊂ H 7→ H be symmetric operators. We put
S = SA,B = AI +BK, which is an operator in H2, de�ned on D(S) = D2 =
D ⊕D. The operator JS is easily seen to be symmetric in H2. Therefore,

‖Ax+By ± ix‖2 + ‖ −Bx+ Ay ∓ iy‖2

= ‖Ax+By‖2 + ‖ −Bx+ Ay‖2 + ‖x‖2 + ‖y‖2

for all (x, y) ∈ D2, via Lemma 2.1.
(2) Let H = L2(R) and let D ⊂ L2(R) be the subset of all continuously

di�erentiable functions with compact support. Consider the operator

T = i
d

dt
I + σ(t)K + iτ(t)L,

de�ned on D2, with values in H2, where σ and τ are continuous real-valued
functions on R. It is known (and easily seen) that the operator JT is sym-
metric. Moreover, JT has a self-adjoint extension, which is called the Dirac
operator (see, for instance, [9] for some details). Of course, Lemma 2.1 ap-
plies to this operator T too. In addition, the operator T (as well as the
previous one) has an E�Cayley transform (de�ned in the next Remark).

Remark 2.3 Let S : D(S) ⊂ H2 7→ H2 be such that JS is symmetric.
Lemma 2.1 allows us to correctly de�ne the operator

V : R(S + E) 7→ R(S − E), V (S + E)x = (S − E)x, x ∈ D(S),
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which is a partial isometry. In other words, V = (S − E)(S + E)−1, de�ned
on D(V ) = R(S + E).

The operator V will be called the E�Cayley transform of S.
Similarly, if LS is symmetric, the corresponding version of Lemma 2.1

leads to the de�nition of an operator

W : R(S + F) 7→ R(S − F), V (S + F)x = (S − F)x, x ∈ D(S),

which is again a partial isometry, and W = (S − F)(S + F)−1, de�ned on
D(W ) = R(S + F).

The operator W is called the F�Cayley transform of S.
A similar concept of a (quaternionic) Cayley transform has been de�ned

in [18].
Because the two Cayley transforms de�ned above are alike, in the sequel

we shall mainly deal with the E�Cayley transform. For a symmetric operator,
by Cayley transform we always mean the classical concept, as de�ned by von
Neumann in [20] (see also [12]).

Let V : D(V ) ⊂ H2 7→ H2 be a partial isometry. Then the inverse V −1 is
well de�ned on the subspace D(V −1) = R(V ).

Lemma 2.4 Let S : D(S) ⊂ H2 7→ H2 be such that JS is symmetric, and
let V be the E�Cayley transform of S. We have the following:

(a) the operator V is closed if and only if the operator S is closed, and if
and only if the spaces R(S ± E) are closed;

(b) the operator I − V is injective; moreover, the operator S is densely
de�ned if and only if the space R(I− V ) is dense in H2;

(c) if SK ⊂ KS, then SK = KS and V −1 = −KVK;
(d) the operator JS is self-adjoint if and only if the operator V is unitary

in H2.

Proof. The assertions are similar to some assertion in [18] (see especially
Lemma 2.8 from [18], where one should replace Q′ by E). We give some
indirect arguments, using the Cayley transform [12]. We use freely some
results from [12], 13.17-13.21.

Let A = JS, which is symmetric. Then its Cayley transform W is a
partial isometry from R(A+iI) onto R(A−iI). Moreover, S±E = J(A±iI).
Therefore, V = JWJ.

(a) From the properties of the Cayley transform, it follows that A is closed
i� W is closed, and i� the spaces R(A ± iI) are closed. It is clear that S
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is closed i� A is closed and R(S ± E) are closed i� R(A ± iI) are closed,
implying the assertion.

(b) The equality I − V = 2E(S + E)−1 on D(V ) shows that I − V is
injective and that R(I−V ) = E(D(S)). The latter equality implies that the
operator S is densely de�ned if and only if the space R(I − V ) is dense in
H2, because E is unitary.

(c) If SK ⊂ KS, then KD(S) ⊂ D(S), implying KD(S) = D(S) because
K2 = −I. Consequently, SK = KS, implying K(S±E) = (S∓E)K. Hence

V −1 = −(S + E)K2(S − E)−1 = −K(S − E)(S + E)−1K = −KVK.

(d) The operator JS is self-adjoint if and only if its Cayley transform W
is unitary, an hence if and only if V = JWJ is unitary.

Remark 2.5 (1) Let Sj : D(Sj) 7→ H2 be such that JSj is symmetric, and
let Vj be the E�Cayley transform of Sj (j = 1, 2). We have S1 ⊂ S2 if
and only if V1 ⊂ V2. In other words, the E�Cayley transform is an order
preserving map. This assertion follows as the similar one from Lemma 2.13
in [18]. We omit the details.

(2) Suppose that the operator I − V is injective. Then the operator
S : R(E(V − I)) 7→ H2, given by S(E(V − I)x) = (V + I)x, x ∈ D(V ), is
well de�ned and will be called the inverse E�Cayley transform of the partial
isometry V . In other words, S = (I + V )(I− V )−1E on D(S) = ER(I− V ).

Of course, we may de�ne, in a similar way, the inverse F�Cayley trans-
form. These two (quaternionic) inverse Cayley transforms have similar prop-
erties, and so we shall mainly deal with the inverse E�Cayley transform. See
also [18], for another similar concept.

Lemma 2.6 Let V : D(V ) ⊂ H2 7→ H2 be a partial isometry. Suppose that
the operator I − V is injective. Then the operator S : R(E(V − I)) 7→ H2,
given by S(E(V − I)x) = (V + I)x, x ∈ D(V ), has the following properties:

(i) the operator JS is symmetric and the E�Cayley transform of S is V ;
(ii) we have V −1 = −KVK if and only if SK = KS.

Proof. (i) Set W = JV J, which is a partial isometry with I − W in-
jective. Therefore, the the operator A = i(I + W )(I − W )−1 is well de-
�ned and symmetric, as the inverse Cayley transform of W . Setting S =
(I + V )(I− V )−1E, we have

JS = J(J2 + JWJ)(J2 − JWJ)−1E = A.

12



Hence, the operator JS = A is symmetric. Moreover, its E�Cayley transform
is equal to V :

(S + E)(S − E)−1 = J(A+ iI)(A− iI)−1J = JWJ = V.

(ii) If V −1 = −KVK, we have:

S = (I + V )(I− V )−1E = (V −1 + I)(V −1 − I)−1E

= (−KVK−K2)(−KVK + K2)−1E

= −K(I + V )(I− V )−1EK = −KSK.

Conversely, assuming that KS = SK, we have V −1 = −KVK by Lemma
2.4.

We summarize the properties of the quaternionic Cayley transform in
the following result, which generalizes (to not necessarily densely de�ned
operators) Theorem 2.14 from [18].

Theorem 2.7 The E-Cayley transform is an order preserving bijective map
assigning to each operator S with S : D(S) ⊂ H2 7→ H2 and JS symmetric
a partial isometry V in in H2 with I− V injective. Moreover:

(1) the operator V is closed if and only if the operator S is closed;
(2) the equality V −1 = −KVK holds if and only if the equality SK = KS

holds;
(3) the operator JS is self-adjoint if and only if V is unitary on H2.

Remark 2.8 As noticed in [18] in a similar situation, an interesting class of
operators having an E�Cayley transform consists of operators S : D(S) ⊂
H2 7→ H2 such that JS is symmetric and SK ⊂ KS (which implies KS =
SK). This is equivalent to saying, with the terminology of [18], that S is
(J,L)�symmetric (i.e., JS, LS are symmetric and KD(S) ⊂ D(S); note
that in [18], the operator S is in addition supposed to be densely de�ned,
a hypothesis not always necessary in the present context), which is easily
seen. Even more interesting is the class of those (J,L)�symmetric operators
having a normal extension, which is the main motivation of the introduction
of the quaternionic Cayley transform in [18]. This situation will be again
dealt with in the next sections, from a di�erent point of view.
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3 Unitary operators and the inverse

quaternionic Cayley transform

In this this section, we are particularly intrested in those unitary operators
producing (unbounded) normal operators, via the inverse E�Cayley trans-
form.

Lemma 3.1 Let U be a bounded operator on H2. The operator U is unitary
and has the property U∗ = −KUK if and only if there are a bounded operator
T and bounded self-adjoint operators A, B on H such that TT ∗ + A2 =
I, T ∗T +B2 = I, AT = TB and

U =

(
T iA
iB T ∗

)
,

where I the identity on H.

Proof. If U is given by the matrix in the statement, it is easily checked
that U is a unitary operator on H2 and one has U∗ = −KUK.

Conversely, assuming

U =

(
U11 U12

U21 U22

)
,

we easily infer that

−KUK =

(
U22 −U21

−U12 U11

)
.

The equality U∗ = −KUK leads to the equations U∗11 = U22, U
∗
12 = −U12,

and U∗21 = −U21. Setting T = U11, U12 = iA and U21 = iB, with A, B self-
adjoint, the equations U∗U = I and UU∗ = I are equivalent to the equalities
TT ∗ + A2 = I, T ∗T +B2 = I and AT = TB.

Example 3.2 Let T be a contraction onH. SettingDT ∗ = (I−TT ∗)1/2, DT =
(I − T ∗T )1/2 and

U =

(
T iDT ∗

iDT T ∗

)
,

the operator U is unitary on H2 and satis�es the equation U∗ = −KUK.
Indeed, A = DT ∗ and B = DT satisfy all conditions from the previuos

lemma.
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Lemma 3.3 Let U be a unitary operator on H2 such that I−U is injective.
If we set S = (I + U)(I − U)−1E, we have that S is densely de�ned, closed
and S∗ = E(I + U)(I− U)−1.

Proof. The operator S is the inverse E�Cayley transform of the unitary
operator U . Therefore, JS is self-adjoint, via Lemma 2.4(d). This implies
that S densely de�ned and closed. Moreover, (JS)∗ = JS = S∗J, whence
S∗ = JSJ = E(I + U)(I− U)−1.

Lemma 3.4 Let U be an operator on H2 having the form

U =

(
T iA
iB T ∗

)
,

with T, A = A∗, B = B∗ bounded operators on H, such that TT ∗ + A2 =
I, T ∗T +B2 = I, AT = TB. We have the equality (U + U∗)E = E(U + U∗)
if and only if T is normal and A = B.

Proof. The operator U is unitary but we do not use this property.
Note that

J(U + U∗) =

(
T + T ∗ i(A−B)
i(A−B) −(T + T ∗)

)
.

Similarly,

(U + U∗)J =

(
T + T ∗ −i(A−B)
−i(A−B) −(T + T ∗)

)
.

The equality (U + U∗)E = E(U + U∗) is equivalent to A = B, which clearly
implies T ∗T = TT ∗.

Conversely, if U has the matrix representation from the statement with
T normal and A = B, then

U + U∗ =

(
T + T ∗ 0

0 T + T ∗

)
,

and the relation (U + U∗)E = E(U + U∗) is obvious.

Remark. It follows from Lemma 3.1 and Lemma 3.4 that an operator U on
H2 has the form

U =

(
T iA
iA T ∗

)
,
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with T normal, A self-adjoint, such that TT ∗+A2 = I and AT = TA, if and
only if U is unitary, U∗ = −KUK and (U + U∗)E = E(U + U∗).

Lemma 3.5 Let V be a partial isometry such that V −1 = −KVK and
I − V is injective. Let S be the inverse E�Cayley transform of V . We have
JD(S) ⊂ D(S) and ‖SJx‖2 = ‖Sx‖2 for all x ∈ D(S) if and only if there
exists a surjective isometry G : D(V ) 7→ D(V ) such that E(I−V ) = (I−V )G.

Proof. A similar construction is implicitly done in [18] (see especially
Remark 2.16(2) and the proof of Theorem 2.18).

Assume �rst that JD(S) ⊂ D(S) and ‖SJx‖2 = ‖Sx‖2 for all x ∈ D(S).
The inclusion JD(S) ⊂ D(S) means the inclusion R(I − V ) ⊂ ER(I − V ),
via Remark 2.5(2). But this inclusion is actually equality because E2 = −I.
Consequently, for every u ∈ D(V ) we can �nd a unique vector v ∈ D(V )
such that (I − V )v = E(I − V )u. Setting Gu = v, we get a linear operator
G : D(V ) 7→ D(V ) such that E(I−V ) = (I−V )G, which is clearly bijective.
In fact, G−1 = −(I− V )−1E(I− V ) = −G.

We have only to show that G is an isometry on D(G) = D(V ). Let
x ∈ D(S) = ED(S) and set u = (S+E)x ∈ D(V ). Let also v = (S+E)Ex ∈
D(V ). As we clearly have I− V = 2E(S + E)−1, we deduce that

(I− V )Gu = E(I− V )u = 2E2(S + E)−1u = −2x

= 2E(S + E)−1v = (I− V )v,

whence Gu = v. Moreover,

‖Gu‖2 = ‖(S + E)Ex‖2 = ‖(S + E)x‖2 = ‖u‖2,

via Lemma 2.1, showing that G is an isometry on D(V ).
Conversely, assuming that there exists a surjective isometry G : D(V ) 7→

D(V ) such thatE(I−V ) = (I−V )G, we have, in particular,D(S) ⊂ R(I−V ),
implying JD(S) ⊂ D(S). In addition, with the notation from above,

‖(S + E)Ex‖2 = ‖Gu‖2 = ‖u‖2 = ‖(S + E)x‖2,

because G is an isometry, showing that ‖SJx‖2 = ‖Sx‖2 for all x ∈ D(S),
again via Lemma 2.1.
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Corollary 3.6 Let U be a unitary operator on H2 with the property U∗ =
−KUK, and such that I − U is injective. Let also S be inverse E�Cayley
transform of U . The operator S is normal if and only is there exists a unitary
operator GU on H2 such that E(I− U) = (I− U)GU and (GU)∗ = −GU .

Proof. If S is normal, we must have D(S) = D(S∗) and ‖Sx‖2 = ‖S∗x‖2

for all x ∈ D(S) (for some details concerning unbounded normal operators
see [4], Section XII.9). Moreover, JS is self-adjoint, by Lemma 2.4(d). In
particular, JS∗ = SJ. Therefore, ‖SJx‖2 = ‖JS∗x‖2 = ‖S∗x‖2 = ‖Sx‖2 for
all x ∈ D(S). This allows us to apply the previous lemma, leading actually
to a unitary operator GU with the desired properties.

Conversely, assume that there exists a unitary operator GU on H2 such
that E(I− U) = (I− U)GU and (GU)∗ = −GU . The previous lemma shows
that the operator S has the properties JD(S) ⊂ D(S) and ‖SJx‖2 = ‖Sx‖2

for all x ∈ D(S). Note also that JS is self-adjoint, by Theorem 2.7. There-
fore, (JS)∗ = JS = S∗J, and so D(S∗) = D(S). Moreover,

‖S∗x‖2 = ‖JSJx‖2 = ‖SJx‖2 = ‖Sx‖2, x ∈ D(S),

showing that S is normal.

Theorem 3.7 Let U be a unitary operator on H2 with the property U∗ =
−KUK, and such that I − U is injective. Let also S be the inverse E�
Cayley transform of U . The operator S is normal if and only if (U +U∗)E =
E(U + U∗).

Proof. We use the notation Re(T ) (Im(T )) to designate the real (resp.
the imaginary) part of a bounded operator T .

Let U be a unitary operator on H2 such that U∗ = −KUK, I − U is
injective and (U + U∗)E = E(U + U∗). In particular, U has the form

U =

(
T iA
iA T ∗

)
,

with T normal and A self-adjoint inH, such that TT ∗+A2 = I and AT = TA
(see the Remark after Lemma 3.4) .

Note that

(I− U)(I− U∗) = 2

(
I − Re(T ) 0

0 I − Re(T )

)
.
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Since both I−U and I−U∗ are injective, this formula shows that the operator
I − Re(T ) is injective too. Therefore,

(I− U)−1 =
1

2
(I− U∗)

(
(I − Re(T ))−1 0

0 (I − Re(T ))−1

)
,

which is de�ned on (I − Re(T ))(H) ⊕ (I − Re(T ))(H). Using this formula
and that (I + U)(I− U∗) = 2iIm(U), we obtain

S = (I + U)(I− U)−1E

= iIm(U)

(
(I − Re(T ))−1 0

0 (I − Re(T ))−1

)
E

= −
(

Im(T )(I − Re(T ))−1 −A(I − Re(T ))−1

A(I − Re(T ))−1 Im(T )(I − Re(T ))−1

)
,

de�ned on (I − Re(T ))(H)⊕ (I − Re(T ))(H).
Similarly, using Lemma 3.3, we have:

S∗ = E(I + U)(I− U)−1

= iEIm(U)

(
(I − Re(T ))−1 0

0 (I − Re(T ))−1

)
= −

(
Im(T )(I − Re(T ))−1 A(I − Re(T ))−1

−A(I − Re(T ))−1 Im(T )(I − Re(T ))−1

)
,

de�ned on (I − Re(T ))(H)⊕ (I − Re(T ))(H).
The explicit formulas from above giving S and S∗ show that D(S) =

D(S∗).
To �nish the proof that S is normal, let

x⊕ y = (I − Re(T ))u⊕ (I − Re(T ))v ∈ D(S).

Then

S(x⊕ y) = −
(

Im(T ) −A
A Im(T )

)(
u
v

)
.

Similarly,

S∗(x⊕ y) = −
(

Im(T ) A
−A Im(T )

)(
u
v

)
.
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Since B = Im(T ) and A are commuting self-adjoint operators, a direct
calculation shows that

‖Bu− Av‖2 + ‖Au+Bv‖2 = ‖Bu+ Av‖2 + ‖ − Au+Bv‖2,

implying ‖S(x⊕ y)‖2 = ‖S∗(x⊕ y)‖2 for all x⊕ y ∈ D(S).
Conversely, assuming S normal, we should have D(S) = D(S∗). Since S

is the inverse E�Cayley transform of U , the operator JS is self-adjoint, by
Lemma 2.4(d). Therefore, (JS)∗ = JS = S∗J, and so JD(S) = ED(S) =
D(S∗) = D(S). Consequently, the operator G = GU given by Corollary
3.6 is unitary on H2. The same corollary asserts that G∗ = −G. Therefore,
E(I−U)(I−U∗) = (I−U)(I−U∗)E. Consequently, (U+U∗)E = E(U+U∗),
as direct consequence of the latter equation.

Let U(H2) be the set of all unitary operators in H2. We also set

UC(H2) = {U ∈ U(H2);U∗ = −KUK, N(I− U) = {0},

(U + U∗)E = E(U + U∗)},

that is, those unitary operators whose inverse E�Cayley transform is a normal
operator, via the previous theorem.

The next result gives a complete description of the unitary operator GU ,
de�ned by Corollary 3.6. We keep the notation from the previous theorem.

Proposition 3.8 Let U ∈ UC(H2). Then the operator

i

(
(T ∗T − Re(T ))Θ−1

T −iA(I − T ∗)Θ−1
T

iA(I − T )Θ−1
T −(T ∗T − Re(T ))Θ−1

T

)
,

is a densely de�ned isometry, where ΘT = I − Re(T ), and its extension to
H2 equals the unitary operator GU .

Proof. Note that

E(I− U) =

(
i(I − T ) A
−A −i(I − T ∗)

)
,

and so

(I− U∗)E(I− U) = 2i

(
T ∗T − Re(T ) −iA(I − T ∗)
iA(I − T ) −T ∗T + Re(T )

)
,
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via an easy calculation and the equality T ∗T + A2 = I.
Let

D =

(
T ∗T − Re(T ) −iA(I − T ∗)
iA(I − T ) −T ∗T + Re(T )

)
.

The operator

C = iD

(
Θ−1
T 0
0 Θ−1

T

)
,

de�ned on ΘT (H)⊕ΘT (H), is an isometry. Indeed, note that

2iD = (I− U∗)E(I− U) = GU(I− U∗)(I− U)

= 2GU

(
ΘT 0
0 ΘT

)
,

via the proof of Theorem 3.7. This equality shows that C is the restriction
of GU to ΘT (H)⊕ ΘT (H), and so C is an isometry. Moreover, as the space
R(ΘT ) is dense in H, because the self-adjoint operator ΘT is injective, the
domain D(C) is dense in H2. Therefore, GU is the (unique) extension of the
densely de�ned operator C, which is the stated assertion.

Remark 3.9 Let

NIC(H2) = {S : D(S) ⊂ H2 → H)2;

S normal, (JS)∗ = JS, KS = SK}.

Theorems 2.7 and 3.7 show that the map

NIC(H2) 3 S 7→ (S − E)(S + E)−1 ∈ UC(H2)

is bijective. In addition, we have S ∈ NIC(H2) if and only if S is a densely
de�ned operator in H2 having the form

S =

(
A B
−B A

)
,

where A and B are commuting self-adjoint operators. The latter assertion
follows from [18] (see especially Proposition 2.4 and Theorem 3.7 from [18]).
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Example 3.10 Let us compute the operators U and GU from Proposition
3.8, in an important particular case.

Let µ be a probability measure in the plane R2, having moments of all or-
ders. In particular, if (s, t) is the variable in R2, the numbers γk,l =

∫
sktldµ

are well de�ned for all integers k, l ≥ 0. Let P be the algebra of all polynomi-
als in s, t, with complex coe�cients. The hypothesis implies that P ⊂ L2(µ).
The linear operators given by p(s, t) 7→ sp(s, t), p(s, t) 7→ tp(s, t), p ∈ P , are
easily seen to be symmetric on P . In fact, these operators have natural self-
adjoint extensions in H = L2(µ), de�ned by similar formulas, whose joint
domain of de�nition given by D0 = {f ∈ L2(µ); sf, tf ∈ L2(µ)}, and these
extensions commute (i.e. their spectral measures commute).

To simplify the notation, we identify in what follows the multiplication
operators with the corresponding (matrices of) functions. For instance, the
matrix

N =

(
s t
−t s

)
,

de�ned onD = D0⊕D0, is in the class SIC(H2) and is normal. The E-Cayley
transform U of N will have the form

U =
1

s2 + t2 + 1

(
(s− i)2 + t2 2ti

2ti (s+ i)2 + t2

)
,

via Remark 1.4.
With the notation of Theorem 3.7 and the convention from above con-

cerning the multiplication operators, we have

T =
s2 + t2 − 1− 2si

s2 + t2 + 1
, A =

2t

s2 + t2 + 1
.

A direct calculation shows that

T ∗T − ReT =
2(s2 − t2 + 1)

(s2 + t2 + 1)2
, ΘT =

2

s2 + t2 + 1
.

Therefore,

(T ∗T − ReT )Θ−1
T =

s2 − t2 + 1

s2 + t2 + 1
, −iA(I − T ∗)Θ−1

T =
−2t(s+ i)

s2 + t2 + 1
,

as well as iA(I − T ∗)Θ−1
T = 2t(i− s)/(s2 + t2 + 1). Consequently,

GU =
i

s2 + t2 + 1

(
s2 − t2 + 1 −2t(s+ i)
−2t(s− i) −s2 + t2 − 1

)
.
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4 Normal extensions

Remark 4.1 Let T : D(T ) ⊂ H2 7→ H2, with D(T ) = D0 ⊕ D0, D0 ⊂ H.
According to [18], Lemma 1.2, the equality D(T ) = D0⊕D0 is equivalent to
the inclusions

(i) JD(T ) ⊂ D(T ) and KD(T ) ⊂ D(T ).
In order that T have a normal extension S ∈ NIC(H2), the following

conditions are necessary:
(ii) JT is symmetric;
(iii) TK = KT ;
(iv) ‖TJx‖2 = ‖Tx‖2 for all x ∈ D(T ).
Indeed, JT ⊂ JS and JS self-adjoint imply (ii). Next, SK = KS and

the inclusion KD(T ) ⊂ D(T ) imply (iii). Condition (iv) also holds, as in the
last part of the proof of Corollary 3.6 (see also the proof of Proposition 4.2).

We denote by SIC(H2) the set of those operators T : D(T ) ⊂ H2 7→ H2

such that (i)�(iv) hold.
Let also PC(H2) be the set of those partial isometries V : D(V ) ⊂ H2 7→

H2 such that:
(a) V −1 = −KVK;
(b) I− V is injective;
(c) ER(I−V ) = R(I−V ) and (I−V )−1E(I−V ) is an isometry on D(V ).
It follows from Lemma 3.5 that the E�Cayley transform is a bijective

map from SIC(H2) onto PC(H2). Note also that UC(H2) = PC(H2) ∩ U(H2)
by Corollary 3.6 and Theorem 3.7.

The interesting question concerning the existence of an extension S ∈
NIC(H2) of an operator T ∈ SIC(H2) is equivalent to the description of
those partial isometries in PC(H2) having extensions in the family UC(H2).

Proposition 4.2 Let U ∈ UC(H2) and let D ⊂ H2 be a closed subspace with
the properties KU(D) ⊂ D and E(I − U)(D) ⊂ (I − U)(D). If V = U |D,
E = D⊥ and W = U |E, then U = V ⊕W and V,W ∈ PC(H2)

Proof. If V = U |D, then V is a partial isometry from D(V ) = D onto
R(V ) = U(D). Moreover, V −1 = U−1|R(V ). Therefore, V −1 = −KVK,
because of the equality U−1 = −KUK, and inclusion KU(D) ⊂ D.

The injectivity of I − U implies that I − V also injective. In addition,
E(I − V )(D) ⊂ (I − V )(D) as a direct consequence of the given inclusion
E(I−U)(D) ⊂ (I−U)(D). As E2 = −I, we have in fact that E(I−V )(D) =
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(I − V )(D). Hence, if T be the inverse E�Cayley transform of V , then
JD(T ) = ED(T ) = R(I− V ) = ER(I− V ) = D(T )

Let us show that (I − V )−1E(I − V ) is an isometry on D(V ). Let S be
the inverse E�Cayley transform of U , which is an extension of T . Because
JS is self-adjoint by Lemma 2.4(d) and S is normal by Theorem 3.7, we have

‖TJx‖2 = ‖SJx‖2 = ‖JS∗x‖2 = ‖S∗x‖2 = ‖Sx‖2 = ‖Tx‖2,

for all x ∈ D(T ) (as in Corollary 3.6). Thus, (I−V )−1E(I−V ) is an isometry
on D(V ), by Lemma 3.5.

The properties (a)�(c) from Remark 4.1 being veri�ed, we have that V ∈
PC(H2).

Now, let E = D⊥, and letW = U |E . We also have the inclusion KU(E) ⊂
E , because (KU)∗ = −KU , as well as the inclusion and E(I − U)(E) ⊂
(I− U)(E) because the operator GU = (I− U)−1E(I− U) has the property
(GU)∗ = −GU . Therefore, the operator W is also a (closed) partial isometry
in PC(H2), by the �rst part of the proof.

The equality U = V ⊕W is obvious.

Remark 4.3 Let V be a closed partial isometry in H2 such that V −1 =
−KVK. Then there exists a decomposition of the (Hilbert) space D(V )
of the form D(V ) = D(V )+ ⊕ D(V )− such that V |D(V )± = ±iK|D(V )±.
If we denote by P±V the projection of D(V ) onto D(V )± , we have V =
iKP+

V − iKP
−
V . The projections P±V completely determine the operator V ,

and they are called the K-projections of V . As a matter of fact, we have
P±V = 2−1(I± iKV ). See [18] (especially Remark 2.16(1)) for more details.

Lemma 4.4 Let V be a closed partial isometry in H2 such that V −1 =
−KVK. The operator I−V is injective and there exists a surjective isometry
G : D(V ) 7→ D(V ) such that E(I−V ) = (I−V )G if and only if the operator
P+

I P
−
V + P−I P

+
V is injective and

‖P±V PVEP±I x‖2 = ‖P∓V PV P
±
I x‖2, x ∈ H2,

where P±V are the K-projections of V , P±I are the K-projections of I, and PV
is the projection of H2 onto D(V ).

Proof. We follow some lines from the proofs of Lemma 2.17 and Theorem
2.18 in [18].
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Assume �rst that I− V is injective and there exists a surjective isometry
(in fact, a unitary operator) G : D(V ) 7→ D(V ) such that E(I − V ) =
(I − V )G. Using the formula I − V = (I − iK)P+

V + (I + iK)P−V , obtained
via Remark 4.3, and because P±I = 2−1(I ± iK), we infer that the operator
P+

I P
−
V + P−I P

+
V is injective. Moreover,

(I + iK)(EP+
V − P

−
V G) + (I− iK)(EP−V − P

+
V G) = 0.

Because the spaces R(I + iK) and R(I − iK) are orthogonal, it follows
P±I (EP±V −P

∓
V G) = 0. Passing to adjoints, we deduce the equalityG∗P∓V PV P

±
I

= −P±I PVEP±I , valid on H2. Using the fact that G∗ is also an isometry on
D(V ), we obtain the desired relation.

Conversely, assume that P+
I P

−
V + P−I P

+
V is injective, and so I − V is

injective, and that ‖P±V PVEP±I x‖2 = ‖P∓V PV P
±
I x‖2 for all x ∈ H2. In this

case we may de�ne an isometry G∗ on the space

D(G∗) = R(P−V PV P
+
I )⊕R(P+

V PV P
−
I ),

whose range is the space

R(G∗) = R(P+
V PVEP+

I )⊕R(P−V PVEP−I ),

by the formula

G∗P
∓
V PV P

±
I x = −P±V PVEP±I x, x ∈ H

2.

Note that the orthogonal complement of D(G∗) in D(V) is null. Indeed, if
x ∈ D(V ) is orthogonal to D(G∗), then we must have (P+

I P
−
V +P−I P

+
V )x = 0,

which implies x = 0. In addition, if x ∈ D(V ) is orthogonal to R(G∗), we
infer that P±I EP±V x = 0 = EP∓I P

±
V x, whence, as above, we have again x = 0.

Therefore, G∗ has a bounded extension on D(V ) onto D(V ), also denoted
by G∗, which is an isometry. The adjoint G of G∗ satis�es the equation
P±I (EP±V −P

∓
V G) = 0, which is equivalent to the equality E(I−V ) = (I−V )G.

The next result is a geometric characterization of those closed subspaces
of H2 which are domains of de�nitions of partial isometries from PC(H2).

Proposition 4.5 Let D ⊂ H2 be a closed subspace. There exists a V ∈
PC(H2) with D(V ) = D if and only if there are two orthogonal projection P±

in H2 such that
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(1) D = P+(H2)⊕ P−(H2);
(2) P±(H2) ∩ P±I (H2) = {0};
(3) (P± + EP∓E)(P∓I (H2)) ⊂ P±I (H2).

In the a�rmative case, we also have P±(H2) = P±P∓I (H2) = P±P∓I E(H2).

Proof. If V ∈ PC(H2) and D = D(V ), with the notation from Remark 4.3
and Lemma 4.4, and setting P± = P±V PV , which are precisely the projections
of H2 onto D(V )±, we clearly have (1).

Next, as in the previous proof, the operator P+
I P

− + P−I P
+, restricted

to D(V ), is just 2−1(I − V ), which is injective. It is easily seen that the
injectivity of this operator is equivalent to (2).

To prove (3), we note that the equality ‖P±EP±I x‖2 = ‖P∓P±I x‖2, x ∈
H2 is equivalent to the equality P±I P

∓P±I = −EP∓I P
±P∓I E, which in turn

is equivalent to (3).
Conversely, assuming that (1)-(3) hold, we de�ne V as the restriction

of the operator iKP+ − iKP− to D. Condition (2) implies, as above, the
injectivity of I − V . Replacing condition (3) by the equivalent condition
noticed in the �rst part of this proof, we proceed as in the proof of Lemma
4.4 to construct a surjective isometry G on D(V ), satisfying the equation
E(I− V ) = (I− V )G. The proof also shows that

D(V ) = R(P−P+
I )⊕R(P+P−I ) = R(P−P+

I E)⊕R(P+P−I E),

implying the equalities P±(H2) = P±P∓I (H2) = P±P∓I E(H2).

Lemma 4.6 Let T ∈ SIC(H2) be densely de�ned. Then T is closable and
its closure T̄ ∈ SIC(H2).

Proof. First of all, note that the operator T is closable. Indeed, as the
operator JT is symmetric, assuming that (xn)n≥1 is a sequence from D(T )
such that xn → 0 and Txn → y as n→∞, for all v ∈ D(T ) we have

〈y, v〉 = lim
n→∞
〈Txn, v〉 = lim

n→∞
〈xn,JTJv〉 = 0,

showing that the closure of the graph of T is a graph.
Let T̄ be the closure of T , and let x̄ ∈ D(T̄ ). Hence x̄ = limn→∞ xn

and T̄ x̄ = limn→∞ Txn for some sequence (xn)n≥1 from D(T ). Condition
(iv) from Remark 4.1 shows that (TJxn))n≥1 is a Cauchy sequence, implying
that Jx̄ ∈ D(T̄ ) and ‖T̄Jx̄‖2 = ‖T̄ x̄‖2. In other words, JD(T̄ ) ⊂ D(T̄ ) and
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condition (iv) from Remark 4.1 hold for T̄ . As we also have TKxn = KTxn
for all n ≥ 1, we infer KD(T̄ ) ⊂ D(T̄ ) and T̄K = KT̄ , the latter being
condition (iii) from Remark 4.1.

Finally, let if ȳ ∈ D(T̄ ) is another element with ȳ = limn→∞ yn and
T̄ ȳ = limn→∞ Tyn for some sequence (yn)n≥1 from D(T ), then we have

〈JT̄ x̄, ȳ〉 = lim
n→∞
〈JTxn, yn〉 = lim

n→∞
〈xn,JTyn〉 = 〈x̄,JT̄ ȳ〉,

implying condition (iii) from Remark 4.1 for T̄ . Consequently, T̄ ∈ SIC(H2).
The next result is an equivalent version of Theorem 3.10 from [18].

Theorem 4.7 Let T ∈ SIC(H2) be densely de�ned. The operator T has
an extension in NIC(H2) if and only if there exists a W ∈ PC(H2), with
D(W ) = R(T + E)⊥.

Proof. According to Lemma 4.6, with no loss of generality we may assume
that T is closed. If V is the E�Cayley transform of T , then, as noticed in
Remark 4.1, we have V ∈ PC(H2). Moreover, V is closed, by Lemma 2.4. In
particular, D(V ) = R(T + E) and R(V ) = R(T − E) are closed in H2.

Assume �rst that there exists a W ∈ PC(H2), with D(W ) = R(T + E)⊥.
Hence R(W ) = KD(W ) = R(T −E)⊥. Put U = V ⊕W , which is a unitary
operator on H2. We want to show that U ∈ UC(H2).

Since KD(V ) = R(V ) and KD(W ) = R(W ), we clearly have U∗ =
V −1 ⊕W−1 = −K(V ⊕W )K = −KUK.

Next, let GV : D(V ) 7→ D(V ) and GW : D(W ) 7→ D(W ) be the surjective
isometries given by GV = (I−V )−1E(I−V ) and GW = (I−W )−1E(I−W ).
Then G = GV ⊕ GW is a unitary operator on H2. In addition, if x ∈ D(V )
and y ∈ D(W ) are arbitrary, then

E(I− U)(x⊕ y) = E(x− V x) + E(y −Wy) =

(GV x− V GV x) + (GWy −WGWy) = (I− U)G(x⊕ y).

As follows from Lemma 2.4, the space R(I − V ) is dense in H2 because
the operator T is densely de�ned. Therefore, R(I−U) ⊃ R(I−V ) is dense in
H2, implying that I−U is injective. Consequently, U ∈ PC(H2) and, because
U is unitary, we actually have U ∈ UC(H2), via Corollary 3.6. Clearly, T has
a normal extension in NIC(H2), which is the inverse E�Cayley transform of
U .

26



Conversely, if the operator T has a normal extension S ∈ NIC(H2), and
if U ∈ UC(H2) is the E�Cayley transform of S, to �nd the operator W ∈
PC(H2), we apply Proposition 4.2 to D = D(V ), where V is the E�Cayley
transform of T .

The next assertion provides an extension result for not necessarily densely
de�ned operators.

Corollary 4.8 Let T ∈ SIC(H2) be closed and let V be the E�Cayley trans-
form of T . The operator T has an extension in NIC(H2) if and only if
there exists a W ∈ PC(H2), with the properties D(W ) = R(T + E)⊥ and
R(I− V ) ∩R(I−W ) = {0}.

Proof. We keep the notation and proceed as in the previous proof to
show that the unitary operator U = V ⊕W is in UC(H2), whereW ∈ PC(H2)
has the stated properties. The only thing to be proved is that I − U is
injective. This is true because if v ∈ D(V ) and w ∈ D(W ) have the property
v ⊕ w = U(v ⊕ w), we infer that

R(I− V ) 3 v − V v = Ww − w ∈ R(I−W ),

implying v = w = 0, because both I− V, I−W are injective.
Conversely, we proceed again as in the proof of Theorem 4.7 and �nd the

operator U ∈ UC(H2) as the E�Cayley transform of a normal extension of T ,
and W ∈ PC(H2), via Proposition 4.2. Since U is an E�Cayley transform,
then I − U is injective. Choosing a vector u ∈ R(I − V ) ∩ R(I −W ), we
have u = v − V v = Ww − w, with v ∈ D(V ) and w ∈ D(W ). Therefore,
v⊕w = U(v⊕w), implying v = w = u = 0, and so R(I−V )∩R(I−W ) = {0}.

Remark 4.9 It follows from Theorem 4.7 that if T ∈ SIC(H2) is densely
de�ned and the space R(T + E) is dense in H2, then T has an extension
in NIC(H2). Indeed, in this case we may apply the theorem with W = 0.
This remark can be applied in the following situation. Let A,B be a pair
of linear operators having a joint domain of de�nition D0 ⊂ H. As in the
Introduction, we associate this pair with a matrix operator

T =

(
A B
−B A

)
,

de�ned on D(T ) = D0 ⊕ D0 ∈ H2. First of all, let us �nd equivalent
conditions on A,B such that T ∈ SIC(H2). Clearly, JD(T ) ⊂ D(T ) and
KD(T ) ⊂ D(T ).
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It is easily seen that T is symmetric if and only if both A,B are symmetric.
The equality KT = TK is also easily veri�ed. Finally, the equality ‖TJx‖2 =
‖Tx‖2 holds for all x ∈ D(T ) if and only if

〈Au,Bv〉+ 〈Bv,Au〉 = 〈Bu,Av〉+ 〈Av,Bu〉 (c)

for all u, v ∈ D0, which is a weak commutativity condition. Consequently,
if A,B are symmetric and condition (c) holds, then T ∈ SIC(H2). In that
case, the E�Cayley transform of T is in the class PC(H2).

As a direct consequence of Remark 3.9 and Theorem 4.7, we obtain the
following assertion (see also Theorem 3.8 from [18]):

Theorem 4.10 Let A,B be symmetric operators on a dense joint domain
of de�nition D0 ⊂ H, satisfying condition (c). If the space

{((A+ iI)u+Bv)⊕ ((A− iI)v −Bu);u, v ∈ D0} (d)

is dense in H2 , then the operators A and B have commuting self-adjoint
extensions.

The density of the space from (d) is precisely the density of R(T + E) in
H2, implying R(T + E)⊥ = {0}.

This result, giving a criterion of commutativity of self-adjoint extension
of some pairs of symmetric operators, is also related to a series of similar
results appearing in [11], [7], [8], [14], etc.

5 A Moment Problem with Constraints

In this section, we combine various techniques from this paper to give an
answer to a certain moment problem with some constraints.

Example 5.1 Let (s, t, u) denote the variable in R3, and let P be the algebra
of all polynomials in s, t, u, with complex coe�cients.

Adopting the terminology from [10], we say that the linear map Λ : P 7→
C is a square positive functional if Λ(p̄) = Λ(p), and Λ(|p|2) ≥ 0 for all p ∈ P .
If, moreover, Λ(1) = 1, we say that Λ is unital.

A representing measure for the unital square positive functional Λ : P 7→
C with support in the measurable subset Σ ⊂ R3 is a probability measure µ
on Σ such that Λ(p) =

∫
Σ
pdµ all p ∈ P .
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Of course, �nding a representing measure for such a Λ means, in fact, to
solve a moment problem.

For a given polynomial q ∈ P and a map Λ : P 7→ C, we put Λq(p) =
Λ(qp) for all p ∈ P .

Let S3 be the unit sphere of R3, and let S3
+={(s, t, u) ∈ S3; 0 ≤ s ≤ 1},

which is a compact semi-algebraic set. Let also θ(s, t, u) = 1 − s2 − t2 − u2

and σ(s) = s. As we have

S3
+ = {(s, t, u) ∈ R3; θ(s, t, u) = 0, σ(s) ≥ 0, (1− σ)(s) ≥ 0},

we obtain from Theorem 1 in [13] that the unital square positive functional
Λ : P 7→ C has a representing measure with support in S3

+ if and only if

Λθ = 0, and Λσ, Λ1−σ, Λσ(1−σ) are square positive functionals. (P)

A more complicated situation, which can be treated with our methods,
occurs when we impose some constraints.

Problem Characterize those unital square positive functionals Λ on P
with the property (S), which have a representing measure with support in the
set S3

++ = {(s, t, u) ∈ S3
+; 0 ≤ s < 1}, such that all functions (1−s)−m(m ≥ 1

an integer) are integrable.

According to Theorem 1 from [13], the functional Λ with the property (P)
has a representing measure, say ν, supported on S3

+. In particular, Λ(q) = 0
for each polynomial q with q|S3

+ = 0. Nevertheless, it is not clear that ν is
a solution to the Problem. Indeed, if for instance the point (1, 0, 0) happens
to be an atom for ν, the functions (1− s)−m (m ≥ 1) are not integrable.

From now on, let Λ : P 7→ C be a square positive functional with the
property (P). As noticed above, Λ(q) = 0 for each polynomial q with q|S3

+ =
0. We denote by P(S3

+) the algebra consisting of all (classes of) functions of
the form p|S3

+, p ∈ P , modulo the ideal of those polynomials q with q|S3
+ = 0.

The map induced by Λ on P(S3
+) will still be designated by Λ.

To give a solution to the Problem, we should �rst extend the map Λ
to the algebra R(S3

++) generated by the rational functions sjtkul(1 − s)−m
restricted to S3

++, where j, k, l,m are nonnegative integers.
First of all, we note the formula

1

(1− s)m+1
=
∑
α≥m

(
α

m

)
sα−m, (5.1)
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valid for all integers m ≥ 0, where the series is convergent at each point
s ∈ [0, 1). This series suggests the following supplementary hypothesis on Λ:

Condition Setting

pm,n(s) =
n∑

α=m

(
α

m

)
sα−m, (5.2)

for all nonnegative integers m,n (n ≥ m) and s ∈ [0, 1), we assume that

lim
n1,n2→∞

Λ(|pm,n1 − pm,n2|2) = 0 (C)

for all m ≥ 0.

Condition (C) is necessary. Indeed if µ is a probability measure on S3
++

such that all rational functions (1 − s)−m−1(m ≥ 0) are integrable, as the
sequence (pm,n)n≥m is pointwise convergent to (1− s)−m−1 and |pm,n(u)|2 ≤
(1− s)−2m−2, then (pm,n)n≥m is a Cauchy sequence in L2(µ) by the Lebesgue
theorem of dominated convergence, implying (C).

We now deal with the converse assertion.
Using (C), for each polynomial p ∈ P(S3

+) and every integer m ≥ 0, we
may de�ne

Λ̃(prm) = lim
n→∞

Λ(ppm,n), (5.3)

where rm(s) = (1−s)−m−1. Note that the limit exists via the Cauchy-Schwarz
inequality. Moreover,

Λ̃(prm1) = Λ̃((1− σ)m2−m1prm2) (5.4)

if m2 ≥ m1. To prove (5.4), we use the relation

pm,n(s) = pm+1,n+1(s)− spm+1,n(s),

valid for all nonnegative integres m,n with n ≥ m + 1. This is a direct
consequence of (5.2) and the equality(

α + 1

m+ 1

)
−
(

α

m+ 1

)
=

(
α

m

)
,

which is true whenever m+ 1 ≤ α ≤ n. Hence, for a �xed polynomial p,

Λ̃(prm) = lim
n→∞

Λ(ppm,n) = lim
n→∞

Λ(p(pm+1,n+1 − σpm+1,n)) =
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lim
n→∞

Λ((1− σ)ppm+1,n) = Λ̃((1− σ)prm+1).

Using this computation, we derive (5.4) by recurrence.
Let now p1, p2 ∈ P(S3

+), and let m1,m2 be nonnegative integers such that
r−1
m2
p1 − r−1

m1
p2 = q, where q|S3

+ = 0. Assuming, with no loss of generality,
that m2 ≥ m1, we infer p2 = (1−σ)m2−m1p1− qrm1 . This relation also shows
that qrm1 is a polynomial, which is null on S3

+. Therefore

lim
n→∞

Λ(p2pm2,n) = lim
n→∞

Λ(((1− σ)m2−m1p1 − qrm1)pm2,n) =

lim
n→∞

Λ(p1pm1,n + p1((1− σ)m2−m1pm2,n − pm1,n)− qrm1pm2,n) =

lim
n→∞

Λ(p1pm1,n),

because limn→∞ Λ(p1(1− σ)m2−m1pm2,n − pm1,n)) = 0 by (5.4), and
Λ(qrm1pm2,n) = 0 as qrm1pm2,n = 0 on S3

+. Consequently,

Λ̃(p2rm2) = Λ̃(p1rm1). (5.5)

Relation (5.5) shows that Λ̃ induces a map on the algebra of fractions
F(S3

++) build from the algebra P(S3
+), with denominators in the set S =

{(1 − s)m;m ≥ 0}. This map will be denoted again by Λ. The map Λ :
F(S3

++) 7→ C is a unital square positive functional. Indeed, �xing f =
p/(1− σ)m, we have

Λ(f̄) = lim
n→∞

Λ(p̄pm,n) = Λ(f), Λ(|f |2) = lim
n→∞

Λ(|f |2p2m,n) ≥ 0,

(5.6)

Λσ(|f |2) = lim
n→∞

Λ(σ|f |2p2m,n) ≥ 0, Λ1−σ(|f |2) = lim
n→∞

Λ((1−σ)|f |2p2m,n) ≥ 0,

using the corresponding properties of Λ : P(S3
+) 7→ C. In particular, the

map Λ : F(S3
++) 7→ C satis�es the Cauchy-Schwartz inequality, and so the

set IΛ = {f ∈ F(S3
++); Λ(|f |2) = 0} is an ideal in the algebra F(S3

++).
Moreover, the assignment (f, g) 7→ Λ(fḡ) induces an inner product on the
quotient D0 = F(S3

++)/IΛ. The completion of this quotient with respect to
this inner product is a Hilbert space denoted by H.

We now consider in H the multiplication operators B0, C0 induced by the
functions −t/(1−s) and u/(1−s), respectively, de�ned on D0. The operators
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B0, C0 leave invariant the space D0 and commute. Moreover, for every pair
g1, g2 ∈ D0, the system of equations(

−t
1− s

+ i

)
f1 +

u

1− s
f2 = g1

(5.7)

−u
1− s

f1 +

(
−t

1− s
− i
)
f2 = g2

has the solution f1 = −2−1((t+ i− is)g1 +ug2), f2 = 2−1(ug1− (t− i+ is)g2),
via the equality s2 + t2 + u2 = 1, and so f1, f2 ∈ D0.

Setting S0 = B0I + C0K on D0 ⊕ D0, the system (5.7) is precisely the
equation (S0 + E)(f1 ⊕ f2) = g1 ⊕ g2, showing that R(S0 + E) is equal to
D0 ⊕ D0. Hence, denoting by U0 the E-Cayley transform of S0, a direct
computation (see Remark 1.4) shows that U0 is the matrix multiplication
operator

U0 =

(
s+ it iu
iu s− it

)
,

de�ned on D0 ⊕D0.
As in Remark 4.9, we clearly have S0 ∈ SIC(H2). Then the closure S of

S0 also belongs to SIC(H2), in virtue of Lemma 4.6. If U is the E-Cayley
transform of S, then U should be closed, by Theorem 2.7. As U extends U0,
U must be a unitary operator on H2. Speci�cally, U ∈ UC(H2) because U
is a unitary operator in PC(H2) (see Remark 1.4). In particular, I − U is
injective. Keeping the notation related to U from the proof of Theorem 3.7,
we also have that I − Re(T ) is injective.

In fact, the multiplication by s + it on D0 is extended by T , and the
multiplicatin by u on D0 is extended by A.

Let E be the joint spectral measure of the pair (T,A), which is concen-
trated on S3

+. Indeed, if A is the unital (commutative) C∗-algebra generated
by T and A, the equality T ∗T + A2 = I shows that the joint spectrum of
the pair (T,A) may be identi�ed with a compact subset of the sphere S3. In
addition, as 0 ≤ Re(T ) ≤ I, which is implied by the properties of the square
positive forms Λσ and Λ1−σ given by (5.6), it follows that the measure E is
concentrated in the set S3

+. As the operator I −Re(T ) is injective, it follows
that E({(1, 0, 0)}) = 0. Consequently, the measure E has support in the set
S3

++.
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Since 1 + IΛ = (I − Re(T ))m((1 − σ)−m + IΛ), it follows that 1 + IΛ is
in the domain of (I − Re(T ))−m for all integers m ≥ 1. Therefore, setting
µ(∗) = 〈E(∗)(1 + IΛ), 1 + IΛ〉, we obtain

Λ(prm) = 〈prm + IΛ, 1 + IΛ〉 =

〈(p(Re(T ), Im(T ), A)(I − Re(T ))−m(1 + IΛ), 1 + IΛ〉 =

∫
S3

++

prmdµ,

for all f = prm ∈: F(S3
++), showing that µ is a representing measure for

Λ : F(S3
++) 7→ C. In addition∫

S3
++

(
1

1− s

)2m

dµ = ‖(I − Re(T ))−2m(1 + IΛ)‖2 <∞,

for all integers m ≥ 1, which completes our assertion
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