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1. Introduction

Let Z!! be the set of all multi-
indices a = (aq, ..., ap), let Py be
the algebra of all polynomial func-
tionsint = (tq,...,tn) € R" with
complex coefficients and let P, o
be the vector space generated by
the monomials t¥ = t? b tﬁ”, with
5]' < 204]',Vj, Q€ Z:L_.
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Set (Roo)” = (RU{o0})™. Con-
sider the family @, consisting of all
rational functions of the form

Galt) = (14E7) 7 - (14t5,) =,
t € R" where a = (aq, ...,ap) €
Z! is arbitrary. Set also pa(t) =
got)",t € R, a € Z. The
function g, can be continuously ex-
tended to (Roo)™ \ R for all a €
Z'! . The function p/pq can be con-
tinuously extended to (Roo)™ \ R"
for every p € Pp,_q, and so it can be
regarded as an element of CR ((Roo)™).
Therefore, Py o is a subspace of
CR((Roo)")/qa = PaCR((Rco)")
for all € Z", and so

Pn C CR((Roo)")/ Cn.

which is an algebra of fractions.
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Let v = (Va)qe zn be an n-sequence
of real numbers and let

L~ :Pp—C
be the associated linear functional
given by L~ (tY) = va,a € Z'} | ex-
tended by linearity. Recall that the
n-sequence v = (Ya)aezy of real
numbers is said to be a moment
sequence it there exists a positive
measure g on R" such that t% €
LYp) and vo = r1t%du(t), a €
Z" . The measure p is said to be
a representing measure for . Let

us state a characterization of the
moment sequences.



Theorem 1.1. An n-sequence
7 = (Ya)aczn (o > 0) of real
numbers 1S a moment sequence
on R" if and only if the associ-
ated linear functional L~ has the
properties Ly(pa) > 0 and
'Ly (p)] < Ly(pa) suptern |ga(t)p(t)],
PE Pna, €72,

Aswe have P, C CR((Rx0)™)/9n,
the linear map L~ : Pp — C as-
sociated to an n-sequence 7y can be
viewed as a linear map on a sub-
space of an algebra of fractions. In
particular, the proof of Theorem
1.1 can be derived from general re-
sults in the framework of algebras
of functions.



2. Spaces of fractions

of continuous functions

Let €2 be a compact space and let
C'(€2) be the algebra of all complex-
valued continuous functions on (2,
endowed with the sup norm || * || 0.
We denote by M (€2) the space of all
complex-valued Borel measures on
(). For every function h € C(£2),
we set Z(h) = {w € Q; h(w) = 0}.
If w € M(Q)), we denote by |u| €
M () the variation of p.

Let @ be a family of nonnegative
elements of C(2). The set Q is

said to be a set of denominators
if (1)1 e Q, (i) ¢,¢" € O im-
plies ¢'¢" € Q, and (iii) if gh = 0
for some ¢ € Q and h € C(Q),
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then h = 0. Using a set of denomi-
nators Q, we can form the algebra

of fractions C'(2)/Q. If C(Q)/q =
{f € C(Q)/Q;qaf € C(Q)}, we
have C'(£2)/Q = U,c0C(9?)/q.

Setting || f|loo.q = || f]|oco for each
f e C)/q, the pair (C(Q2)/q,
| * ||c0,q) becomes a Banach space.
Hence, C'(€2)/Q is an inductive limit
of Banach spaces

Set (C(Q)/q)+ =A{f € C(Q)/q;
qf > 0}, which is a positive cone
for each q.

Let Qp C Q, let F =x,c0,C(2)/q,
and let v : F — C be linear. The
map 1 is continuous if the restric-
tion 1|C(€2)/q is continuous for all

q € Q.



Let us also remark that the linear
functional ¢ : F — C is said to be
positive if ¥[(C'(2)/q)+ > 0 for all
q € Q.

The next result, which is an ex-
tension of the Riesz representation
theorem, describes the dual of a space
of fractions, defined as above.

Theorem 2.1. Let Qp C Q,
let F = x,c0,C(Q)/q, and let
Y o F — C be linear. The func-
tional v 1s continuous if and only
if there exists a uniquely deter-
mined measure i, € M(§2) such
that |py|(Zg) = 0, 1/q is [pyl-
integrable for all g € Qp and Y(f) =

i fdpy for all f € F.



The functional ¢ : F — C s
positive, if and only if it is con-
tinuous and the measure fi, s
positive.

Corollary 2.2. Let Qy C Q be
nonempty, let F ==,c0,C(2)/q,
and let ¢ : F — C be linear.

The functional ¢ 1is positive if
and only if |nbqll = ¥(1/q), q €
Qu, where 1y = $|C()/q.

In the family Q we write ¢'|q” for
q.q" € Q, meaning ¢ divides q"
if there exists a ¢ € Q such that
¢" = ¢'q. A subset Qp C Q is
cofinal in Q if for every q € Q we
can find a gy € Qg such that q|qp.



The next assertion is an extension
result of linear functionals to posi-
tive ones.

Theorem 2.3. Let Qg 2 1 be
a cofinal subset of Q. Let F =
YqeQy Fq, Where Fq is a vector
subspace of C(2)/q such that 1/q €
Fq and Fg C Fp jor all q,r €
Qq, with q|r. Let also ¢ : F — C
be linear with ¢(1) > 0, and set
qu — gb’FCp q € QO°

The linear functional ¢ extends
to a positive linear functional
on C(2)/Q such that |[é]] = [}l
where g = P|C(82)/q, if and only
if 6qll = 6(1/9) > 0, g € Qp.

We put Z(Qp) = Uyeg,4(q) for
each subset Qy C Q.
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Corollary 2.4. With the con-
ditions of the previous Theorem,
there exists a positive measure |

on € such that
o(f) =l fdu, feF.

For every such measure . and ev-
ery q € Q, we have u(Z(q)) = 0.
Hence, if Q contains a countable
subset Q1 with Z(Q1) = Z(Q),
then u(Z(Q)) = 0.

Exemple 2.5. Let 87 be the alge-
bra of polynomials in 2, z, z € C.
This algebra, used to characterize
the moment sequences in the com-
plex plane, can be identified with
a subalgebra of an algebra of frac-
tions of continuous functions.

Let R1 be the set of functions
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{1+ 12P)7%2 € Ck € 2y},
which can be continously extended
to Coo = C U {o0}. Identifying
R with the set of their extensions
in C(Cyo), the family R becomes
a set of denominators in C'(Cxo).
This will allows us to identify the
algebra 81 with a subalgebra of the
algebra of fractions C(Cyo) /R 1.

Let &1 i, k > lafixed integer, be
the space generated by the mono-
mials 272!, 0 < j+1 < 2k, and
the monomlal |z|2k , which may be
viewed as a subspace of C(Cy) /74,
where 7.(2) = (14 |2|2)7F for all
k> 0.
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We clearly have &1 = £p>0 81 i,
and so the space Sy can be viewed
as a subalgebra of the algebra
C'(Cx)/R1. Note also that 7“];1 €
81’]{ for all K > 1 and Sl,k C 8171
whenever k£ < [.

According to Theorem 1.4, a lin-
ear map ¢ : S — C has a posi-
tive extension ¢ : C(Cyso)/R1 +—
C with ||| = ||l if and only
if okl = o(ry "), where ¢, =
¢|81,k and @Dk — ¢|O(<COO)/T;€, for
all & > 0. This result can be used
to characterize the Hamburger mo-
ment problem in the complex plane.
Specifically, given a sequence of com-
plex numbers v = (75 1) i>0,>0 with
0,0 =1, Yep = 0if £ > 1 and
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Y1 =1, torall 7 > 0,0 >0, the
Hamburger moment problem means
to find a probability measure on C
such that ;; = 12 du(z), § >
0,0 > 0.

Defining L~ : &1 = C by setting
Ly(zjil) = Y. forall 7 > 0,1> 0
(extended by linearity), if L~ has
the properties of the functional ¢
above insuring the existence of a
positive extension to C(Cyo)/R1,
then the measure p is provided by
Corollary 1.5.

For a fixed integer m > 1, we
can state and characterize the ex-
istence of solutions for a truncated
moment problem (for an extensive
study of such problems we refer to
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the works by Curto and Fialkow).
Specifically, given a finite sequence
of complex numbers v = (v;7);;
with 70 = 1, Yii = 0 if 1 <
J < mandy;; =7, forall j >
0,0 > 0,7 #1, 5+1 < 2m, find
a probability measure on C such
that v;; = 1202 dp(z) for all in-
dices 7,[. As in the previous case,
a necessary and sufficient condition
is that the corresponding map L~ :
S1 m +— Chave the property || L || =
L~(1/rp,). Note also that the ac-
tual truncated moment problem is
slightly different from the usual one.
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3. Operator-valued moment
problems

Let D be a complex inner product
space whose completion is denoted
by H, let SEF' (D) be the space of oll
sesquilinear forms on D, and let ¢ :
Pp — SF(D) be a linear map.We
look for a positive measure F' on
the Borel subsets of R", with val-
ues in B(H), such that ¢(p)(z, y) =
Ipdly yforall p € Ppand z,y €
D, which is an operator moment
problem. When such a positive mea-
sure F’ exists, we say that ¢ : P, —
SF (D) is a moment form and the
measure F' is said to be a repre-

senting measure for ¢. The next
result is due to Albrecht and V.
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Theorem 3.1. Let D be a com-
plex inner product space and let
¢ : Pp — SF(D) be a unital, lin-
ear map. The map ¢ is a mo-
ment form if and only if

(2) ¢(pa)(x,2) > 0 for all x €
D\ {0} and a € Z1}..

(2¢) For allaw € ZT, m € N and
Tl s Ty Yls - -5 Ym € D with

]zlcb(pa)(xj,a?j) <1, T pa)y),yj) <

and forall f = (f

1,k
with supy ||qa(t) f(t)
have

m
>
J,k=

O(fp) (T, y5) < 1.

1

4. Completely contractive
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extensions

In this section we present a ver-
sion of result by Albrecht and V,
concerning the existence of normal
extensions. We discuss it here for
infinitely many operators.

Nevertheless, we first present the
case of a single operator.

Fix a Hilbert space ‘H and a dense
subspace D of H, let, as before,
S F (D) be the space of all sesquilin-
ear forms on D.

We recall that Sy, is the set of all
polynomials in z and z, z € C.

Considering an operator S, we may
define a unital linear map

gbs - S1 — SF(D) by
b5(21 25 (2, y) = (87z, SFy),
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x,yeD,ge Ly,

extended by linearity to the sub-
space S7.

Theorem 4.1. Let S : D(S) C
H — H be a densely defined lin-
ear operator such that SD(S) C
D(S). The operator S admits a
normal extension if and only if
forallm € Zy,n € Nandzxy,...,Tn,
Y1y -, Yn € D(S) with

m

k
n m (MM L L

Sty SMysy < 1
g k)( i, S"yj) <1,

and for all p = (pjjk) e My(S1),
with sUp,ec H(1+\Z|2)_mp(2)Hn <

n o m
2 2

k k
1 (S :lﬁj,S CL']'> <1,
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1, we have

n
> : Y| < 1.
j,k:1<¢S(p]’k)ajk y]> =

Theorem 4.1 is a direct consequence
of a more general assertion, to be
stated in the sequel. A version of
the theorem above has been obtained
by Stochel and Szafraniec, via a com-
pletely different approach.

Let @ C C(2) be a set of positive
denominators. Fixa g € Q. A lin-
ear map ¢ : C(Q2)/q — SF (D) is
called unital if ¥(1)(x,y) = (x,y),
x,y €D.

We say that ¢ is positive if ()
is positive semidefinite for all f €

(CE)/q)+-
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More generally, let Qp C Q be
nonempty. Let C == co, C(£2)/q,
and let ¢ : C — SF(D) be lin-
car. The map v is said to be unital
(resp. positive) if ¥ |C(§2)/q is uni-
tal (resp. positive) for all ¢ € Qp.

We start with a part of a theorem

by Albrecht and V.

Theorem A. Let Qg C Q be
nonempty, let C =<, co, C(§2)/q,
and let ¢ : C — SF(D) be linear
and unital. The map Y is posi-
tive if and only if
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sup{|y(hg ™) (z,2)|: h € C(Q), ||h]loc < 1}
— w(q_l)(xvx% q € QO; x €D.

Let again Qp C Q be nonempty
and let F' = x,c o, Fq, where 1/q €
Fq and Fy is a vector subspace of
C'(Q2)/q for all ¢ € Q. Let ¢ :
F — SF(D) be linear. Suppose
that ¢(g~H)(z,z) > 0 for all z €
D\ {0} and ¢ € Qpy. Then ¢(1/q)
induces an inner product on D, and
let Dy be the space D, endowed
with the norm given by || % Hg =
6(1/g)(x, %)

Let My (Fq) (resp. Mp(F)) de-
note the space of n X n-matrices
with entries in F; (resp. in F) .

21



Note that Mp(F) = =40, Mn(Fq)
may be identified with a subspace

of the algebra of fractions C'(2, My,)/ Q,

where M, is the C*"-algebra of n x
n-matrices with entries in C. More-
over, the map ¢ has a natural ex-
tension ¢" : Mp(F) — SF(D"),
given by

O(E)xy) = X Sfa)(any))

7,k=1

for all £ = (f;r) € Mp(F) and
X = (x1,...,%0),y = (Y1, ., Yn) €
D"

Let ¢y = @™ | Mp(Fy). Endow-
ing the Cartesian product D" with
the norm [x|[2 = ="_; ¢(1/q)(x;, ;)
if x =(x1,...,2n) € D",
and denoting it by D/, we say that
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the map ¢" is contractive if ||¢g|| <
1 for all ¢ € Qp. Using the stan-
dard norm || * ||, in the space of

My, the space My (Fy) is endoved
with the norm

T Sup [(q(w) f5 1 (@))]n;

for all (f; 1) € Mn(Fyg)-
Following Arveson and Powers, we
shall say that the map ¢ : F —
SF(D) is completely contractive
if the map ¢" : My (F) — SF(D")
is contractive for all integers n > 1.
Note that a linear map ¢ : F —
S F (D) with the property ¢(1/q)(x, x) >
0 for all x € D\ {0} and ¢ €
Qo is completely contractive if and
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only if for all ¢ € Qp, n € N,
1y oy Tn,Yl,---,Yn € D with

jgl gb(q_l)(xj? x]) < 1

n —
j§1¢(q By y) <1,
and for all (f; ) € Mp(Fy) with

1(qf; 1) ln,co < 1, we have

O(fip)(wp,y5) < 1.

.

n
>
J.k=

1
Let us recall another result by Al-

brecht and V., given here in a shorter
form.

Theorem B. Let () be a com-
pact space and let @ C C(S2) be a
set of positive denominators. Let
also Qy be a cofinal subset of Q,
with 1 € Q.
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Let F = z,e9,Fq, where Fy
is a wvector subspace of C(Q)/q
such that 1/r € Fr C Fq for
all r € Qpy and q € Qpy, with
rlg. Let also ¢ : F — SF(D)
be linear and unital, and set g =
G| Fg, Ggu(*) = dq(x)(x,x) for all
g€ Qyandxz € D.

The following conditions are equiv-
alent:
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(@) The map ¢ extends to a uni-
tal, positive, linear map 1 on C(£2)/Q
such that, for all x € D and q €
Qo, we have: quaﬂf” — Hﬁbq,x”z
where g = $|C(Q)/g, val) =
¢q(*) (CC, ZU)

(b) (i) ¢(g~ ), x) > 0 for all
x € D\ {0} and q € Qy.

(22) The map ¢ is completely con-
tractive.

Remark. A "minimal” subspace
of C(€2)/Q to apply Theorem C
is obtained as follows. If Qp is a
cofinal subset of Q with 1 € Qj,
we define F; for some ¢ € Q) to
be the vector space generated by
all fractions of the form r/q, where
r € Qqand rlq.
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[t is clear that the subspace F =
qe Qg Jq has the properties required
to apply Theorem B.

Corollary C. Suppose that con-
dition (b) in Theorem B is satis-
fied. Then there exists a positive
B(H)-valued measure F' on the
Borel subsets of ) such that

for all f € F,x,y € D. For ev-
ery such measure F and every
q € Qp, we have F(Z(q)) = 0.

Example 4.2. We extend to in-
finitely many variables the Exam-
ple 2.5. Let Z be a (nonempty)
family of indices.
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Denote by z = (2,),e7 the inde-
pendent variable in CL. Let also
z=1(2,),e7- Let ng be the set of
all collections oo = (a,),e7 of non-
negative integers, with finite sup-
port. Setting 2 = 1for 0 = (0),c7

and 2% =1, oz for 2 = (2,),e7 €

CIJ @ = (O‘L>LEI = Zgl—z)v o F
0, we may consider the algebra of
those complex-valued functions St
on CL consisting of expressions of
the form =, ge 7 c&ﬁzo‘iﬁ, with ¢, 3
complex numbers for all o, 8 € 7,
where J C ZSFI ) is finite.

We can embed the space S7 into
the algebra of fractions derived from
the basic algebra C'((Coo)?),

using a suitable set of denomina-
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tors. Specifically, we consider the
family Rz consisting of all ratio-
nal functions of the form ry(t) =
m, 20(1 =+ 2]%) "%, 2 = (2,),e7 €
a, 70 L ) Lvel

CZ, where o = () € ZSFD, a #
0, is arbitrary. Of course, we set
ro = 1. The function r, can be

continuously extended to
(Z)

(Coo)E\CL for all « € ZY. In
fact, actually the function fg . (2) =

2PZVro(2) can be continuously ex-
tended to (Coo)? \ CT whenever

B+ v < 20, and B, = 7y, =

0if o = 0, for all ¢ € Z and

a, 3,7 € ZSFZ). Moreover, the fam-

ily R becomes a set of denomina-
tors in C'((Coo)¥). This shows that
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the space &7 can be embedded into

the algebra of fractions C'((Coo )2 ) /R7.
To be more specific, for all a €

ZSFZ), a # 0, we denote by Sgg

the linear spaces generated by the

monomials 27 Z7, with 8, + v, <

2c, whenever «, > 0, and 8, =
v, =0ita, =0. Puth%—C
We also define S5 (2 ) Jfora € Z a #

0, to be the linear Spaee generated
by the monomials |z|%” = n Bﬁéo(zbib)ﬁb,
0=+ 3,06 <a forall t € Z and
2

2] = (|2u])ez. We define SF) =
{0}. 1 2

Set St = Séjzy + 8%72)4 for all
a € ZSFI). Note that, if f € 574,
the tunction rof extends continu-
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ously to (Coo)? and that STa C
[t is now clear that the algebra

St = Zaez@ ST o can be identi-

fied with a subalgebra of C'((Cso )2 ) /R 7.
This algebra has the properties of

the space F appearing in the state-
ment of Theorem B.

Let now T' = (T,),e7 be a fam-
ily of linear operators defined on
a dense subspace D of a Hilbert
space ‘H such that T,(D) CD and
T\ Tex = TT,x for all 1,k € T,
x e€D.

Setting T'“ as in the case of com-
plex monomials, which is possible
because of the commutativity of the
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family T on D, we may define a
unital linear map ¢ : S — SF(D)
by

or(222%) (2, y) = (T%, T y),

forallz,y € D, a, 8 € Z'E), which

extends by linearity to the subspace
S7 generated by these monomials.

For all o, 8 in ng with 8 — «a €

ZSFI), and x € D\ {0}, we have

0 < (z,2) < ¢plry w, ) < ¢p(rz )z, z).

The polynomial 1/r, will be de-

noted by s, for all a € Z.

The family T' = (T,) 7 is said to
have a normal extension if there
exist a Hilbert space C D H and a
family N = (N,),e7 consisting of
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commuting normal operators in /C
such that D C D(N,) and N,z =
T,x forallx € Dand € 1.

A family T = (T,),e7 having a
normal extension is also called a
subnormal family.

The following result is a version of
theorem by Albrecht and V, valid
for an arbitrary family of operators
We mention that, the basic space
has been modified.

Theorem 4.3. LetT = (1)),c7
be a family of linear operators de-

fined on a dense subspace D of a
Hilbert space H.
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Assume that D is invariant un-
der T, for all v € T and that T is
a commuting family on D.

The family T admits a normal
extension if and only if the map
¢ : ST — SF(D) has the prop-
erty that for all o € ZSFI), m e N
and T1,...,Tm, Y1, Ym € D
with <71 or(sa)(zj,z;) < 1,
=i or(sa)(yy,y;) < 1, and for
all p = (pjr) € Min(Sz,o) with
sup,, ||ra(2)p(2)||lm < 1, we have

m
j%zlﬁbT(pj,k)(fﬁkayj) <1

Remark. Let S : D(S) C H
‘H be an arbitrary linear operator.

It B:DB)CK — K isa nor-
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mal operator such that H C K,
D(S) € D(B), Sx = PBx and
|Sx|| = || Bzl for all x € D(S),
where P is the projection of /I onto

H, then we have Sz = Bx for all

r € D(S). Indeed, (Sz,Sx) =

(Sx, Bxy and (Bx, Sx) = (PBx,Sx) =
(Sx,Sx) = (Bx, Bxr). Hence, we

have ||Sz — Bxl|| = 0 for all x €
D(S).

Remark 4.4. Let T = (T,),e1 be
a family of linear operators defined
on a dense subspace D of a Hilbert
space H. Assume that D is invari-
ant under 7, and that 71" is a com-
muting family on D. If the map
¢ - St — SF(D)) is as in The-

orem 2.3, the family has a proper
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quasi-invariant subspace. In other
words, there exists a proper Hilbert
subspace L of the Hilbert space ‘H
such that the subspace {x € D(T,)N
L;Tx € L} is dense in in L for
each ¢ € 7.

For the proof of Theorem 4.3, we
need the following version of the
spectral theorem.

Theorem 4.5. Let (N,),c1 be
a commuting family of normal op-
erators in H. Then there exists
a unique spectral measure G on
the Borel subsets of (Coo)t such
that each coordinate function

(COO)I S5z — 2z € Cx is G-
almost everywhere finite. In ad-
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dition,
(N, y) = /(@OO)I ZLdECE,y(Z)a
for all x € D(N,), y € H, where
D(N,) ={z € Hi e 2% d By 2 (2) < 00},

forall L€ 1.

If the set I is at most count-
able, then the measure G has sup-
port in CL.
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