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1. Introduction

The study of truncated moment problems means, roughly speaking, that
giving a finite multi-sequence of real numbers γ = (γα)|α|≤2m with γ0 > 0,
where α’s are multi-indices of a fixed length n ≥ 1 andm ≥ 0 is an integer, one
looks for a positive measure µ on Rn (usually called a representing measure
for γ) such that γα =

∫
tαdµ for all monomials tα with |α| ≤ 2m (see [3]–[5],

[7], [8] and their references, where the subject is extensively discussed). If
such a measure exists, we may always assume it to be atomic (see [1], [6],
[12], [17]).

We now introduce the terminology used in the paper and recall some
elementary facts, most of them well known, presented here in a slightly more
general context than the usual one (see also [18]).

Let S be a vector space consisting of complex-valued Borel functions,
defined on a topological space Ω. We assume that 1 ∈ S and if f ∈ S,
then f̄ ∈ S. For convenience, let us say that S, having these properties, is a
function space (on Ω). Occasionally, we use the notation RS to designate the
“real part” of S, that is {f ∈ S; f = f̄}.

Let also S(2) be the vector space spanned by all products of the form
fg with f, g ∈ S, which is itself a function space. We have S ⊂ S(2), and
S = S(2) when S is an algebra.
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Let S be a function space and let Λ : S(2) 7→ C be a linear map with
the following properties:

(1) Λ(f̄) = Λ(f) for all f ∈ S(2);
(2) Λ(|f |2) ≥ 0 for all f ∈ S;
(3) Λ(1) = 1.

Adapting some terminology from [11] to our context (see also [21]), a
linear map Λ with the properties (1)-(3) is said to be a unital square positive
functional, briefly a uspf.

When S is an algebra, conditions (2) and (3) imply condition (1).
In this case, a map Λ with the property (2) is usually said to be positive
(semi)definite.

Condition (3) may be replaced by Λ(1) > 0 but (looking for probability
measures representing such a functional) we always assume (3) in the stated
form, without loss of generality.

The (abstract) moment problem for a given uspf Λ : S(2) 7→ C, where S
is a fixed function space on a topological space Ω, means to find conditions
insuring the existence of a probability measure µ with support in Ω, such
that Λ(f) =

∫
fdµ, f ∈ S(2). When such a measure µ exists, it is said to be

a representing measure for Λ.

Note that the map S(2) 3 f 7→
∫
fdµ ∈ C, where µ is a probability

measure with support in Ω, is a uspf, as one can easily see.

If Λ : S(2) 7→ C is a uspf, we have the Cauchy-Schwarz inequality:

|Λ(fg)|2 ≤ Λ(|f |2)Λ(|g|2), f, g ∈ S. (1.1)

Putting IΛ = {f ∈ S; Λ(|f |2) = 0}, the Cauchy-Schwarz inequality
shows that IΛ is a vector subspace of S and that S 3 f 7→ Λ(|f |2)1/2 ∈ R+

is a seminorm. Moreover, the quotient S/IΛ is an inner product space, with
the inner product given by

〈f + IΛ, g + IΛ〉 = Λ(fḡ). (1.2)

In fact, IΛ = {f ∈ S; Λ(fg) = 0 ∀g ∈ S} and IΛ · S ⊂ ker(Λ). If S is finite
dimensional, then HΛ := S/IΛ is actually a Hilbert space.

Throughout this paper n ≥ 1 will be a fixed integer. To present the most
significant examples (from our point of view) of function spaces, we freely use
multi-indices from Zn+ and the standard notation related to them.

If not otherwise specified, the symbol P will designate the algebra of all
polynomials in t = (t1, . . . , tn) ∈ Rn, with complex coefficients. (Although
the polynomials with real coefficients seem to be more appropriate for these
problems, we prefer polynomials with complex coefficients because of the
systematic use of some associated complex Hilbert spaces.)

For every integer m ≥ 0, let Pm be the subspace of P consisting of all
polynomials p with deg(p) ≤ m, where deg(p) is the total degree of p. Note

that P(2)
m = P2m and P(2) = P, the latter being an algebra.
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We occasionally use the notation Pnm instead of Pm, when the number
n should be specified.

Choosing a finite multi-sequence of real numbers γ = (γα)|α|≤2m, γ0 =
1, we associate it with a map Λγ : P2m 7→ C given by Λγ(tα) = γα, extended
to P2m by linearity. The map Λγ is usually called the Riesz functional asso-

ciated to γ. We clearly have Λγ(1) = 1 and Λγ(p̄) = Λγ(p) for all p ∈ P2m.
If, moreover, Λγ(|p|2) ≥ 0 for all p ∈ Pm, then Λγ is a uspf. In this case, we
say that γ itself is square positive.

Conversely, if Λ : P2m 7→ C is a uspf, setting γα = Λ(tα), |α| ≤ 2m, we
have Λ = Λγ , as above. The square positive multi-sequence γ is said to be
the multi-sequence associated to the uspf Λ.

To find a representing measure for the map Λγ means to solve a trun-
cated moment problem (see [3]–[8] for other details).

Similarly, to solve the full (or the multidimensional Hamburger) moment
problem means to find a representing measure for the map Λγ : P 7→ C,
defined for a multi-sequence γ = (γα)α≥0, γ0 = 1 (see [2] for other details).
Various results concerning the integral representations for truncated (and
full) moment problems will be given throughout this text.

Let Ξ = {ξ(1), . . . , ξ(d)} ⊂ Rn and let C(Ξ) be the (finite dimensional)
C∗-algebra of all complex-valued functions defined on Ξ, endowed with the
sup-norm. If t = (t1, . . . , tn) is the n-tuple of coordinate functions in Rn,
every element of C(Ξ) is a polynomial in the restrictions t1|Ξ, . . . , tn|Ξ, via
Lagrange (or other) interpolating polynomials (or by a weak form of the
Weierstrass-Stone theorem).

For every integer m ≥ 0 we have the restriction map Pm 3 p 7→ p|Ξ ∈
C(Ξ). Let us fix an integer m for which this map is surjective (which exists

again by using interpolating polynomials). Let also µ =
∑d
j=1 λjδξ(j) , with

δξ(j) the Dirac measure at ξ(j), λj > 0 for all j = 1, . . . , d, and
∑d
j=1 λj = 1.

We put Λ(p) =
∫

Ξ
pdµ for all p ∈ P2m, which is a uspf, for which µ is a

representing measure.

Let now f ∈ C(Ξ) be an idempotent. In other words, f is the caracter-
istic function of a subset of Ξ. Our assumption on the restriction map implies
the existence of a polynomial p ∈ Pm, which may be supposed to have real
coefficients, such that p|Ξ = f . Consequently, Λ(p2) =

∫
Ξ
p2dµ =

∫
Ξ
pdµ =

Λ(p). This shows that some of the solutions the equation Λ(p2) = Λ(p), which
can be expressed only in terms of Λ, play an important role when trying to
reconstruct the representing measure µ. This simple remark is the starting
point of our approach to truncated moment problems.

In most of the papers by Curto and Fialkow (see especially [3],[4]), the
approach to truncated moment problems is based on an associated moment
matrix, whose positivity and flatness (see Remark 11(2)) lead to the exis-
tence (and uniqueness) of the solutions. The use of the Riesz functional to
solve various moment problems and related topics appears in several works,
as for instance [9], [10], [11], [13]-[15], [19]-[21] etc. Introducing a concept
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of idempotent element with respect to a unital square positive functional
(see Definition 1), we attempt, in the following, to give a new approach to
truncated moment problems, using only intrinsic conditions.

Let us briefly present the contents of this work. In the next section,
idempotents associated to unital square positive functionals are introduced
and some of their elementary properties are discussed. Of particular interest
are those families of idempotents, mutually orthogonal with respect to a given
unital square positive functional.

The third section deals with integral representations of unital square
positive functionals, via orthogonal familes of associated idempotents, which
are our main results. Theorem 2 and Corollary 3 characterize, in terms of
idempotents, and in an intrinsic manner, the existence of representing mea-
sures having a number of atoms equal to the maximal cardinality of an orthog-
onal family of idempotents. The key of this characterization is our condition
(3.3), which is a weighted multiplicativity of the corresponding unital square
positive functional, and which is more general than the flatness condition
but still implying the recursiveness property (for these notions see [3],[4]; see
also Remark 11). In fact, condition (3.3) provides a finite system of second
degree equations, whose solutions solve, in principle, the corresponding trun-
cated moment problem (see Remark 8(1)). Some criteria (see Example 4,
Proposition 4, Remark 10 etc.) lead to effective solutions for some truncated
moment problems, as illustrated by examples. A version of the well-known
Tchakaloff theorem is also obtained via our methods (see Corollary 4). The-
orem 3 presents the case when the associated Hankel matrix of a uspf (see
Remark 3) is invertible. Section 3 ends with a characterization of the solutions
of the full moment problems in terms of families of orthogonal idempotents
(see Theorem 4).

Finally, the last section contains a discussion concerning the connec-
tion between point evaluations and integral representations of unital square
positive functionals. Theorem 5 characterizes the existence of representing
measures of unital square positive functionals, having an arbitrary number
of atoms, in terms of projections of idempotent elements.

2. Idempotents with respect to a uspf

In this section we define the concept of idempotent element with respect to
a given uspf, and present some elementary properties of idempotents.

Let S be a finite dimensional function space on a topological space
Ω. Fixing a uspf Λ : S(2) 7→ C, let IΛ = {p ∈ S; Λ(|p|2) = 0}, and let
HΛ = S/IΛ, which has a Hilbert space structure induced by Λ (see the
Introduction). We denote 〈∗, ∗〉, ‖ ∗ ‖, the inner product, as in (1.2), and the
norm induced on HΛ by Λ, respectively. For every p ∈ S, we put p̂ = p+IΛ ∈
HΛ, and the representative p will be freely chosen, once an equivalent class
is given.
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The symbol RHΛ will designate the subspace {p̂ ∈ HΛ; p ∈ RS}, that
is, the set of “real” elements from HΛ, which is a real Hilbert space.

If p̂ ∈ RHΛ, we always suppose the representative p ∈ RS.

Definition 1. An element p̂ ∈ RHΛ is said to be Λ-idempotent (or simply
idempotent if Λ is fixed) if it is a solution of the equation

‖p̂‖2 = 〈p̂, 1̂〉. (2.1)

Remark 1. (i) Note that p̂ ∈ RHΛ is idempotent if and only if Λ(p2) = Λ(p),
via (1.2).

Set

ID(Λ) = {p̂ ∈ RHΛ; ‖p̂‖2 = 〈p̂, 1̂〉 6= 0}, (2.2)

which is the family of nonnull idempotent elements from RHΛ. This family
is nonempty because 1̂ ∈ ID(Λ).

Note that two elements p̂, q̂ ∈ HΛ are orthogonal if and only if Λ(pq̄) = 0.
(ii) If T is a another finite dimensional function space on Ω such that

T ⊃ S, and Λ2 : T (2) 7→ C is a uspf, then obviously Λ1 = Λ2|S(2) is a uspf.
Moreover, ID(Λ1) ⊂ ID(Λ2). Indeed, it is known (see [21]) and easily seen
(via (1.1) and (1.2)) that IΛ1

⊂ IΛ2
and S ∩ IΛ2

= IΛ1
, showing that HΛ1

can be isometrically embedded into HΛ2
. For this reason, HΛ1

may and will
be regarded as a subspace of HΛ2 , and we have the desired inclusion.

Lemma 1. (1) If p̂, q̂, p̂− q̂ ∈ ID(Λ), then q̂ and p̂− q̂ are orthogonal.

(2) If q̂ ∈ ID(Λ), q̂ 6= 1̂, then 1̂−q̂ ∈ ID(Λ), and q̂, 1̂−q̂ are orthogonal.

(3) If {p̂1, . . . , p̂d} ⊂ ID(Λ) are mutually orthogonal, then
∑d
j=1 p̂j ∈

ID(Λ).

Proof. (1) Indeed, by Remark 1(i),

Λ(p) = Λ(p2) = Λ(q2 + 2q(p− q) + (p− q)2) =

Λ(q) + 2Λ(q(p− q)) + Λ(p− q) = Λ(p) + 2Λ(q(p− q)),
whence Λ(q(p− q)) = 0.

(2) If q̂ ∈ ID(Λ), q̂ 6= 1̂, then

Λ((1− q)2) = Λ(1− q),

so 1̂− q̂ ∈ ID(Λ), implying q̂, 1̂− q̂ orthogonal, by (1).

(3) Setting p =
∑d
j=1 pj , we have

Λ(p2) = Λ(

d∑
j,k=1

pjpk) = Λ(

d∑
j=1

p2
j ) = Λ(

d∑
j=1

pj) = Λ(p),

so p̂ ∈ ID(Λ). �

Lemma 2. Let {b̂1, . . . , b̂d} ⊂ ID(Λ), consisting of mutually orthogonal el-

ements. The family {b̂1, . . . , b̂d} is maximal with respect to inclusion if and

only if b̂1 + · · ·+ b̂d = 1̂.
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Proof. Assume the family {b̂1, . . . , b̂d} to be maximal with respect to inclu-

sion. Note that b̂ =
∑d
j=1 b̂j ∈ ID(Λ), by Lemma 1(3).

Assume now that b̂0 = 1̂− b̂ 6= 0. Then we have b̂0 ∈ ID(Λ) by Lemma
1(2). Moreover

Λ(b0bk) = Λ(bk −
d∑
j=1

bjbk) = Λ(bk − b2k) = 0,

showing that the family {b̂0, b̂1, . . . , b̂d} consists of mutually orthogonal ele-

ments, which contradicts the maximality of {b̂1, . . . , b̂d}. Consequently, b̂1 +

· · ·+ b̂d = 1̂.
Conversely, let {b̂1, . . . , b̂d} be such that b̂1 + · · ·+ b̂d = 1̂. If b̂ ∈ ID(Λ)

is orthogonal to b̂1, . . . , b̂d, then

‖b̂‖2 = 〈b̂, 1̂〉 =

d∑
j=1

〈b̂, b̂j〉 = 0,

which is not possible. Hence the family {b̂1, . . . , b̂d} is maximal with respect
to inclusion. �

Remark 2. (1) Obviously, the cardinal of every family consisting of mutually
orthogonal elements in ID(Λ) is necessarily less or equal to dimHΛ, which
is finite. Moreover, the cardinal of a family consisting of mutually orthog-
onal elements in ID(Λ), which is maximal with respect to inclusion, may

be strictly less than dimHΛ. Indeed, if {b̂1, . . . , b̂d} ⊂ ID(Λ) is a family of

mutually orthogonal elements, with b̂1 + · · · + b̂d = 1̂ and 3 ≤ d ≤ dimHΛ,

setting ĉ1 = b̂1 and ĉ2 = b̂2 + · · ·+ b̂d, we get a family {ĉ1, ĉ2} ⊂ ID(Λ) of two
orthogonal elements, which is maximal with respect to inclusion by Lemma
2, but whose cardinal is strictly less than dimHΛ.

Let us denote by mc(Λ) the greatest cardinal of an orthogonal family
in ID(Λ) (which is necessarily maximal with respect to inclusion). We shall
show (see Theorem 1) that actually mc(Λ) = dimHΛ.

(2) Of course, the notation dimHΛ used above means the (complex)
dimension of the complex vector space HΛ. As we have HΛ = RHΛ + iRHΛ,
it follows that every orthonormal basis of RHΛ is also an orthonormal basis
of HΛ. Consequently, the dimension of the real space RHΛ coincides with
the dimHΛ.

Definition 2. Let p̂ ∈ ID(Λ). We say that p̂ is decomposable if there exists an
element q̂ such that

(1) q̂, p̂− q̂ ∈ ID(Λ);
(2) if p̂, r̂ are orthogonal for some r̂ ∈ ID(Λ), then q̂, r̂ are orthogonal.
We say that p̂ ∈ ID(Λ) is minimal if p̂ is not decomposable.

Lemma 3. Every element in ID(Λ) is either minimal or a sum of mutually
orthogonal and minimal idempotents.
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Proof. Let p̂ ∈ ID(Λ). If p̂ is minimal there is nothing to prove. Hence we may
assume p̂ = q̂1 + q̂2, with q̂1, q̂2 ∈ ID(Λ), by Definition 2(1). Then q̂1, q̂2 are
orthogonal, by Lemma 1(1). If both q̂1, q̂2 are minimal, we have the assertion.
If q̂1 = q̂11 + q̂12 with q̂11, q̂12 ∈ ID(Λ), then q̂11, q̂12 are orthogonal again by
Lemma 1(1). Moreover, q̂11, q̂2 and q̂12, q̂2 are orthogonal by Definition 2(2),
because q̂1, q̂2 are orthogonal. If the elements q̂11, q̂12, q̂2 are minimal, we
are done. If not, we decompose again those of them which are not minimal,
and continue the procedure obtaining at each stage a family of mutually
orthogonal elements, whose sum is p̂. The procedure has an end, because the
basic space is finite dimensional. �

From now on we investigate the existence of orthogonal families of idem-
potents with respect to a given uspf Λ : P2m 7→ C.

Let BΛ = {v̂ ∈ RHΛ; ‖v̂‖ = 1}.

Lemma 4. Let Λ : S(2) 7→ C be a uspf. We have the following properties.
(1) ID(Λ) = {〈v̂, 1̂〉v̂; v̂ ∈ BΛ, 〈v̂, 1̂〉 6= 0} = {Λ(v)v̂; v̂ ∈ BΛ,Λ(v) 6= 0}.
(2) The map

B1
Λ 3 v̂ 7→ 〈v̂, 1̂〉v̂ ∈ ID(Λ) (2.3)

is bijective, where B1
Λ = {v̂ ∈ BΛ; 〈v̂, 1̂〉 6= 0}.

(3) If {v̂1, . . . , v̂d} ⊂ BΛ is an orthogonal family satisfying the condition

〈v̂j , 1̂〉 6= 0, j = 1, . . . , d, then {〈v̂1, 1̂〉v̂1, . . . 〈v̂d, 1̂〉v̂d} is an orthogonal family
of nonnull idempotents.

(4) Let {v̂1, . . . , v̂d} ⊂ BΛ is an orthonormal basis of HΛ with 〈v̂j , 1̂〉 6=
0, j = 1, . . . , d. Then {〈v̂1, 1̂〉v̂1, . . . 〈v̂d, 1̂〉v̂d} is an orthogonal basis of HΛ

consisting of idempotents. Moreover,

〈v̂1, 1̂〉v̂1 + · · ·+ 〈v̂d, 1̂〉v̂d = 1̂.

Proof. (1) Indeed, if b̂ ∈ ID(Λ), then b̂ 6= 0, and v̂ = b̂/‖b̂‖ ∈ BΛ satisfies the

equation 〈v̂, 1̂〉v̂ = b̂.

Conversely, if b̂ = 〈v̂, 1̂〉v̂ for some v̂ ∈ BΛ with 〈v̂, 1̂〉 6= 0, then ‖b̂‖2 =

〈b̂, 1̂〉 6= 0.
(2) and (3) follow directly from (1).
(4) Let {v̂1, . . . , v̂d} ⊂ BΛ be an orthonormal basis of HΛ (see Remark

2(2)) with 〈v̂j , 1̂〉 6= 0, j = 1, . . . , d. Then {〈v̂1, 1̂〉v̂1, . . . 〈v̂d, 1̂〉v̂d} is an or-
thogonal basis of HΛ consisting of idempotents, via (3).

The last equality follows by Lemma 2. �

Theorem 1. For every uspf Λ : S(2) 7→ C we have the equality mc(Λ) =
dimHΛ.

Proof. If d := dimHΛ = 1, the assertion is clear. Hence we may assume
d > 1. Using Lemma 4(4), we have to prove the existence of orthonormal

basis {v̂1, . . . , v̂d} ⊂ BΛ of RHΛ such that 〈v̂j , 1̂〉 6= 0, j = 1, . . . , d. Note first

that we have the orthogonal decompositionRHΛ = R1̂⊕RH0
Λ, whereRH0

Λ =
{p̂ ∈ RHΛ; Λ(p) = 0}. Then we choose an orthonormal basis {ŵ2, . . . , ŵd} of
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RH0
Λ, and put ŵ1 = 1̂. Applying an appropriate rotation to the orthonormal

basis {ŵ1, . . . , ŵd}, we can get an orthonormal basis {v̂1, . . . , v̂d} such that

v̂j /∈ RH0
Λ for all j = 1, . . . , d. Therefore, 〈v̂j , 1̂〉 6= 0, j = 1, . . . , d. �

Corollary 1. Let Λ : S(2) 7→ C be a uspf. Then there are functions b1, . . . , bd ∈
RS such that Λ(b2j ) = Λ(bj) > 0, Λ(bjbk) = 0 for all j, k = 1, . . . , d, j 6= k,
and every p ∈ S can be uniquely represented as

p =
d∑
j=1

Λ(bj)
−1Λ(pbj)bj + p0,

with p0 ∈ IΛ and d = dimHΛ.

Proof. Theorem 1 asserts that the Hilbert space HΛ has orthogonal bases

consisting of idempotent elements. If B = {b̂1, . . . , b̂d} is such a basis, then

p̂ =

d∑
j=1

Λ(bj)
−1Λ(pbj)b̂j , p̂ ∈ HΛ,

where d = dimHΛ, which leads to formula p =
∑d
j=1 Λ(bj)

−1Λ(pbj)bj + p0,
for every p ∈ S, with p0 ∈ IΛ, by fixing representatives b1, . . . , bd ∈ RS for

b̂1, . . . , b̂d, respectively.
Clearly, b1, . . . , bd ∈ RS is a linearly independent family of vectors in

S. Denoting by G the linear span of {b1, . . . , bd} in S, we have G ∩ IΛ = {0}.
Indeed, if q =

∑d
j=1 θjbj ∈ IΛ, with θj complex scalars, then

Λ(|q|2) =

d∑
j,k=1

θjθkΛ(bjbk) =

d∑
j=1

|θj |2Λ(bj) = 0,

whence q = 0, because Λ(bj) > 0 for all j. Therefore, the representation

p =
∑d
j=1 Λ(bj)

−1Λ(pbj)bj +p0, for every p ∈ S, with p0 ∈ IΛ, is unique. �

Remark 3. We are especially interested by the following particular case.
Let Λ : P2m 7→ C be a uspf and let γ = (γα)|α|≤2m be the multi-sequence

associated to Λ. Then A = AΛ = (γξ+η)|ξ|,|η|≤m is a positive matrix with real
entries, acting as an operator on Pm, whose Hilbert space structure is built
by identifying this space with CN via the isomorphism

CN 3 x = (xα)|α|≤m 7→ px =
∑
|α|≤m

xαt
α ∈ Pm, (2.4)

where N is the cardinal of the set {ξ ∈ Zn+; |ξ| ≤ m} = dimPm. We therefore

have (px|py) = (x|y), and |||px||| = |||x||| for all x, y ∈ CN , where (∗|∗) (resp.
||| ∗ |||) is the standard scalar product (resp. norm) on CN . Then A = AΛ is
the (positive) operator with the property (Ap|q) = Λ(pq̄) for all p, q ∈ Pm.
The operator A will be occasionally called the Hankel operator of the uspf
Λ. Note that IΛ is equal to null-space N(A) of A, and HΛ is isomorphic to
range R(A) of A. Note also that the elements p̂, q̂ are orthogonal in HΛ if
and only if (Ap|q) = (Bp|Bq) = 0, where B = A1/2.
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Let us write an equation equivalent to (2.1) in this particular context,
that is, an equation of the form Λ(p2) = Λ(p), p ∈ RPm, using the isomor-
phism (2.4).

As we have Λ(p2
x) = (Ax|x) and Λ(px) = Λ(pιpx) = (Aι|x), where

ι = (1, 0, . . . , 0) ∈ RN and pι = 1, the equation we look for has the form

(Ax|x)− (Aι|x) = 0, (2.5)

which is called idempotent equation of the uspf Λ.
Note that Λ(p2

x) = (Ax|x) = 0 implies Λ(px) = (Aι|x) = 0, via the
Cauchy-Schwarz inequality, showing that all real elements from IΛ are so-
lutions of eq.(2.5). Since all these elements are equivalent to zero, we are
intrested only in nonnull real solutions x = x(1) ∈ R(A) = R(A1), where
A1 = A|R(A).

Proceeding as in Lemma 4, specifically using as parameters the elements
of the set S1 := {v1 ∈ R(A1) ∩ RN ; |||v1||| = 1}, the nonnull solutions of the
equation (2.5) in R(A1)) ∩ RN are given by

x(1) =
(ι|A1v1)

(A1v1|v1)
v1, v1 ∈ S1, (ι|A1v1) 6= 0.

Example 1. As in [7], Example 2.1, we consider the matrix

A =

 1 1 1
1 1 1
1 1 2

 ,
acting as an operator on C3 . In fact, the matrix A is the Hankel operator
associated to a certain uspf (see Example 3).

If x = (x1, x2, x3) ∈ C3 is arbitrary, we have

Ax = (x1 + x2 + x3, x1 + x2 + x3, x1 + x2 + 2x3)

and
(Ax|x) = |x1 + x2 + x3|2 + |x3|2 ≥ 0,

so the operator A is positive.
We are interested in the solutions of the idempotent equation (Ax|x) =

(Aι|x), where ι = (1, 0, 0). It is easily seen that

N(A) = {(x,−x, 0);x ∈ C}, R(A) = {(y, y, z); y, z ∈ C}.
As we have C3 = N(A) ⊕ R(A), each x = (x1, x2, x3) ∈ C3 can be uniquely
written under the form

(x1, x2, x3) =

(
x1 − x2

2
,
x2 − x1

2
, 0

)
⊕
(
x1 + x2

2
,
x1 + x2

2
, x3

)
as an element of N(A)⊕R(A). Looking only for solutions (y, y, z) ∈ R(A) of
the idempotent equation, we must have

(A(y, y, z)|(y, y, z)) = ((1, 1, 1))|(y, y, z)),
because Aι = (1, 1, 1) ∈ R(A). This is equivalent to the equality

4y2 + 4yz + 2z2 − 2y − z = 0, (2.6)
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which represents an ellipse passing through the origin.

For instance, the vectors u = (0, 0, 1/2) and v = (1/2, 1/2,−1/2) are
solutions in R(A) of the idempotent equation, with (Bu|Bv) = 0, where
B = A1/2, as one can easily see.

Example 2. As in the Introduction, let Ξ = {ξ(1), . . . , ξ(d)} ⊂ Rn and let C(Ξ)
be the (finite dimensional) C∗-algebra of all complex-valued functions defined

on Ξ, endowed with the sup-norm. Let also µ =
∑d
j=1 λjδξ(j) , with δξ(j) the

Dirac measure at ξ(j), λj > 0 for all j = 1, . . . , d, and
∑d
j=1 λj = 1. We put

M(p) =
∫

Ξ
pdµ for all p ∈ C(Ξ), which is a uspf. Endowed with the Hilbert

space structure induced by the measure µ, the space C(Ξ) will be denoted
by L2(Ξ, µ). Therefore, if S = S(2) = C(Ξ) is the given function space, and
M : S(2) 7→ C is the given uspf, we have IM = {p ∈ S(2);M(|p|2) = 0} = {0}
and HM = S/IM = L2(Ξ, µ).

The space L2(Ξ, µ) has a standard family of mutually orthogonal M -
idempotents, say {χ1, . . . , χd}, where χj is the characteristic function of the

set {ξ(j)}, j = 1, . . . , d, which is, in fact, an orthogonal basis of L2(Ξ, µ).

Let us fix an integer m ≥ 0 and let ρ : P2m 7→ C(Ξ) be the restriction
map. Then Λ : P2m 7→ C, given by Λ(p) = M(ρ(p)), p ∈ P2m, is a uspf. In
addition, we have IΛ = {p ∈ Pm; p|Ξ = 0}, and the map ρ̂ : HΛ 7→ L2(Ξ, µ)
induced by ρ is injective. In fact, as we clearly have

‖ρ̂(p̂)‖L2(Ξ,µ) = ‖p̂‖HΛ
, p̂ ∈ HΛ,

this map is acuallly an isometry.

As noticed in the Introduction, for a sufficiently large m, the map ρ̂ is
also surjective. In this case, the operator ρ̂ : HΛ 7→ L2(Ξ, µ) is unitary.

Assuming the map ρ̂ : HΛ 7→ L2(Ξ, µ) unitary, and setting b̂j = ρ̂−1(χj),
j = 1, . . . , d, we can write that

Λ(bjbk) = M(ρ(bjbk)) = M(ρ(bj)ρ(bk)) = M(χjχk), j, k = 1, . . . , d,

showing that {b̂1, . . . , b̂d} is an orthogonal basis consisting of Λ-idempotent
elements.

Let us finally note that

Λ(tα+βbj) =

∫
{ξ(j)}

tα+βdµ(t) = M(χj)(ξ
(j))α+β =

M(χj)(ξ
(j))α(ξ(j))β = Λ(bj)

−1Λ(tαbj)Λ(tβbj).

for all α, β with |α| + |β| ≤ m and j = 1, . . . , d. This equality, which is a
“weighted multiplicativity” with respect to Λ, plays an important role in the
characterization of those uspf having a representing measure with dimHΛ

atoms (see Definition 3 and Theorem 2).
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3. Integral representations of uspf ’s

This section is dedicated to the study of various integral representations of
uspf’s or of their restrictions to some subspaces. As in the Introduction, if S
is a given finite dimensional function space, we set IΛ = {f ∈ S; Λ(|f |2) = 0},
while HΛ is the finite dimensional Hilbert space S/IΛ.

Remark 4. Let S be a finite dimensional function space, and let Λ : S(2) 7→ C
be a uspf. According to Theorem 1, the space HΛ has orthogonal bases con-
sisting of idempotent elements. If B is such a basis, we may speak about the
C∗-algebra structure of HΛ induced by B, in a sense to be explained in the
following. More generally, if B ⊂ ID(Λ) is a collection of nonnull mutually

orthogonal elements whose sum is 1̂, and if HB is the complex vector space
spanned by B in HΛ, we may speak about the C∗-algebra (structure of) HB
induced by B. Using the basis B of the space HB, we may define a multiplica-
tion, an involution, and a norm onHB, making it a unital, commutative, finite

dimensional C∗-algebra. Specifically, if B = {b̂1, . . . , b̂d} with 1̂ =
∑d
j=1 b̂j ,

and if p̂ =
∑d
j=1 αj b̂j , q̂ =

∑d
j=1 βj b̂j , are elements from HB, their product

is given by p̂ · q̂ =
∑d
j=1 αjβj b̂j . The involution is defined by p̂∗ =

∑d
j=1 αj b̂j ,

and the norm is given by ‖p̂‖∞ = max1≤j≤d |αj |, for p̂ =
∑d
j=1 αj b̂j .

Note that if for p, q ∈ S we also have pq ∈ S, the element p̂ · q̂ is, in
general, different from p̂q.

It is easily seen that the space of characters of the C∗-algebra HB
induced by B, say ∆ = {δ1, . . . , δd}, coincides with the dual basis of B.
As HB is also a Hilbert space as a subspace of HΛ, we note that δj(p̂) =

Λ(bj)
−1〈p̂, b̂j〉, p̂ ∈ HB, j = 1, . . . , d.

Although some of the following assertions hold true in the context of
finite dimensional function spaces, from now on we assume S = Pm for
some given integer m ≥ 0, which is the most significant case for this type of
problem.

Proposition 1. Let Λ : P2m 7→ C be a uspf, let B = {b̂1, . . . , b̂d} ⊂ ID(Λ) be

a collection of mutually orthogonal elements with 1̂ =
∑d
j=1 b̂j, and let HB

be the complex vector space spanned by B in HΛ.
Let ∆ be the space of characters of the C∗-algebra HB, induced by B. If

SB = {p ∈ Pm; p̂ ∈ HB}, there exists a linear map SB 3 p 7→ p# ∈ C(∆),
whose kernel is IΛ, such that

Λ(p) =

∫
∆

p#(δ)dµ(δ), p ∈ SB,

where µ is a d-atomic probability measure on ∆.

Proof. For a fixed choice b1, . . . , bd in RPm of representatives from the cor-

responding classes b̂1, . . . , b̂d, we put GB to be the linear span of the set
{b1, . . . , bd}. Then we have SB = GB + IΛ, which is a direct sum, by an argu-
ment from the proof of Corollary 1. This decomposition allows us to define a
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linear map SB 3 p 7→ p# ∈ C(∆) via the equality p#(δ) = δ(p̂) for all p ∈ SB
and δ ∈ ∆. It is obvious that the kernel of the map SB 3 p 7→ p# ∈ C(∆) is
precisely IΛ.

For an arbitrary p ∈ SB, we have a representation of the form p =
τ1b1 + · · ·+ τdbd + rp, where τj = δj(p̂), j = 1, . . . , d, and rp ∈ IΛ. Hence,

Λ(p) =

d∑
j=1

τjΛ(bj) =

∫
∆

p#(δ)dµ(δ),

where µ is the measure with weights Λ(bj) at δj , j = 1, . . . , d, which is a
d-atomic probability measure on ∆, because Λ(bj) = Λ(b2j ) > 0 for all j and
Λ(b1) + · · ·+ Λ(bd) = Λ(1) = 1. �

Proposition 2. Let Λ : P2m 7→ C be a uspf, and assume that the space HΛ

is endowed with the C∗-algebra structure induced by an orthogonal basis con-
sisting of idempotent elements. Let also HC be the sub-C∗-algebra generated
by the set C = {1̂, t̂1, . . . , t̂n} in HΛ. Then there exist a finite subset Ξ of Rn,
whose cardinal is ≤ dimHΛ, and a linear map SC 3 u 7→ u# ∈ C(Ξ), whose
kernel is IΛ, such that

Λ(u) =

∫
Ξ

u#(ξ)dµ(ξ), u ∈ SC ,

where SC = {u ∈ Pm; û ∈ HC}, and µ is a probability measure on Ξ.

Proof. Let B = {b̂1, . . . , b̂d} be an orthogonal basis of HΛ consisting of
idempotent elements, inducing the C∗-algebra structure of HΛ. Let also
∆ = {δ1, . . . , δd} be the set of all characters of the C∗-algebra HΛ. First
of all, we shall deal with the structure of the sub-C∗-algebra HC generated
by the set C = {1̂, t̂1, . . . , t̂n} in HΛ. Obviously, the algebra HC consists of

arbitrary polynomials in t̂1, . . . , t̂n. We can write t̂k = τk1b̂1 + · · · + τkdb̂d,
where τkj = δj(t̂k), k = 1, . . . , n, j = 1, . . . , d. Put τ (j) = (τ1j , . . . , τnj) ∈
Rn, j = 1, . . . , d. Let us show, by recurrence, that

t̂α =

d∑
j=1

(τ (j))αb̂j , (3.1)

where t̂ = (t̂1, . . . , t̂n), so t̂α = (t̂1)α1 · · · (t̂n)αn , (τ (j))α = (τ1j)
α1 · · · (τnj)αn ,

for all multi-indices α = (α1, . . . , αn) with |α| ≤ m. Indeed, assuming that
(3.1) holds if |α| < m, we have, for some fixed k ∈ {1, . . . , n},

t̂k · t̂α =

n∑
l=1

d∑
j=1

τkl(τ
(j))αb̂l · b̂j =

d∑
j=1

τkj(τ
(j))αb̂j = t̂α(k) ,

where α(k) = (α1, . . . , αk−1, αk + 1, αk+1 . . . , αn), showing that (3.1) holds

whenever |α| ≤ m. Consequently, p(t̂) =
∑d
j=1 p(τ

(j))b̂j for every p ∈ P.

Let Ξ = {ξ(1) . . . , ξ(v)} be the distinct points from the set {τ (1) . . . , τ (d)},
where v ≤ d. Let also Ij = {k; τ (k) = ξ(j)}, j = 1, . . . , v.



Truncated Moment Problems 13

If p ∈ P is arbitrary, then, as above,

p(t̂) =

v∑
j=1

p(ξ(j))ĉj , (3.2)

where ĉj =
∑
k∈Ij b̂k, j = 1, . . . , v, which is a family of mutually orthogonal

idempotents, whose sum is 1̂.
Consider now the space S ′C given by

S ′C = {
v∑
j=1

p(ξ(j))cj + r; p ∈ P|Ξ, r ∈ IΛ} = GC + IΛ,

with GC = {
∑v
j=1 p(ξ

(j))cj ; p ∈ P|Ξ}, where P|Ξ is the space of all restric-
tions of arbitrary polynomials to the set Ξ.

Let us remark that the sum GC+IΛ is direct. If w =
∑v
j=1 p(ξ

(j))cj ∈ IΛ,

then, as in the proof of Corollary 1, namely using the identity Λ(|w|2) = 0,
we infer that p(ξ(j)) = 0, j = 1, . . . , v, and thus w = 0. In particular, if
u =

∑v
j=1 p(ξ

(j))cj + r ∈ S ′C , the function p|Ξ is uniquely determined.

Further, we have a linear map S ′C 3 u 7→ u# ∈ C(Ξ), defined in the

following way. Taking an element u =
∑v
j=1 p(ξ

(j))cj + r ∈ S ′C for some

p ∈ P and r ∈ IΛ, we put u#(ξ) = p(ξ), ξ ∈ Ξ. As the function p|Ξ is
uniquely determined by u, the definition of u# is correct, the assignment
u 7→ u# is linear, and its kernel is precisely IΛ. In addition, S ′C ⊃ {u ∈
Pm; û ∈ HC} = SC , via (3.2).

Consequently, if u =
∑v
j=1 p(ξ

(j))cj + r for some p ∈ P and r ∈ IΛ, we
have

Λ(u) =

v∑
j=1

p(ξ(j))Λ(cj) =

∫
Ξ

u#(ξ)dµ(ξ),

where µ is the measure with weights Λ(cj) at ξ(j), j = 1, . . . , v, which con-
cludes the proof. �

Remark 5. With the notation of the previous proof, the idempotents b̂1, . . . , b̂d
are minimal because they form an orthogonal basis of HΛ, while the idem-
potents ĉ1, . . . , ĉv are, in general, decomposable (see Definition 2).

Proposition 3. Let Λ : P2m 7→ C be a uspf, and assume that the space HΛ

is endowed with the C∗-algebra structure induced by an orthogonal basis con-
sisting of idempotent elements. Also assume that the elements {1̂, t̂1, . . . , t̂n}
generate the C∗-algebra HΛ. Then there exist a finite subset Ξ of Rn, whose
cardinal equals dimHΛ, and a surjective linear map Pm 3 u 7→ u# ∈ C(Ξ),
whose kernel is IΛ, with the property

Λ(u) =

∫
Ξ

u#(ξ)dµ(ξ), u ∈ Pm,

where µ is a probability measure on Ξ.
Moreover, the map Pm 3 u 7→ u# ∈ C(Ξ) induces a ∗-isomorphism

between C∗-algebras HΛ and C(Ξ).
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If r(t̂1, . . . , t̂n) = 0 for all r ∈ IΛ, bj(ξ
(l)) = 0 for j 6= l and bj(ξ

(j)) =
0, j, l = 1, . . . , d, then u# = u|Ξ for all u ∈ Pm.

Proof. We follow the lines and use the notation of the preceding proof. We

must have HC = HΛ, and SC = Pm. Moreover, if B = {b̂1, . . . , b̂d} is the
orthogonal basis of HΛ consisting of idempotent elements given by the hy-
pothesis, and ∆ = {δ1, . . . , δd} is the set of the characters of the C∗-algebra
HΛ, the points τ (j) ∈ R, j = 1, . . . , d, are distinct because the family of
generators {t̂1, . . . , t̂n} separates the points of ∆, so

δj(t̂) = τ (j) = ξ(j) = (ξ
(j)
1 , . . . , ξ(j)

n ) ∈ Rn, j = 1, . . . , d,

and also cj = bj , ξ
(j)
k = δj(t̂k), j = 1, . . . , d, k = 1, . . . , n.

Note that the space Pm can be written as

Pm = {
d∑
j=1

p(ξ(j))bj + r; p ∈ P, r ∈ IΛ} = Gm + IΛ,

with Gm = {
∑d
j=1 p(ξ

(j))bj ; p ∈ P}, and where the sum of spaces is direct.

Consequently, if u ∈ Pm, we must have u =
∑d
j=1 p(ξ

(j))bj + r for some

p ∈ P and r ∈ IΛ. Moreover, the function p|Ξ is uniquely determined by u,
and setting u# = p|Ξ, we have a linear map Pm 3 u 7→ u# ∈ C(Ξ), whose
kernel is IΛ. In addition, as in Proposition 2, we also have the formula

Λ(u) =

∫
Ξ

u#(ξ)dµ(ξ), u ∈ Pm,

where µ is the measure with weights Λ(bj) at ξ(j), j = 1, . . . , d.

Note that the map Pm 3 u 7→ u# ∈ C(Ξ) is also surjective because,
taking an arbitrary element of C(Ξ) written under the form p|Ξ for some

p ∈ P, the polynomial u =
∑d
j=1 p(ξ

(j))bj ∈ Gm has the property u# = p|Ξ.

Since the map Pm 3 u 7→ u# ∈ C(Ξ) is surjective and its kernel is
precisely IΛ, the induced map HΛ 3 û 7→ û# ∈ C(Ξ) is correctly defined and
bijective, where û#(ξ) = u#(ξ), ξ ∈ Ξ. This map is actually a ∗-isomprphism.

To prove this assertion, let us first choose the polynomials pk ∈ P and

rk ∈ IΛ with the property bk =
∑d
j=1 pk(ξ(j))bj + rk, k = 1, . . . , d. The

uniqueness of this representation shows that rk = 0, pk(ξ(j)) = 1 if k = j,

and = 0 otherwise, for all k, j = 1, . . . , d. In addition, b̂#k = pk|Ξ, k = 1, . . . , d.

Because (b̂j · b̂k)#(ξ) = 0 = pj(ξ)pk(ξ) if j 6= k, and (b̂j · b̂j)#(ξ) =

b̂#j (ξ) = pj(ξ) = pj(ξ)
2, for all ξ ∈ Ξ and j, k = 1, . . . , d, it follows that

the map HΛ 3 û 7→ û# ∈ C(Ξ) is multiplicative. Taking into account the
definitions given in Remark 4, the equalities

1̂#(ξ) =

d∑
j=1

(b̂j)
#(ξ) =

d∑
j=1

pj(ξ) = 1,
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as well as (û∗)# = û#, show that the map HΛ 3 û 7→ û# ∈ C(Ξ) is a unital

∗-morphism. In addition, if û =
∑d
j=1 p(ξ

(j))b̂j ∈ HΛ is arbitrary,

‖û‖∞ = max
1≤j≤d

|p(ξ(j))| = ‖û#‖∞,

proving that HΛ 3 û 7→ û# ∈ C(Ξ) is a ∗-isomorphism.

Finally, assume that r(t̂1, . . . , t̂n) = 0 for all r ∈ IΛ. Then

r(ξ(l)) = r(δl(t̂)) = δl(r(t̂)) = 0, l = 1, . . . , d.

Consequently, if u ∈ Pm has the form u =
∑d
j=1 p(ξ

(j))bj + r for some
p ∈ P and r ∈ IΛ, then

u(ξ(l)) =

d∑
j=1

p(ξ(j))bj(ξ
(l)) + r(ξ(l)) =

d∑
j=1

u#(ξ(j))bj(ξ
(l)), l = 1, . . . , d.

If, moreover, bj(ξ
(l)) = 0 for j 6= l and bj(ξ

(j)) = 0, j, l = 1, . . . , d, then
u# = u|Ξ for all u ∈ Pm, which completes the proof of the proposition. �

Remark 6. Let Λ : P2m 7→ C be a uspf, and assume that the space HΛ

is endowed with the C∗-algebra structure induced by the orthogonal basis

B = {b̂1, . . . , b̂d}, consisting of idempotent elements. Also assume that the

elements {1̂, t̂1, . . . , t̂n} generate the C∗-algebra HΛ. In particular, for each

j there exists a polynomial πj ∈ P such that b̂j = πj(t̂), j = 1, . . . , d. If
∆ is the set of characters of the C∗-algebra HΛ, for every δ ∈ ∆ we have

δ(b̂j) = πj(δ(t̂)), j = 1, . . . , d, showing that {π1, . . . , πd} is an interpolating

family for the set {δ(t̂) ∈ Rn; δ ∈ ∆}. A similar property has been already
obtained in the previous proof, via a different argument.

Remark 7. (1) Assume that the uspf Λ : P2m 7→ C has a representing measure
in Rn given by

Λ(p) =

d∑
j=1

λjp(ξ
(j)), p ∈ P2m,

with λj > 0 for all j = 1, . . . , d, and
∑d
j=1 λj = 1, where d = dimHΛ.

Let r ≥ m be an integer such that Pr contains interpolating polynomials
for the family of points Ξ = {ξ(1), . . . , ξ(d)}. Setting Λµ(p) =

∫
Ξ
pdµ, p ∈ P2r,

we have Λµ|P2m = Λ, and IΛµ = {p ∈ Pr; p|Ξ = 0}, as one can easily
see. Moreover, the space Hr := Pr/IΛµ is at least linearly isomorphic to
C(Ξ), via the map Hr 3 p + IΛµ 7→ p|Ξ ∈ C(Ξ). As HΛ may be regarded
as a subspace of Hr (see Remark 1(ii)), and dimHΛ = dimC(Ξ), the map
HΛ 3 p̂ 7→ p|Ξ ∈ C(Ξ) is a linear isomorphism. Let χk ∈ C(Ξ) be the

characteristic function of the set {ξ(k)} and let b̂k ∈ HΛ be the element with

bk|Ξ = χk, k = 1, . . . , d. As in Example 2, we obtain that {b̂1, . . . , b̂d} is
a basis of HΛ consisting of orthogonal idempotents. Consequently, if HΛ is

given the C∗-algebra structure induced by {b̂1, . . . , b̂d}, then HΛ and C(Ξ)
are isomorphic as C∗-algebras (as in the proof of Proposition 3). In addition,
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Λ(bj) = λj for all j = 1, . . . , d, and that if p̂ = τ1b̂1 + · · · + τdb̂d ∈ HΛ is

arbitrary, then τj = λ−1
j Λ(pbj) = λ−1

j Λµ(pχj) = p(ξ(j)) for all j = 1, . . . , d.

In other words, if ∆ = {δ1, . . . , δd} is the set of characters of the C∗-

algebra HΛ induced by B, we have δk(b̂j) = λ−1
k Λµ(bjχk) = bj(ξ

(k)), j =
1, . . . , d.

This discussion also shows that the Hilbert spaces HΛ and L2(Ξ, µ) are
unitarily equivalent via the unitary map HΛ 3 p̂ 7→ p|Ξ ∈ L2(Ξ, µ).

(2) Let Λ : P2m 7→ C be a uspf such that IΛ = {0}; therefore, Pm = HΛ.
Let B = {b1, . . . , bd} be an orthogonal basis of Pm consisting of idempotents
(where d = dimPm). Assume that the family {1, t1, . . . , tn} generates the C∗-
algebra Pm induced by B. In particular, defining the set Ξ = {ξ(1) . . . , ξ(d)}
as in Proposition 3, we obtain the equality Pm = {

∑d
j=1 p(ξ

(j))bj ; p ∈ P}.
Assume now that δj(bk(t)) = 0 if j 6= k, and δj(bj(t)) = 1, where δj is a

character and bk(t) is computed in the the C∗-algebra Pm (j, k = 1, . . . , d).
As δj(bk(t)) = bk(δj(t)) = bk(ξ(j)), then bk(ξ(j)) = 0 for j 6= k and bj(ξ

(j)) =

0, j, k = 1, . . . , d. By Proposition 3, we must have p =
∑d
j=1 p(ξ

(j))bj , p ∈
Pm, and so, Λ|Pm has a d-atomic representing measure µ on Ξ given by

Λ(p) =

d∑
j=1

λjp(ξ
(j)) =

∫
Ξ

p(t)dµ(t)), p ∈ Pm,

with λj = Λ(bj), j = 1, . . . , d.
In fact, in this case the uspf Λ : P2m 7→ C has itself a representing

measure. Indeed, fixing a multi-index θ with |θ| ≤ 2m, we write θ = α + β,

with |α| ≤ m, |β| ≤ m. As we have tα =
∑d
j=1(ξ(j))αbj , t

β =
∑d
j=1(ξ(j))βbj ,

using the Hilbert space structure of Pm induced by Λ, we deduce that

Λ(tθ) = 〈tα, tβ〉 =

d∑
j,k=1

(ξ(j))α(ξ(k))βΛ(bjbk) =

d∑
j=1

λj(ξ
(j))θ =

∫
Ξ

tθdµ(t).

As |θ| ≤ 2m is arbitrary and the result does not depend of the decomposition
θ = α + β, the general case follows by linearity. In this way, we get the
following.

Corollary 2. Let Λ : P2m 7→ C be a uspf such that IΛ = {0}. Let B =
{b1, . . . , bd} be an orthogonal basis of Pm consisting of idempotents, where
d = dimPm. Assume that the family {1, t1, . . . , tn} generates the C∗-algebra
Pm induced by B, and that δj(bk(t)) = 0 if k 6= j, and δj(bj(t)) = 1, where
δj is a character and bk(t) is computed in the the C∗-algebra Pm (j, k =
1, . . . , d). Then the uspf Λ has a representig measure consisting of d atoms.

(3) With the notation from the proof of Proposition 2, the monomial t̂α

is an element of the algebra HC , not necessarily equal to t̂α = tα + IΛ ∈ HΛ

(see also Remark 4).

Theorem 2, which will be proved in the sequel, characterizes the exis-
tence of representing measures for a uspf Λ : P2m 7→ C, having d = dimHΛ
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atoms, in terms of orthogonal bases of HΛ consisting of idempotent elements.
In other words, we use only intrinsic conditions. Other characterizations can
be found in [3], Theorem 7.10 or in [8], Theorem 2.8, stated in terms of flat
extensions, which are, in general, not intrinsic.

Before proving the theorem, we need some preparation.

Definition 3. Let Λ : P2m 7→ C be a uspf and let B = {b̂1, . . . , b̂d} be an
orthogonal basis of HΛ consisting of idempotent elements. We say that the
basis B is Λ-multiplicative if

Λ(tαbj)Λ(tβbj) = Λ(bj)Λ(tα+βbj) (3.3)

whenever |α|+ |β| ≤ m, j = 1, . . . , d.

Lemma 5. Let Λ : P2m 7→ C be a uspf and let B be an orthogonal basis of
HΛ consisting of idempotents. The basis B is Λ-multiplicative if and only if
δ(t̂α) = δ(t̂α) whenever |α| ≤ m and δ is any character of the C∗-algebra HΛ

induced by B.

Proof. Let ∆ = {δ1, . . . , δd} be the set of characters of the C∗-algebra HΛ

induced by B. It follows from Remark 4 that δj(p̂) = Λ(bj)
−1Λ(pbj), p ∈

Pm, j = 1, . . . , d.
Assuming B to be Λ-multiplicative, we have

δj(t̂α+β) = Λ(bj)
−1Λ(tα+βbj) = Λ(bj)

−2Λ(tαbj)Λ(tβbj) = δj(t̂α)δj(t̂β)

whenever |α| + |β| ≤ m, j = 1, . . . , d, which is equivalent to the condition

δ(t̂α) = δ(t̂α) whenever |α| ≤ m and δ is a character of the C∗-algebra HΛ

associated to B
The same calculation shows that the condition δ(t̂α) = δ(t̂α) whenever

|α| ≤ m and δ is a character of the C∗-algebra HΛ associated to B implies
that the basis B is Λ-multiplicative. �

Theorem 2. The uspf Λ : P2m 7→ C has a representing measure in Rn pos-
sessing d := dimHΛ atoms if and only if there exists a Λ-multiplicative basis
of HΛ.

Proof. Let B = {b̂1, . . . , b̂d} be an orthogonal basis of HΛ consisting of idem-
potent elements, and let ∆ = {δ1, . . . , δd} be the set of the characters of
the C∗-algebra HΛ induced by B. First assume that B is Λ-multiplicative.
Therefore, δ(t̂α) = δ(t̂α) whenever |α| ≤ m and δ ∈ ∆, by Lemma 5. Denote

by HC the sub-C∗-algebra generated by the set C = {1̂, t̂1, . . . , t̂n} in HΛ.

Our hypothesis implies the equality t̂α = t̂α whenever |α| ≤ m, because the

algebra HΛ is semi-simple. Moreover, as the elements {t̂α; |α| ≤ m} span the
linear space HΛ, the elements t̂1, . . . , t̂n have to generate the algebra HΛ. In
particular, we must have the equality HC = HΛ, and the family {t̂1, . . . , t̂n}
separates the points of ∆. In this way, the map

∆ 3 δ 7→ (δ(t̂1), . . . , δ(t̂n)) ∈ Rn

is injective. Set ξ(j) = (δj(t̂1), . . . , δj(t̂n)), j = 1, . . . , d, Ξ = {ξ(1), . . . , ξ(d)}.
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As in (the proof of) Proposition 2, we have t̂α =
∑d
j=1(ξ(j))αb̂j . There-

fore, t̂α =
∑d
j=1(ξ(j))αb̂j whenever |α| ≤ m. If p(t) =

∑
|α|≤m cαt

α ∈ Pm,

then

Λ(p) =
∑
|α|≤m

cα

d∑
j=1

(ξ(j))αΛ(bj) =

d∑
j=1

p(ξ(j))Λ(bj) =

∫
Ξ

p(ξ)dµ(ξ)

where µ is the measure with weights Λ(bj) at ξ(j), j = 1, . . . , d.
Now, as in Remark 7(2), if θ is a multi-index with |θ| ≤ 2m, we write

θ = α + β, with |α| ≤ m, |β| ≤ m. Then, using the Hilbert space structure
of HΛ,

Λ(tθ) = 〈t̂α, t̂β〉 = 〈
d∑
j=1

(ξ(j))αb̂j ,

d∑
k=1

(ξ(k))β b̂k〉 =

d∑
j=1

(ξ(j))θΛ(bj),

leading to the equality

Λ(p) =

∫
Ξ

p(ξ)dµ(ξ) (3.4)

for all polynomials p ∈ P2m, which provides a d-atomic representation mea-
sure for Λ.

Conversely, assume that the uspf Λ : P2m 7→ C has a representing
measure in Rn with d = dimHΛ atoms. From the discussion in Remark 7(1),
we know that the C∗-algebras HΛ and C(Ξ) are isomorphic via the map
HΛ 3 p̂ 7→ p|Ξ ∈ C(Ξ), which leads to the existence of an orthogonal basis B
of the Hilbert space HΛ consisting of idempotent elements. In addition, the
maps δj(p̂) = p(ξ(j)), j = 1, . . . , d, are the characters of HΛ. Therefore,

δj(t̂α) = tα(ξ(j)) = (ξ(j))α = δj(t̂
α),

whenever |α| ≤ m and j = 1, . . . , d, showing that B is a Λ-multiplicative
basis, via Lemma 5. This concludes the proof of Theorem 2. �

A more explicit form of Theorem 2 is provided by the following assertion.

Corollary 3. The uspf Λ : P2m 7→ C has a representing measure in Rn pos-
sessing d := dimHΛ atoms if and only if there exists a family of polynomials
{b1, . . . , bd} ⊂ RPm with the following properties:

(i) Λ(b2j ) = Λ(bj) > 0, j = 1, . . . , d;

(ii) Λ(bjbk) = 0, j, k = 1, . . . , d, j 6= k;
(iii)

Λ(tαbj)Λ(tβbj) = Λ(bj)Λ(tα+βbj)

whenever 0 6= |α| ≤ |β|, |α|+ |β| ≤ m, j = 1, . . . , d.

The assertion follows directly from Theorem 2. We omit the details.

Example 3. The matrix A from Example 1 is the Hankel operator of the uspf
Λ : P1

4 7→ C, where P1
4 is the space of of polynomials in one real variable

t, with complex coefficients, of degre ≤ 4, and Λ is the Riesz functional
associated to the sequence γ = (γk)0≤k≤4, γ0 = · · · = γ3 = 1, γ4 = 2. This
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matrix has been used in [7] to show that this truncated moment problem has
no representing measure in R. We shall obtain the same conclusion, via our
methods.

Note that IΛ = {p(t) = a− at; a ∈ C}, and

HΛ = {p̂ ; p(t) = a+ at+ bt2, a, b ∈ C}.
Setting p0(t) = 1/2− t/2, p1(t) = 1/2+ t/2, we have 1 = p0 +p1 and t = p1−
p0. But p0 ∈ IΛ, and so t̂ = 1̂. Consequently, for any choice of an orthogonal

basis in HΛ consisting of idempotents, we cannot have t̂2 = t̂2 because t̂2 =

t̂ = 1̂, while t̂2 = t2 +IΛ 6= 1̂. This shows that Λ has no representing measure
consisting of two atoms, via Theorem 2. As a matter of fact, the element t̂
does not separate the points of the space of characters of HΛ for any choice

of an orthogonal basis {b̂1, b̂2} consisiting of idempotent elements. Indeed,

identifying the space of characters with the pair {b̂1/Λ(b1), b̂2/Λ(b2)}, we
have

〈t̂, b̂j/Λ(bj)〉 = 〈1̂, b̂j/Λ(bj)〉 = Λ(bj/Λ(bj)) = 1, j = 1, 2.

Example 4. Corollary 3 implies that all uspf Λ : P2 7→ C have representing

measures in Rn with d = dimHΛ atoms. Indeed, if B = {b̂1, . . . , b̂d} is an
arbitrary orthogonal basis of HΛ consisting of idempotent elements, then the
condition (3.3)

Λ(tαbj)Λ(tβbj) = Λ(bj)Λ(tα+βbj)

is automatically fulfilled when |α|+ |β| ≤ 1, j = 1, . . . , d.
In this case, we may write explicitly all representing measures of Λ. In-

deed, with b1, . . . , bd as above, the support of the corresponding representing
measure, say Ξ = {ξ(1), . . . , ξ(d)}, is given by

ξ(j) = (Λ(bj)
−1Λ(t1bj), . . . ,Λ(bj)

−1Λ(tnbj)) ∈ Rn, j = 1, . . . , d,

while the corresponding weights are Λ(b1), . . . ,Λ(bd), via the proof of Theo-
rem 2. (See also [9], Section 4, for a different argument.)

The next result is a version of Tchakaloff’s theorem (see also [1, 6, 12]
etc.), obtained with our methods.

Corollary 4. Let ν be a positive Borel measure on Rn such that
∫
|||t|||2dν(t)

is finite. Then there exist a subset Ξ = {ξ(1), . . . , ξ(d)} ⊂ Rn and positive
numbers λ1, . . . , λd, where d ≤ n+ 1, such that∫

p(t)dµ(t) =

d∑
j=1

λjp(ξ
(j)), p ∈ P2.

Moreover, the weights λ1, . . . , λd, and the nodes ξ(1), . . . , ξ(d) as well, are
given by explicit formulas.

Proof. With no loss of generality, we may assume ν(Rn) = 1. Then the
map Λ(p) =

∫
pdν is a uspf on P2. According to the previous example, each

orthogonal bases ofHΛ consisting of idempotents, and whose cardinal d is less
or equal to dimP1 = n+ 1, is automatically Λ-multiplicative. Consequently,
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the subset Ξ = {ξ(1), . . . , ξ(d)} ⊂ Rn, and the positive numbers λ1, . . . , λd are
given by the corresponding representing measure of Λ.

The description of the weights λ1, . . . , λd, and that of the nodes ξ(1), . . . ,
ξ(d) as well, is also given by Example 4.

Remark 8. (1) Let Λ : P2m 7→ C be a uspf. Condition (3.3) can be used, at
least in principle, to get a solution of the moment problem having a number
of atoms equal to dimHΛ. Specifically, according to Corollary 3, we must find
a family of polynomials {b1, . . . , bd} ⊂ RPm with the properties (i)− (iii).

Setting bj =
∑
α xjαt

α, where xjα = 0 if |α| > m, condition (i) means
that

(i′)
∑
α,β

γα+βxjαxjβ =
∑
α

γαxjα, j = 1, . . . , d.

Condition (ii) is equivalent to

(ii′)
∑
α,β

γα+βxjαxkβ = 0, j, k = 1, . . . , d, j < k.

Condition (iii) can be expressed as

(iii′)
∑
ξ,η

γα+ξγβ+ηxjξxjη =
∑
ξ,η

γξ γα+β+ηxjξxjη,

0 6= |α| ≤ |β|, |α|+ |β| ≤ m, j = 1, . . . d.

Finding a solution {xjα, j = 1, . . . , d, |α| ≤ m} of equations (i′) − (iii′)
with b1, . . . , bd nonnull, provided it exists, means to solve the corresponding
moment problem.

(2) The case d = 1 is easily obtained (see also [3], [4]). We approach this

case from our point of view. We must haveHΛ = C1̂, because dimHΛ = 1 and
1 /∈ IΛ. For this reason, for each polynomial p ∈ Pm there exists a complex
number θp such that p̂ = θp1̂. In fact, θp is uniquely determined, and we must
have θp = Λ(p).

Clearly, B = {1̂} is a basis ofHΛ consisting of one idempotent. Moreover,
the basis B is Λ-multiplicative. Indeed, if α, β are multi-indices with |α|+|β| ≤
m, writing tα = Λ(tα) + rα, t

β = Λ(tβ) + rβ , where rα, rβ ∈ IΛ, we have

Λ(tα+β) = Λ(Λ(tα)Λ(tβ) + rα,β) = Λ(tα)Λ(tβ)

because rα,β := Λ(tα)rβ + Λ(tβ)rα + rαrβ is in the kernel of Λ. According
to Theorem 2, the uspf Λ must have a representing measure (clearly a Dirac
measure) concentrated at the point ξ := (Λ(t1), . . . ,Λ(tn)) ∈ Rn, because the
map HΛ 3 p̂ 7→ Λ(p) ∈ C is the only character of the C∗-algebra HΛ induced

by B = {1̂}.

Example 5. We can use eq. (i′) − (iii′) to get a solution for some moment
problems. Here is an example.
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Let Λ : P1
4 7→ C be given by the sequence Λ(1) = 1, Λ(t) = −1/3,

Λ(t2) = 2/3,Λ(t3) = −1/3, Λ(t4) = 2/3, extended by linearity. Hence, for
p(t) = x0 + x1t+ x2t

2 + x3t
3 + x4t

4, we have

Λ(p) = x0 −
x1

3
+

2x2

3
− x3

3
+

2x4

3
.

Note that if p(t) = x0 + x1t+ x2t
2 ∈ P1

2 , we have

Λ(|p|2) = |x0|2 −
1

3
(x0x̄1 + x̄0x1) +

2

3
(x0x̄2 + x̄0x2 + |x1|2)

−1

3
(x1x̄2 + x̄1x2) +

2

3
|x2|2 =

1

3
|x0|2 +

1

2
|x0 − x1 + x2|2 +

1

6
|x0 + x1 + x2|2,

via a direct computation, which shows that Λ is a uspf. In particular, Λ(|p|2) =
0 if and only if p = 0, so IΛ = {0}, and HΛ = P1

2 . In addition, dimHΛ = 3.
Note also that, a polarization argument leads to the equality

Λ(pq) =
1

3
(x0y0)+

1

2
(x0−x1 +x2)(y0−y1 +y2)+

1

6
(x0 +x1 +x2)(y0 +y1 +y2),

whenever p(t) = x0 + x1t + x2t
2 ∈ P1

2 and q(t) = y0 + y1t + y2t
2 ∈ P1

2 have
real coefficients. Let us look for a Λ-multiplicative basis of the Hilbert space
HΛ given by the polynomials bj = xj0 + xj1t + xj2t

2, with real coefficients,
for j = 1, 2, 3. They should satisfy the equations

1

3
(x2
j0 − xj0) +

1

2
((xj0 − xj1 + xj2)2 − (xj0 − xj1 + xj2))+

(j′)
1

6
((xj0 + xj1 + xj2)2 − (xj0 + xj1 + xj2)), j = 1, 2, 3,

corresponding to (i′) from Remark 8.
The orthogonality if the family {b1, b2, b3} is given by the equations

1

3
xj0xk0 +

1

2
(xj0 − xj1 + xj2)(xk0 − xk1 + xk2)+

(jj′)
1

6
(xj0 + xj1 + xj2)(xk0 + xk1 + xk2) = 0, 1 ≤ j < k ≤ 3.

The Λ-multiplicativity is expressed by(
−1

3
xj0 +

2

3
xj1 −

1

3
xj2

)2

=

(jjj′) (
xj0 −

1

3
xj1 +

2

3
xj2

)(
2

3
xj0 −

1

3
xj1 +

2

3
xj2

)
, j = 1, 2, 3,

derived from (iii′).
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We now try to find a solution of eq. (j′) − (jjj′), taking advantage of
their special form. Assuming xj0 = 0, j = 1, 2, we infer from (jjj′) that

(2xj1 − xj2)2 = (−xj1 + 2xj2)2, j = 1, 2,

whence x2
j1 = x2

j2, j = 1, 2. Further, taking x11 = x12 and x21 = −x22,
equation (jj′) is satisfied if j = 1, k = 2. From equation (j′), we infer that
either x11 = x21 = 0 or x11 = x21 = 1/2. Similarly, either x21 = x22 = 0
or −x21 = x22 = 1/2. As only nonnull solutions are of interest, we keep the
solutions x10 = 0, x11 = x21 = 1/2 and x20 = 0,−x21 = x22 = 1/2.

It remains to find a third solution. Let us assume that x31 = 0. In
this case we must have (x30 + 2x32)2 = x2

32, and we choose the solution
x30 = −x32, convenient for (jj′). Then (jj′) is clearly satisfied for either
j = 1, k = 3 or j = 2, k = 3. Finally, from (j′) we deduce that x2

30 = x30, and
so x30 = 1.

We associate the solutions found above with the polynomials

b1(t) =
1

2
t+

1

2
t2, b2(t) = −1

2
t+

1

2
t2, b3(t) = 1− t2.

Noting also that

Λ(b1) =
1

6
, Λ(b2) =

1

2
, Λ(b3) =

1

3
,

we deduce that {b1, b2, b3} form a Λ-multiplicative basis of HΛ = P1
2 .

Accordingly, the characters of the C∗-algebra induced by {b1, b2, b3} are
given by

δ1(p) = 6Λ(pb1), δ2(p) = 2Λ(pb2), δ3(p) = 3Λ(pb3), p ∈ P1
2 .

In particular,

δ1(t) = 1, δ2(t) = −1, δ3(t) = 0,

showing that Λ has a representing measure with weights {1/6, 1/2, 1/3} at
the points {1,−1, 0} ⊂ R, respectively. In other words, the formula

Λ(p) =
1

2
p(−1) +

1

3
p(0) +

1

6
p(1), p ∈ P1

4

provides a representing measure for Λ.

Using an idea inspired by the diagonalization of symmetric matrices,
we give in the following a criterion of existence of Λ-multiplicative bases by
means of the representation of the quadratic form associated to Λ as a sum
of squares of degree one homogeneous polynomials.

Proposition 4. Let Λ : P2m 7→ C be a uspf, let d = dimHΛ, and let g1, . . . , gd
be degree one homogeneous polynomials from Pdm1 , with dm = dimPm, such

that Λ(p2
x) =

∑d
j=1 gj(x)2, where px(t) =

∑
α xαt

α, x = (xα)α ∈ Rdm .

Assume that for each k = 1, . . . , d, the system of equations gk(y) = 1
and gj(y) = 0 if j 6= k admits a solution, say y(k) = (yk,α)α ∈ Rdm , with the
property ρk :=

∑
α yk,αγα > 0 for all k = 1, . . . , d.
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Setting bk(t) =
∑
α xk,αt

α, k = 1, . . . , d, where xk,α = ρkyk,α the fam-

ily {b̂1, . . . , b̂d} is an orthogonal basis of HΛ consisting of idempotents, and∑d
j=1 λj = 1, where λj := ρ2

j , j = 1, . . . , d.

In addition, writing gj(x) =
∑
α vj,αxα, j = 1, . . . , d, x ∈ Rdm , and

assuming
ρjvj,ξ+η = vj,ξvj,η, 0 6= |ξ| ≤ |η|, |ξ|+ |η| ≤ m,

the basis {b̂1, . . . , b̂d} is Λ-multiplicative.

Proof. As we have bk(t) = px(k)(t), with x(k) := (xk,α)α ∈ Rdm , and Λ(bk) =
ρ2
k = λk, we obtain

Λ(b2k) =

d∑
j=1

ρ2
kgj(y

(k))2 = λk = Λ(bk), k = 1, . . . , d,

showing that {b̂1, . . . , b̂d} are idempotents.

To prove the orthogonality of the family {b̂1, . . . , b̂d}, we use the formula

Λ(pxpy) =

d∑
j=1

gj(x)gj(y), x, y ∈ Rdm , (3.5)

via the linearlty of the map x 7→ px (as in formula (2.4)), and a polarization
argument. It follows from (3.5) that

Λ(bkbl) =

d∑
j=1

gj(x
(k))gj(x

(l)) =

d∑
j=1

ρkρlgj(y
(k))gj(y

(l)) = 0,

whenever k 6= l, proving the orthogonality of the family {b̂1, . . . , b̂d}. In other

words, {b̂1, . . . , b̂d} is an orthogonal basis of HΛ consisting of idempotents.
In addition we must have:

d∑
j=1

λj =

d∑
j=1

Λ(bj) = 1,

via Lemma 2.
Let us deal with the Λ-multiplicativity of {b̂1, . . . , b̂d}. Fixing a multi-

index ξ, the monomial tξ corresponds to the vector 1ξ = (1ξα)α ∈ Rdm , with
1ξα = 1 if ξ = α, and 1ξα = 0 otherwise. Then, by (3.5), we have

Λ(tξbj) = Λ(p1ξpx(j)) =

d∑
k=1

gk(p1ξ)gk(px(j)) =

ρj

d∑
k=1

vk,ξgk(py(j)) = ρjvj,ξ.

Consequently,

Λ(tξbj)Λ(tηbj) = ρ2
jvj,ξvj,η = λjρjvj,ξ+η = Λ(bj)Λ(tξ+ηbj)

whenever 0 6= |ξ| ≤ |η|, |ξ|+ |η| ≤ m, which completes the proof.
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Remark 9. The representation of the quadratic form associated to the uspf
Λ as a sum of squares of homogeneous polynomials of degree one, as in
Proposition 3.5, can be obtained in the presence of an orthogonal basis of
idempotents. Indeed, let Λ : P2m 7→ C be a uspf, and let d = dimHΛ, and let

dm = dimPm. Let also B = {b̂1, . . . , b̂d} ⊂ ID(Λ) be an orthogonal basis of

HΛ. If px =
∑
α xαt

α ∈ Pm is arbitrary, wtiting tα =
∑d
j=1 cα,jbj + rα, with

cα,j = Λ(bj)
−1Λ(tαbj) and rα ∈ IΛ, we obtain

p2
x =

∑
α,β

xαxβ

 d∑
j,k=1

cα,jcβ,kbjbk

+ q,

where q is in the kernel of Λ. Therefore, Λ(p2
x) =

∑d
j=1 gj(x)2, where gj(x) =∑

α Λ(bj)
−1/2Λ(tαbj)xα.

Example 6. We can alternatively treat Example 5 using Proposition 4, whose
notation is adapted to this situation. Specifically, for x = (x0, x1, x2) ∈ R3,
we have obtained the equation

Λ(p2
x) =

1

3
|x0|2 +

1

2
|x0 − x1 + x2|2 +

1

6
|x0 + x1 + x2|2.

Writing

g1(x) := (1/
√

3)x0, g2(x) := (1/
√

2)(x0 − x1 + x2),

g3(x) := (1/
√

6)(x0 + x1 + x2),

we obtain the representation Λ(p2
x) = g1(x)2 + g2(x)2 + g3(x)2. Note that the

equations gk(y) = 1 and gj(y) = 0 if j 6= k have the solutions

y(1) = (y1,0, y1,1, y1,2) = (
√

3, 0,−
√

3);

y(2) = (y2,0, y2,1, y2,2) = (0,−
√

2/2,
√

2/2);

y(3) = (y3,0, y3,1, y3,2) = (0,
√

6/2,
√

6/2).

Using these solutions, we can now compute the quantities ρ1, ρ2, ρ3. A direct
computation leads to

ρ1 = y1,0γ0 + y1,1γ1 + y1,2γ2 =
√

3/3;

ρ2 = y2,0γ0 + y2,1γ1 + y2,2γ2 =
√

2/2;

ρ3 = y3,0γ0 + y3,1γ1 + y3,2γ2 =
√

6/6.

Hence

x(1) = ρ1y
(1) = (1, 0,−1);

x(2) = ρ2y
(2) = (0,−1/2, 1/2);

x(3) = ρ3y
(3) = (0, 1/2, 1/2).

For this reason, as in Example 5, (with a slightly different notation) the
polynomials

b1(t) = 1− t2, b2(t) = −1

2
t+

1

2
t2, b3(t) =

1

2
t+

1

2
t2
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form a Λ-multiplicative basis of HΛ = P1
2 . Of course, we can check the Λ-

multiplicativity of the family {b1, b2, b3} using the last part of Proposition 4.
Specifically, we have to check that

(∗) ρjvj,k+l = vj,kvj,l, j = 1, 2, 3, 0 6= k ≤ l, k + l ≤ 2.

Indeed, from the polynomials g1, g2, g3, we derive that

v1,0 = 1/
√

3, v1,1 = 0, v1,2 = 0, v2,0 = 1/
√

2, v2,1 = −1/
√

2,

v2,2 = 1/
√

2, v3,0 = 1/
√

6, v3,1 = 1/
√

6, v3,2 = 1/
√

6.

Note that, in (∗), we only must have j = 1, 2, 3 and k = 1, l = 1. Since

v2
1,1 = 0 = ρ1v1,2; v2

2,1 = (−1/
√

2)2 = (
√

2/2)(1/
√

2) = ρ2v2,2;

v2
3,1 = (1/

√
6)2 = (

√
6/6)(1/

√
6) = ρ3v3,2,

eqs. (∗) are satisfied, providing another argument for the basis {b1, b2, b3} to
be Λ-multiplicative.

Remark 10. Λ : P2m 7→ C be a uspf with d = dimHΛ = 2. We can sketch an
algorithm to decide whether or not there exists a representing measure for Λ.

As in the proof of Theorem 1, we have the decompositionHΛ = C1̂⊕H0
Λ,

where H0
Λ = {p̂ ∈ HΛ; Λ(p) = 0}. Then we can find a nonnull element ĝ0

which spans the space H0
Λ. Moreover, we may choose g0 such that Λ(g2

0) = 1.

Lemma 1(2) suggests to look for (nonnull) idempotents b̂ which are not

equal to 1̂. We may assume that b(t) = u+ vg0, for some real numbers u, v.
The necessary conditions Λ(b) > 0, Λ(1 − b) > 0, lead to the constraint
0 < u < 1.

The idempotent equation Λ(b2−b) = 0 can be written as v2+u2−u = 0.

Keeping u as a parameter, we have the solutions v± = ±
√
u− u2, so b± =

u±
√
u− u2g0 are the corresponding idempotents.

Taking for instance b1 = b+, b2 = 1− b+, then {b̂1, b̂2} is an orthogonal
basis of HΛ, consisting of idempotents (via Lemma 1(2)). If moreover we have

(3.3), then {b̂1, b̂2} is Λ-multiplicative.
The parameter u must be the solution of a second degree equation. For

instance, the equation Λ(t1b1)2 = Λ(b1)Λ(t21b1) (derived from (3.3)) shows
that we must have

(γ1u+
√
u− u2Λ(t1g0))2 = u(γ2u+

√
u− u2Λ(t21g0)),

where γ1 := Λ(t1), γ2 := Λ(t21). Also setting θ1 := Λ(t1g0) and θ2 := Λ(t21g0),
as u 6= 0, we obtain the second degree equation

[(γ2
1−γ2−θ2

1)2+(2γ1θ1−θ2)2]u2+[2θ2
1(γ2

1−γ2−θ2
1)−(2γ1θ1−θ2)2]u+θ4

1 = 0.
(3.6)

The discriminant of eq. (3.6) is given by

(2γ1θ1 − θ2)2[(2γ1θ1 − θ2)2 − 4θ2
1(γ2

1 − γ2 − 2θ2
1)].

When 2γ1θ1 − θ2 = 0, the only solution of equation (3.6) is u =
θ2

1/(θ
2
1 − γ2

1 + γ2), provided, θ2
1 − γ2

1 + γ2 6= 0. Of course, we should also have
0 < u < 1. If 2γ1θ1−θ2 6= 0, the condition (2γ1θ1−θ2)2−4θ2

1(γ2
1−γ2−2θ2

1) ≥ 0
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is clearly necessary. With a convenient solution u of eq. (3.6) (that is, so that
u ∈ (0, 1)), we may check the remaining equations. If one of them is not
satisfied, the moment problem has no solution.

When both 2γ1θ1 − θ2 = 0 and θ2
1 − γ2

1 + γ2 = 0, then we must have
γ2

1 = γ2, and each u ∈ (0, 1) is a solution of eq. (3.6). In this case, another
equation from (3.3) may be used.

This idea leads to an algorithm to decide whether or not there exists a
solution of the problem, using only algebraic operations.

Example 7. Here is an example, in two variables, related to the previous
remark. Consider the uspf Λ : P2

4 7→ C given by the multi-sequence γ00 =
1; γk0 = 2/3 (k = 1, 2, 3, 4); γkl = 0 (k, l = 0, 1, 2, 3, 4; l 6= 0).

Therefore, if p(t1, t2) =
∑

0≤j+k≤2 xjkt
j
1t
k
2 ∈ P2

2 , a direct calculation
leads to

Λ(|p|2) =
1

3
|x00|2 +

2

3
|x00 + x10 + x20|2.

This formula shows that

IΛ = {p ∈ P2
2 ;x00 = x10 + x20 = 0},

and so

HΛ = {p̂; p = x00 + x20t
2
1}.

In addition,

H0
Λ = {p̂ ∈ HΛ;x00 + 2x20/3 = 0}.

Now we fix a polynomial g0 such that Λ(g0) = 0 and Λ(g2
0) = 1. We

may take g0 = (2− 3t21)/
√

2, as one can easily see. If p := x00 + x20t
2
1 is such

that x00 + 2x20/3 = 0, then we have

x00 + x20t
2
1 = −x20

√
2

3
g0,

showing that the element ĝ0 spans H0
Λ. In particular, dimH0

Λ = 1.
According to the discussion from Remark 10, and choosing a param-

eter u ∈ (0, 1), an idempotent b̂ may be given by the polynomial b =

u +
√
u− u2g0. Set γ1 := γ10 = 2/3, γ2 := γ20 = 2/3, θ1 = Λ(t1g0) =

−2/3
√

2, θ2 = Λ(t21g0) = −2/3
√

2. Introducing these data in eq. (3.6), we
obtain the equation 9u2 − 9u+ 2 = 0, whose roots are 1/3 and 2/3.

If we take u = 1/3, we find the polynomial b1(t) = 1/3 +
√

2g0(t)/3 =

1 − t21. Setting b2(t) = 1 − b1(t) = t21, we get an orthogonal basis {b̂1, b̂2}
of HΛ, consisting of idempotents. Moreover, Λ(t1b1)2 = 0 = Λ(b1)Λ(t21b1).
Checking also the equality Λ(t1b2)2 = Λ(b2)Λ(t21b2), which is obvious, and

noting that Λ(t2bj)
2 = Λ(bj)Λ(t22bj) = 0, j = 1, 2, we deduce that {b̂1, b̂2} is

Λ-multiplicative. In this way, Λ has a representing measure concentrated at
two points. The weights of the associated atomic measure are then given by
λ1 = Λ(b1) = 1/3 and λ2 = Λ(b2) = 2/3, at the points

ξ(1) = λ−1
1 (Λ(t1b1),Λ(t2b1) = (0, 0),

ξ(2) = λ−1
2 (Λ(t1b2),Λ(t2b2) = (1, 0),
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respectively.
Take now u = 2/3. In this case the corresponding idempotent is given

by b′1(t) = 4/3 − t21, and the orthogonal idempotent is b′2(t) = −1/3 + t21.
Nevertheless, Λ(t1b

′
1)2 = 4/81, while Λ(b′1)Λ(t21b

′
1) = 4/27. Consequently, the

orthogonal basis {b̂′1, b̂′2} is not Λ-multiplicative. In other words, the solution
u = 2/3 is not admissible.

The next results illustrate the strong connection between moment prob-
lems and polynomial interpolation.

Corollary 5. Let Λ : P2m 7→ C be a uspf with invertible Hankel operator. The
uspf Λ has a representing measure in Rn having d = dimPm atoms if and only
if there exists a family of orthogonal idempotents {b1, . . . , bd} in HΛ = Pm
such that

p = p(ξ(1))b1 + · · ·+ p(ξ(d))bd, p ∈ Pm,
where

ξ(j) = (Λ(bj)
−1Λ(t1bj), . . . ,Λ(bj)

−1Λ(tnbj)) ∈ Rn, j = 1, . . . , d.

Proof. Assume that Λ has a representing measure in Rn having d = dimPm
atoms and support Ξ = {ξ(1) . . . , ξ(d)}. As IΛ = {0}, it follows from Remark
7(1) that there exists a family of orthogonal idempotents {b1, . . . , bd} inHΛ =
Pm such that

p = p(ξ(1))b1 + · · ·+ p(ξ(d))bd, p ∈ Pm.

Moreover, ξ
(j)
k = Λ(bj)

−1Λ(tkbj) for all j = 1, . . . , d, k = 1, . . . , n, and so

ξ(j) = (Λ(bj)
−1Λ(t1bj), . . . ,Λ(bj)

−1Λ(tnbj)) ∈ Rn, j = 1, . . . , d.

Conversely, asume that there exists a family of orthogonal idempotents
{b1, . . . , bd} in Pm such that

p = p(ξ(1))b1 + · · ·+ p(ξ(d))bd, p ∈ Pm.

Hence

Λ(p) = p(ξ(1))Λ(b1) + · · ·+ p(ξ(d))Λ(bd) =

∫
Ξ

pdµ, p ∈ Pm,

where µ is the probability measure with weights Λ(bj) at ξ(j), j = 1, . . . , d.
Proceeding as in Remark 7(2), we obtain that the equality

Λ(p) =

∫
Ξ

p(ξ)dµ(ξ)

also holds for all polynomials p ∈ P2m, providing a d-atomic representation
measure for Λ. �

The next result characterizes the existence of representing measures in
the context of invertible Hankel matrices (via Theorem 2). It is somehow
related to Question 1.2 from [9].
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Theorem 3. Let Λ : P2m 7→ C be a uspf with invertible Hankel operator,
and let B = {b1, . . . , bd} ⊂ HΛ = Pm (d = dimPm) be an orthogonal basis
consisting of idempotent elements. Let also ∆ = {δ1, . . . , δd} be the dual basis
of B. Assume that Pm is endowed with the C∗-algebra structure induced by
B. The following conditions are equivalent.

(i) B is Λ-multiplicative.
(ii) The polynomials {1, t1, . . . , tn} generate the C∗-algebra Pm, and

δk(bj(t)) = 0, k 6= j, δj(bj(t)) = 1, j, k = 1, . . . , d.
(iii) The points

ξ(j) = (Λ(bj)
−1Λ(t1bj), . . . ,Λ(bj)

−1Λ(tnbj)) ∈ Rn, j = 1, . . . , d,

are distinct, and δk(bj(t)) = 0, k 6= j, δj(bj(t)) = 1, j, k = 1, . . . , d.
(Here the elements bj(t) are computed in the C∗-algebra Pm.)

Proof. Assuming condition (i), as in the proof of Theorem 2, we deduce that
the elements t1, . . . , tn generate the unital C∗-algebra HΛ = Pm. In fact, as
we have a representing measure for Λ, Corollary 5 shows, in particular, that
{b1, . . . , bd} is an interpolating family for the set {ξ(1), . . . , ξ(d)}. Therefore,
δk(bj(t)) = bj(ξ

(k)), and so δk(bj(t)) = 0, k 6= j, δj(bj(t)) = 1, j, k = 1, . . . , d,
that is, (i) =⇒ (ii).

Assume now that the polynomials {1, t1, . . . , tn} generate the C∗-algebra
Pm. Then the map

∆ 3 δ 7→ (δ(t1), . . . , δ(tn)) ∈ Rn (3.7)

must be injective. As δj(p) = Λ(bj)
−1Λ(pbj), j = 1, . . . , d, p ∈ Pm, the injec-

tivity of (3.7) implies that the points

ξ(j) := (Λ(bj)
−1Λ(t1bj), . . . ,Λ(bj)

−1Λ(tnbj)) ∈ Rn, j = 1, . . . , d

are distinct, and so (ii) =⇒ (iii).
Conversely, (iii) =⇒ (ii). Indeed, if the points

ξ(j) = (Λ(bj)
−1Λ(t1bj), . . . ,Λ(bj)

−1Λ(tnbj)) ∈ Rn, j = 1, . . . , d

are distinct, then the map (3.7) is injective. Hence the polynomials 1, t1, . . . ,
tn generate the C∗-algebra Pm, via the finite-dimensional version of the
Stone-Weierstrass theorem.

Finally, the implication (ii) =⇒ (i) follows from Corollary 2, via Theo-
rem 2. �

Remark 11. (1) Let Λ : P2m 7→ C be a uspf withHΛ having a Λ-multiplicative
basis B. Then we have the property

p ∈ Pm−k ∩ IΛ, q ∈ Pk ⇒ pq ∈ IΛ (3.8)

whenever 0 ≤ k ≤ m is an integer. Indeed, if ∆ is the space of characters of
the C∗-algebra HΛ induced by B, then we have

δ(p̂q) = δ(p̂)δ(q̂), δ ∈ ∆, p ∈ Pm−k, q ∈ Pk,
showing, in particular, that (3.8) holds. In other words, property (3.3) implies
that the associated Hankel matrix is recursively generated (see [3], especially
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Lemma 4.2). In addition, for n = 1, Λ-multiplicativity is equivalent (via
Theorem 2) to the recursiveness property

p ∈ P1
m−1 ∩ IΛ ⇒ tp ∈ IΛ,

which is a necessary and sufficient condition for the existence of a representing
measures in one variable (see [3, 4] etc.).

(2) Let M : P2m+2 7→ C be a uspf. Following [3], we say that the uspf
M is flat if Pm + IM = Pm+1. Setting Λ = M |P2m, the flatness of M is
equivalent to saying that the natural isometry

HΛ 3 p+ IΛ 7→ p+ IM ∈ HM (3.9)

is a unitary operator. In particular, d := dimHΛ = dimHM . In our terms,
the flatness of M is equivalent to the existence of an orthogonal basis B =

{b̂1, . . . , b̂d} of HM , consisting of idempotents, such that b1, . . . , bd ∈ Pm.
Many important results obtained in [3, 4], as well as in other papers by

the same authors, have as a starting point the assumption of the existence
of a flat extension M : P2m+2 7→ C for a given uspf Λ : P2m 7→ C. This hy-
pothesis leads to the existence and the uniqueness of a representing measure
of M . Nevertheless, explicit conditions for the existence of flat extensions are
known only in some particular cases. The existence of flat extension of a uspf
Λ implies the existence of a Λ-multiplicative basis by Theorem 2, but the
representing measure given by a Λ-multiplicative basis via Theorem 2 is not
necessarily unique (see Example 4).

Let us also note that a parallel construction of representing measures for
uspf’s has been developed in [21], under a hypothesis equivalent to flatness,
obtaining several more direct proofs.

The Λ-multiplicativity of an orthogonal basis in ID(Λ) for a given uspf
Λ can be characterized in terms of the existence of a uspf extension of Λ, a
priori not necessarily flat.

Proposition 5. Let Λ : P2m 7→ C be a uspf, and let B = {b̂1, . . . , b̂d} ⊂ ID(Λ)
be an orthogonal basis of HΛ. The basis B is Λ-multiplicative if and only if
there exists a uspf M : P4m 7→ C extending Λ such that

tαbk − θαkbk ∈ IM , |α| ≤ m, k = 1, . . . , d, (3.10)

where θαk = (η(k))α for some vectors η(1), . . . , η(d) ∈ Rn.

Proof. Assume first that the orthogonal basis B = {b̂1, . . . , b̂d} ⊂ ID(Λ) is
Λ-multiplicative. In virtue of Theorem 2, Λ has a representing measure µ,
with support Ξ = {ξ(1), . . . , ξ(d)}, d = dimHΛ, and weights λj = Λ(bj) at

ξ(j), j = 1, . . . , d. In addition, bj |Ξ is the characteristic function of the set

{ξ(j)}, j = 1, . . . , d, by Remark 7(1). Therefore, denoting by M the extension
of Λ to P4m via the measure µ, and setting θαk = M(tαbk)/Λ(bk) = (ξ(k))α,
we deduce that

M((tαbk − θαkbk)2) =

∫
Ξ

(tαbk − θαkbk)2dµ = λk((ξ(k))α − θαk)2 = 0,
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and so tαbk − θαkbk ∈ IM , and we have (3.10), with η(k) = ξ(k).
Conversely, if if there exists a uspf M : P4m 7→ C extending Λ and

satisfying (3.10), we have, whenever |α|+ |β| ≤ m and k = 1, . . . , d,

tα+βbk − (η(k))α+βbk ∈ IM ∩ P2m ⊂ ker(Λ)

and thus

Λ(tα+βbk) = λk(η(k))α+β .

Similarly,

Λ(tαbk)Λ(tβbk) = λ2
k(η(k))α(η(k))β ,

showing that the basis B is Λ-multiplicative. �

Remark 12. If Λ : P2m 7→ C is a uspf having a representing measure µ, as
in Remark 7(1), the Hilbert spaces HΛ and L2(Ξ, µ) are unitarily equiv-
alent via the unitary map HΛ 3 p̂ 7→ p|Ξ ∈ L2(Ξ, µ). As in first part
of the proof of Proposition 5 we have that bj |Ξ = χj , the characteris-

tic function of ξ(j), j = 1, . . . , d. Relations (3.10) reflect the fact that the
multiplication operators with independent variables in L2(Ξ, µ), specifically
Tjf = (tj |Ξ)f, f ∈ L2(Ξ, µ), are commuting self-adjoint operators, and χj
are their eigenvectors (j = 1, . . . , d).

We end this section with a characterization of the existence of represent-
ing measures for full moment problems, in terms of idempotent elements (for
other characterizations see for instance [4], Proposition 5.9, or [21], Corollary
2.15).

Theorem 4. A uspf Λ : P 7→ C has a representing measure in Rn if and
only if there exists an increasing sequence of nonnegative integers {mk}k≥1

such that every Hilbert space HΛk has a Λk-multiplicative basis, where Λk =
Λ|P2mk , k ≥ 1 an arbitrary integer.

Proof. First assume the existence of a sequence {mk}k≥1 with the stated
properties. According to Theorem 2, for every k ≥ 1 there exists an atomic
probability measure µk such that

Λk(p) =

∫
Ξk

p(ξ)dµk(ξ), p ∈ P2mk ,

where Ξk is the support of µk. As we have

Λ(p) =

∫
Ξk

p(ξ)dµk(ξ) =

∫
Ξk+1

p(ξ)dµk+1(ξ), p ∈ P2mk ,

for all k ≥ 1, the assertion follows from [16], Theorem 4.
Conversely, if Λ : P 7→ C has a representing measure, then Λ|P2k has a

representing measure, say νk for every integer k ≥ 1. If Ξk is the support of
νk, proceeding as in Remark 7(1), we can find an integer mk ≥ k such that
HΛk is isomprphic, as a C∗-algebra, with C(Ξk), where where Λk = Λ|P2mk .
In particular, the Hilbert space HΛk has a basis Bk which is Λk-multiplicative
by Theorem 2. Clearly, we may also assume that mk+1 > mk for all k ≥ 1. �
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4. Continuous point evaluations

Let Λ : P2m 7→ C be a uspf. For every point ξ ∈ Rn, we denote by δξ the
point evaluation at ξ, that is, δξ(p) = p(ξ), for every polynomial p ∈ P. As
before, we set IΛ = {f ∈ Pm; Λ(|f |2) = 0}, while HΛ is the finite dimensional
Hilbert space Pm/IΛ.

Definition 4. The point evaluation δξ is said to be Λ-continuous if there exists
a constant cξ > 0 such that

|δξ(p)| ≤ cξΛ(|p|2)1/2, p ∈ Pm.

Let ZΛ be the subset of those points ξ ∈ Rn such that δξ is Λ-continuous.
For every polynomial p let us denote by Z(p) the set of its zeros.

Lemma 6. We have the equality

ZΛ = ∩p∈IΛ
Z(p).

Proof. If ξ ∈ ZΛ and p ∈ IΛ we clearly have p(ξ) = δξ(p) = 0. Therefore,
ZΛ ⊂ ∩p∈IΛZ(p).

Conversely, if ξ ∈ ∩p∈IΛ
Z(p), then δξ(p) = 0 for all p ∈ IΛ. Therefore,

δξ induces a linear functional on the Hilbert space HΛ, denoted by δΛ
ξ . As

the seminorm p 7→ Λ(|p|2)1/2 is actually a norm on the finite dimensional
space HΛ, the linear functional δΛ

ξ is automatically continuous, and so δξ is
Λ-continuous. This shows that the equality in the statement holds. �

Remark 13. The previous lemma shows that the set ZΛ coincides with the
algebraic variety of the moment sequence associated to Λ (see for instance
(1.6) from [4]).

The next result can be found in [3]. For the sake of completeness, we
give it here, with a different proof.

Lemma 7. Suppose that the uspf Λ : P2m 7→ C has an atomic representing
measure µ in Rn. Then supp(µ) ⊂ ZΛ.

Proof. Assume that µ =
∑d
j=1 λjδξ(j) is a representing measure for Λ, with

λj > 0 for all j = 1, . . . , d,
∑d
j=1 λj = 1, and with ξ(1), . . . , ξ(d) distinct

points. Note that

|p(ξ(k))|2 ≤ 1

λk

d∑
j=1

λj |p(ξ(j)|2 ≤ 1

λk
Λ(|p|2),

for all k = 1, . . . , d and p ∈ Pm, showing that the set {ξ(1), . . . , ξ(d)} is a
subset of ZΛ. �

Remark 14. It follows from Lemma 7 that a necessary condition for the
existence of a representing measure for Λ is ZΛ 6= ∅.
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Let Λ : P2m 7→ C (m ≥ 1) be a uspf with the property ZΛ 6= ∅. As
previously noted, the set {δΛ

ξ ; ξ ∈ ZΛ} is a subset in the dual of the Hilbert
space HΛ. Therefore, for every ξ ∈ ZΛ there exists a vector v̂ξ ∈ HΛ such that
δΛ
ξ (p̂) = 〈p̂, v̂ξ〉 = Λ(pvξ) = p(ξ) for all p ∈ Pm. Since m ≥ 1, the space Pm

separates the points of the set ZΛ, and so the assignment ξ 7→ v̂ξ is injective.
In addition, we may and shall always assume that a chosen representative vξ
is in the space RPm, so v̂ξ ∈ RHΛ.

Set VΛ = {v̂ξ; ξ ∈ ZΛ}.
The next result is an approach to truncated moment problems when the

number of the atoms of the representing measures is not necessarily equal
to the maximal cardinal of a family of orthogonal idempotents. The basic
elements are in this case projections of idempotents.

Theorem 5. Let Λ : P2m 7→ C (m ≥ 1) with ZΛ nonempty. The uspf Λ has a
representing measure in Rn consisting of d-atoms, where d ≥ dimHΛ, if and
only if there exist a family {v̂1, . . . , v̂d} ⊂ RHΛ such that

Λ(vj) > 0, v̂j/Λ(vj) ∈ VΛ, j = 1, . . . , d, (4.1)

p̂ = Λ(v1)−1Λ(pv1)v̂1 + · · ·+ Λ(vd)
−1Λ(pvd)v̂d, p ∈ Pm, (4.2)

and

Λ(vkvl) =

d∑
j=1

Λ(vj)
−1Λ(vjvk)Λ(vjvl), k, l = 1, . . . , d. (4.3)

Proof. We use the notation and some arguments from Remark 7(1). Assume

that µ =
∑d
j=1 λjδξ(j) is a representing measure for Λ, with λj > 0 for all

j = 1, . . . , d, and
∑d
j=1 λj = 1. The set supp(µ) = {ξ(1), . . . , ξ(d)}, consisting

of distinct points, is a subset of ZΛ, by Lemma 7.
We proceed now as in Remark 7(1). Let r ≥ m be an integer such

that Pr contains interpolating polynomials for the family of points Ξ =
{ξ(1), . . . , ξ(d)}. Setting Λµ(p) =

∫
Ξ
pdµ, p ∈ P2r, we have that the space

Hr = Pr/IΛµ is a C∗-algebra isomorphic to C(Ξ), where Ξ = {ξ(1), . . . , ξ(d)}.
Let B = {b̂1, . . . , b̂d} be the basis of Hr with bj |Ξ the characteristic function

of the set {ξ(j)} for all j = 1, . . . , d. Of course, B consists of orthogonal

idempotents. In addition, p(ξ(j)) = λ−1
j 〈p̂, b̂j〉, p ∈ Pm, j = 1, . . . , d.

As HΛ may be regarded as a vector subspace of Hr (see Remark 1(2)),
we denote by P the orthogonal projection of Hr onto HΛ. In particular,
P 1̂ = 1̂.

Let v̂j = P b̂j , j = 1, . . . , d. Then

Λ(pvj) = 〈p̂, P b̂j〉 = 〈p̂, b̂j〉 = λjp(ξ
(j)), p ∈ Pm, j = 1, . . . , d,

so Λ(vj) = Λ(bj) = λj > 0, and vj/λj = vξ(j) , which is precisely (4.1). In

addition, as B = {b̂1, . . . , b̂d} is an orthogonal basis of Hr,

p̂ = P p̂ = P (Λ(b1)−1〈p̂, b̂1〉b̂1 + · · ·+ Λ(bd)
−1〈p̂, b̂d〉b̂d) =

Λ(v1)−1Λ(pv1)v̂1 + · · ·+ Λ(vd)
−1Λ(pvd)v̂d,
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for all p ∈ Pm, showing that (4.2) holds. Note also that

Λ(vkvl) =

d∑
j=1

λj(vkvl)(ξ
(j)) =

d∑
j=1

Λ(vj)
−1Λ(vkvj)Λ(vlvj), k, l = 1, . . . , d,

because

(vkvl)(ξ
(j)) = Λ(vkvξ(j))Λ(vlvξ(j)) = λ−2

j Λ(vkvj)Λ(vlvj)

for all k, l = 1, . . . , d, proving that (4.3) also holds.

Conversely, assume that there exists a family {v̂1, . . . , v̂d} ⊂ RHΛ such
that (4.1), (4.2), (4.3) hold. We must have vj/λj = vξ(j) for a uniquely

determined ξ(j) ∈ Ξ, with λj = Λ(vj) > 0 for all j = 1, . . . , d.

Consider the mapHΛ 3 p̂ 7→ p|Ξ ∈ C(Ξ). Note that this map is correctly
defined because the equality p̂1 = p̂2, which is equivalent to p1 − p2 ∈ IΛ,
implies p1|Ξ = p2|Ξ, by Lemma 7. Moreover, the map is injective because
p(ξ(j)) = λ−1

j Λ(pvj) = 0 for all j = 1, . . . , d implies p̂ = 0, via (4.2).

Since, in virtue of (4.2),

Λ(p) = 〈p̂, v̂1〉+ · · ·+ 〈p̂, v̂d〉 = λ1p(ξ
(1)) + · · ·+ λdp(ξ

(d)),

for all p ∈ Pm, the map Λ|Pm admits the extension M(f) =
∑d
j=1 λjf(ξ(j)),

f ∈ C(Ξ), which provides an integral representation for Λ|Pm.

We want to show that the mapM also extends Λ. For, let p =
∑
j∈J pjqj ,

with pj , qj ∈ Pm for all j ∈ J , where J is a finite set of indices. Note first
that

p(ξ(k)) =
∑
j∈J

pj(ξ
(k))qj(ξ

(k)) = λ−2
k

∑
j∈J

Λ(pjvk)Λ(qjvk), (4.4)

for all k = 1, . . . , d. Then, on one hand,

M(p) =

d∑
k=1

λkp(ξ
(k)) =

d∑
k=1

λk
∑
j∈J

pj(ξ
(k))qj(ξ

(k)),

so that, using (4.4),

M(p) =

d∑
k=1

λk
−1
∑
j∈J

Λ(pjvk)Λ(qjvk). (4.5)

On the other hand, writing by (4.2)

p̂j =

d∑
l=1

λl
−1Λ(pjvl)v̂l, q̂j =

d∑
s=1

λs
−1Λ(qjvs)v̂s

for all j ∈ J , we have

p−
∑
j∈J

d∑
l,s=1

λl
−1λs

−1Λ(pjvl)Λ(qjvs)vlvs ∈ ker(Λ),
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so

Λ(p) =
∑
j∈J

d∑
l,s=1

λl
−1λs

−1Λ(pjvl)Λ(qjvs)Λ(vlvs) =

∑
j∈J

d∑
l,s=1

λl
−1λs

−1Λ(pjvl)Λ(qjvs)

d∑
k=1

λ−1
k Λ(vkvl)Λ(vkvs) =

d∑
k=1

λk
−1
∑
j∈J

d∑
l=1

λl
−1Λ(pjvl)Λ(vlvk)

d∑
s=1

λs
−1Λ(qjvs)Λ(vsvk) =

d∑
k=1

λk
−1
∑
j∈J

Λ(pjvk)Λ(qjvk),

via (4.3), because of the equalities

Λ(pjvk) =

d∑
l=1

λl
−1Λ(pjvl)Λ(vlvk), Λ(qjvk) =

d∑
s=1

λs
−1Λ(qjvs)Λ(vsvk),

derived from (4.2). This computation leads to the equality M(p) = Λ(p),
for each p of the given form. Formula (4.5) shows that, in fact, the equality
M(p) = Λ(p) does not depend on the particular representation of p as a finite
sum of the form

∑
j∈J pjqj , with pj , qj ∈ Pm, and so M(p) = Λ(p) holds for

all p ∈ P2m. �

Corollary 6. Let Λ : P2m 7→ C, (m ≥ 1), with ZΛ nonempty.
If there exist a family {v̂1, . . . , v̂d} ⊂ HΛ such that

Λ(vj) > 0, v̂j/Λ(vj) ∈ VΛ, j = 1, . . . , d,

and

p̂ = Λ(v1)−1Λ(pv1)v̂1 + · · ·+ Λ(vd)
−1Λ(pvd)v̂d, p ∈ Pm,

the functional Λ|Pm has a representing measure in Rn consisting of d-atoms,
where d ≥ dimHΛ

Proof. The statement shows that conditions (4.1) and (4.2) are fulfilled, and
the assertion follows from the proof of Theorem 5. �

Remark 15. Condition d ≥ dimHΛ, appearing in the two previous state-
ments, is a necessary one, as follows from [3], Corollary 3.7.
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