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Abstract

Regarding quaternions as normal matrices, we first characterize the
2 × 2 matrix-valued functions, defined on subsets of quaternions, whose
values are quaternions. Then we investigate the regularity of quaternionic-
valued functions, defined by the analytic functional calculus. Construc-
tions of analytic functional calculi for real linear operators, in particular
for quaternionic linear ones, are finally discussed, using a Riesz-Dunford-
Gelfand type kernel in one variable, or a Martinelly type kernel in two
variables.
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1 Introduction

Introduced in science by W. R. Hamilton as early as 1843, the quaternions form
a unital non commutative division algebra, with numerous applications in math-
ematics and physics. In mathematics, the celebrated Frobenius theorem, proved
in 1877, placed the algebra of quaternions among the only three finite dimen-
sional division algebras over the real numbers, which is a remarkable feature
shared with the real and complex fields.

Concerning physics, one can find a first suggestion of a quaternion quantum
mechanics in a footnote of a paper by G. Birkhoff and J. von Neumann (see
[1]), as mentioned in [6]. The work [6] itself presents a quaternionic quantum
mechanics, using various entities assuming quaternionic values. The existence of
serious physical hypotheses incited several mathematicians to develop a branch
of analysis in the framework of quaternions.

One of the most important investigation in the quaternionic context has been
to find a convenient manner to express the ”analyticity“ of functions depending
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on quaternions. Among the pioneer contributions in this direction one should
mention the works [15] and [7].

More recently, a concept of slice regularity for functions of one quaternionic
variable has been introduced in [8], leading to a large development sythesized
in [4] (which contains a large list of references), whose impact is still actual (see
[9], [3], etc.).

Unlike in [8], the basic idea of the present paper is to define the regularity
of a quaternionic-valued function via the analytic functional calculus acting on
quaternions. We have chosen to consider the algebra of quaternions not as an
abstract object but as a real subalgebra of the complex algebra of 2× 2 matri-
ces with complex entries. This (classical) representation has been already used
by the present author in [22, 23], and appears in many other works. Among
the advantages of this representation is that we may view the quaternions as
linear operators actually on complex spaces, commuting with the complex num-
bers. Another one is to regard each quaternion as a normal operator, having
a spectrum which can be used to define various compatible functional calculi,
including the analytic one. A suggestive parallel is the study of the abstract
C∗-algebras as subalgebras of bounded operators on some Hilbert spaces.

One of the main results of this work is Theorem 1, giving a characteriza-
tion of those matrix-valued functions, defined on some open sets in the complex
plane, producing quaternions when applied, by functional calculus, to quater-
nions having spectra in their domain of definition. Such a function, temporarily
called skew conjugate symmetric, corresponds to the more known concept of
stem function (a notion going back to [7]), transposed in our framework (see
Remarks 4 and 5).

Roughly speaking, and unlike in [8], a ”quaternionic regular function“ can
and will be obtained by a pointwise application of the analytic functional cal-
culus with stem functions on a conjugate symmetric open set U in the complex
plane, to quaternions whose spectra are in U , via the matrix version of Cauchy’s
formula (14), with no need of slice derivatives. In this way, we obtain a whole
class of ”regular functions“ (in fact, quaternionic Cauchy transforms of stem
functions), having some unexpected multiplicative properties (see Theorem 2).
In addition, we can and will recapture, as an illustration, with our methods and
in our terms, several properties of slice regular functions (see Lemma 4, Remark
13 etc.), presented for example in [4].

The discussion concerning the ”regularity“ of the quaternionic-valued func-
tions is ended with a comaparison between our concept of regularity with that
of slice regularity (Theorem 7), showing that these concepts are equivalent on
open sets called in this work spectrally saturated, which happen to be axially
symmetric sets, introduced in [4] (see Proposition 2).

One of the necessities of the quantum mechanics is the existence of a conve-
nient operator theory in the context of quaternions, in particular an appropriate
definition of the spectrum. Because the direct extension of the classical defi-
nition of the spectrum has been considered not to be satisfactory, a different
definition, using the squares of operators, has been introduced in [4] (see also
[3]). We adapt this definition to our framework (see Definition 3), showing
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that, nevertheless, the symetrization of the classical definition of the spectrum
is still usable. In fact, we consider a spectrum for real operators on real Banach
spaces, and construct an analytic functional calculus for them (see Theorem
4 and Proposition 5). Unlike in [4] or [3], our functional calculus is based on
a Riesz- Dunford-Gelfand formula, defined in a commututative context, rather
than the non-commutative Cauchy type formula, used by previous authors. This
analytic functional calculus holds for a class of analytic operator valued func-
tions, whose definition extends that of stem functions (see Remark 20), and it
applies, in particular, to some quaternionic linear operators (Corollary 6).

2 Hamilton’s Algebra

We start this discussion with some well known facts. Abstract Hamilton’s al-
gebra H0 is the four-dimensional R-algebra with unit 1, generated by {j,k, l},
where j,k, l satisfy

jk = −kj = l, kl = −lk = j, lj = −jl = k, jj = kk = ll = −1.

In this work, Hamiltonn’s algebra (or algebra of quaternions) will be identified
with an R-subalgebra of M2 of 2×2 matrices with complex entries. Specifically,
using a well-known idea, one considers the following 2×2-matrices with complex
entries

I =

(
1 0
0 1

)
, J =

(
i 0
0 −i

)
, K =

(
0 1
−1 0

)
, L =

(
0 i
i 0

)
,

with i2 = −1. Because we have

J2 = K2 = L2 = −I,

JK = L = −KJ, KL = J = −LK, LJ = K = −JL,

the assignment

H0 3 x0 + x1j + x2k + x3l 7→ x0I + x1J + x2K + x3L ∈M2 (1)

is an injective unital R-algebra morphism, which is also an isometry. For this
reason, from now on, the algebra of quaternions, denoted by H, is defined as
the R-subalgebra of the algebra M2, generated by the matrices I, J, K and L.
Although this identification is not canonical, the realization of H0 as a matrix
algebra H offers more freedom when acting with its elements, as we shall see in
the sequel. In particular, the quaternions in this paper commute with complex
scalars because they are, in fact, matricial quaternions.

We shall often use the notation

Q(z) =

(
z1 z2

−z̄2 z̄1

)
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for every z = (z1, z2) ∈ C2, and noticing that

Q(z) = <z1I + =z1J + <z2K + =z2L,

and I = Q((1, 0)), J = Q((i, 0)), K = Q((0, 1)), L = Q((0, i)), we obtain that
the map C2 3 z 7→ Q(z) ∈ H is R-linear and bijective. In other words, the set
C2 can be identified, as an R-vector space, with the algebra H. For technical
reasons, we often represent a fixed element of H under the form Q(z), for some
z ∈ C2 uniquely determined, via the assignment (1).

Regarding the elements of M2 as linear maps acting on the space C2, endowed
with the natural scalar product 〈z,w〉 = z1w̄1 + z2w̄2 and the associated norm
‖z‖2 = |z1|2 + |z2|2, z = (z1, z2),w = (w1, w2) ∈ C2, we see that the algebra H
also has a natural involution, given byQ(z) 7→ Q(z)∗, z ∈ C2, where z = (z1, z2),

Q(z)∗ =

(
z̄1 −z2

z̄2 z1

)
= Q(z∗),

with z∗ = (z̄1,−z2). (In fact, the map C2 3 z 7→ z∗ ∈ C2 is itself an R-linear
involution of C2.) In particular, J∗ = −J, K∗ = −K, L∗ = −L.

It is easily seen that Q(z)Q(z)∗ = Q(z)∗Q(z) = ‖z‖2I for all z ∈ C2, and
so Q(z) is a normal matrix for each z ∈ C2. Moreover, ‖Q(z)‖ = ‖z‖ for all
z ∈ C2, that is, the map C2 3 z 7→ Q(z) ∈ H is an isometry. In addition,
Q(z)−1 = ‖z‖−2Q(z)∗ for all z ∈ C2 \ {0}, so every nonnull element of H is
invertible.

Let us clarify the position of the R-subalgebra H into the C-algebra M2.

Remark 1 On the algebra M2 we define what we will call a skew complex
conjugation, setting

a∼ :=

(
ā4 −ā3

−ā2 ā1

)
,

for every

a =

(
a1 a2

a3 a4

)
∈M2.

The map a 7→ a∼ is conjugate homogeneous and additive, in particular R-linear,
multiplicative, unital, (a∼)∼ = a, and (a∗)∼ = (a∼)∗. In addition, a = a∼ if
and only if a is a quaternion.

Being a ∗-automorphism R-linear, the map a 7→ a∼ must be an isometry.
Because M2 is finite dimensional, we can give a direct easy argument of this
assertion, as follows. Because

a∗a =

(
|a1|2 + |a3|2 ā1a2 + ā3a4

ā2a1 + ā4a3 |a2|2 + |a4|2
)
,

(a∼)∗a∼ =

(
|a2|2 + |a4|2 −ā1a2 − ā3a4

−ā2a1 − ā4a3 |a1|2 + |a3|2
)
,

we derive the equality det(λI − (a∼)∗a∼) = det(λI − a∗a), for all λ ∈ C, so
the matrices a∗a, (a∼)∗a∼ have the same spectrum. Because the norms of
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the positive (a∼)∗a∼, a∗a equal the greatest joint eigenvalue, we should have
‖a∼‖2 = ‖(a∼)∗a∼‖ = ‖a∗a‖ = ‖a‖2.

Note also that

a =
a + a∼

2
+ i

a− a∼

2i
, a ∈M2,

with a + a∼, i(a − a∼) ∈ H. In other words, M2 = H + iH. We also have
H∩ iH = {0}. Indeed, if q = ir with q, r ∈ H, we have q∼ = q = (ir)∼ = −ir =
−q, whence q = 0, showing that the decomposition M2 = H + iH is a direct
sum.

A map similar to the skew complex conjugation is defined, under the name
of reflexion, in C∗-algebras (see [13], Definition 2.6.). Nevertheless, a reflexion
is an anti-automorphism, by definition.

3 A Spectral Approach to H-Valued Functions

As before, the space C2 is endowed with its natural scalar product 〈∗, ∗〉, and
norm ‖ ∗ ‖. We also have the R-linear the map C2 3 z 7→ Q(z) ∈ H, which is a
bijective isometry. In other words, giving a quaternion q ∈ H, there is a unique
point zq ∈ C2 such that q = Q(zq). Moreover, the algebra H will be regarded
as an R-subalgebra of the C-algebra M2. In this way, the elements of H will be
regarded as linear operators on the Hilbert space C2, so every element Q(z) is
a normal operator on the Hilbert space C2.

Occasionally, we use the notation <q = <z1 and ‖q‖ = ‖Q(z)‖ if q = Q(z)
and z = (z1, z2).

Let us mention that for every complex space Banach X , and each Banach
space operator T on X , in this text the symbol σ(T ) will designate the spectrum
of T , and the symbol ρ(T ) will be resolvent set of T . Other similar symbols will
be later introduced and explained.

We start with an elementary result:

Lemma 1 Let z = (z1, z2) ∈ C2 be fixed. The spectrum σ(Q(z)) = {s±(z)} of
the normal operator Q(z) is given by

s±(z) = <z1 ± i
√

(=z1)2 + |z2|2, z = (z1, z2) ∈ C2. (2)

We have s+(z) = s−(z), and the points s+(z), s−(z) are distinct if and only if
Q(z) /∈ RI. Moreover:

(a) if z2 6= 0, the elements

ν±(z) =
1√

|z2|2 + |s±(z)− z1|2
(z2, s±(z)− z1) ∈ C2, z = (z1, z2) ∈ C2 (3)

are eigenvectors corresponding to the eigenvalues {s±(z)} respectively, and they
form an orthonormal basis of the Hilbert space C2;
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(b) if z2 = 0 but =z1 6= 0, we have σ(Q(z)) = {s±(z)}, with s+(z) =
z1, s−(z) = z̄1, and ν+(z) = (1, 0), ν−(z) = (0, 1) are eigenvectors corresponding
the eigenvalues z1, z̄1, respectively;

(c) if z2 = 0 and z = (x, 0) with x ∈ R, we have σ(Q(z)) = {x}, with
s+(z) = s−(z) = x, and ν+(z) = (1, 0), ν−(z) = (0, 1) are eigenvectors corre-
sponding to the eigenvalue x.

Proof. The spectrum σ(Q(z)) of Q(z) is given by the roots of the equation

s2 − 2s<z1 + |z1|2 + |z2|2 = 0, (4)

leading to the equality (2).
(a) Let z = (z1, z2) ∈ C2 be with z2 6= 0, so Q(z) /∈ RI. In this case,

clearly |z2|2 + |s±(z) − z1|2 > 0. The vectors (z2, s+(z) − z1), (z2, s−(z) − z1)
are orthogonal eigenvectors of Q(z) in C2, corresponding to the eigenvalues
ν+(z), ν−(z), via equation (4). Hence {ν+(z), ν−(z)} is an orthonormal basis of
C2, with the stated properties.

The assertions (b), (c) are easily obtained and left to the reader. We only
note that z2 = 0 implies, in fact, s±(z) = <z1±i|=z1|, leading to the eigenvectors
(<z1 + i|=z1|, 0) and (0,<z1 − i|=z1|), corresponding to the eigenvalues z1, z̄1,
respectively. For the sake of simplicity, we take s+(z) = z1, s−(z) = z̄1, and
replace the eigenvectors from above by (1, 0) and (0, 1), respectively, with no
loss of generality.

Example 1 Let S = {s = x1J + x2K + x3L;x1, x2, x3 ∈ R, x2
1 + x2

2 + x2
3 = 1},

that is, the unit sphere of purely imaginary quaternions. As noticed in in [4]
(and easily seen), every quaternion q ∈ H \R can be written as q = xI + ys, for
some s ∈ S, where x, y are real numbers, which are unique when y > 0. Let us
prove that for every q = xI + ys, x, y ∈ R, we have σ(q) = {x± iy}.

The quaternion s ∈ S can be written as a matrix under the form

s =

(
ia1 a2 + ia3

−a2 + ia3 −ia1

)
,

where a1, a2, a3 are real numbers with a2
1 + a2

2 + a2
3 = 1. Hence,

λI− x− ys =

(
λ− x− ia1y −(a2 + ia3)y
(a2 − ia3)y λ− x+ ia1y

)
.

The detrminant of the matrix from above is equal to λ2 − 2λx + x2 + y2, via
the equality a2

1 + |a2 + ia3|2 = 1, whose roots are equal to x± iy.
Note that the spectrum of q does not depend on s.

Definition 1 For a fixed point z = (z1, z2) ∈ C2, let {s±(z)} be the spectrum
of the operator Q(z), given by Lemma 1. The eigenvectors {ν±(z)} of Q(z)
corresponding to the eigenvalues {s±(z)} respectively, again given by Lemma
1, will be called the canonical eigenvectors of Q(z).

For an arbitrary quaternion q, we define its spectrum σ(q) as the set equal to
σ(Q(z)) = {s±(z)}, where z = (z1, z2) ∈ C2 is the unique point with q = Q(z).
We also use the notation s±(q) = s±(z) and ν±(q) = ν±(z).
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Lemma 2 Let z = (z1, z2) ∈ C2, and let ν±(z) = (ν±1(z), ν±2(z)) ∈ C2 be the
canonical eigenvectors of Q(z). Then we have

|ν−1(z)|2 = |ν+2(z)|2, |ν−2(z)|2 = |ν+1(z)|2,
(∗)

ν−1(z)ν−2(z) + ν+1(z)ν+2(z) = 0

Proof. We set ν± := ν±(z) and ν± = (ν±1, ν±2) ∈ C2. If z2 = 0, we have
ν+1 = ν−2 = 1, ν−1 = ν+2 = 0, so relations (∗) are trivial.

Assume z2 6= 0. Because |s+ − z1| = |s− − z̄1|, and relation (4) is equivalent
to

(s± − z1)(s± − z̄1) + |z2|2 = 0,

we have |s− − z1|2|s+ − z1|2 = |z2|4. Therefore

|ν−1|2 =
|z2|2

|z2|2 + |s− − z1|2
=

|s+ − z1|2

|z2|2 + |s+ − z1|2
= |ν+2|2.

A similar argument shows that

|ν+1|2 =
|z2|2

|z2|2 + |s+ − z1|2
=

|s− − z1|2

|z2|2 + |s− − z1|2
= |ν−2|2.

We also have

ν−1ν−2 =
z2(s+ − z̄1)

|z2|2 + |s− − z1|2
=

z2(s+ − z̄1)|s+ − z1|2

|z2|2(|z2|2 + |s+ − z1|2)
=

− z2(s− − z̄1)

|z2|2 + |s+ − z1|2
= −ν+1ν+2,

via equation (4). Consequently, equalities (∗) hold true.

Remark We note that equalities (∗) do not follow, in general, from the orthog-
onality of ν+(z) and ν−(z).

Remark 2 Given a complex number ζ, we can determine all quaternions q with
σ(q) = {ζ, ζ̄}. Assuming, with no loss of generality, that =ζ ≥ 0, we look for
the points z = (z1, z2) ∈ C satisfying the equation

ζ = s+(z) = <z1 + i
√

(=z1)2 + |z2|2,

so ζ̄ = s−(z) = <z1 − i
√

(=z1)2 + |z2|2. Setting u = z2 as a parameter, we
obtain <z1 = <ζ, and (=z1)2 = (=ζ)2 − |u|2, provided |u|2 ≤ (=ζ)2. The
solutions are given by the set

{z = (<ζ ± i
√

(=ζ)2 − |u|2, u) ∈ C2, |u| ≤ =ζ},

7



so we have, for every such a z, σ(Q(z)) = {ζ, ζ̄}, via Lemma 1. In particular, if
z = (<ζ + i

√
(=ζ)2 − |u|2, u) for some u ∈ C with 0 6= |u| ≤ =ζ, we must have(

<ζ + i
√

(=ζ)2 − |u|2 u

−ū <ζ − i
√

(=ζ)2 − |u|2

)(
u

i(=ζ −
√

(=ζ)2 − |u|2)

)

= ζ

(
u

i(=ζ −
√

(=ζ)2 − |u|2)

)
,

which is an explicit form, modulo a multiplicative constant, of the equation
Q(z)ν+(z) = s+(z)ν+(z), with s+(z) = ζ. In fact,

ν+(z) = (2=ζ(=ζ −
√

(=ζ)2 − |u|2))−1/2(u, i(=ζ −
√

(=ζ)2 − |u|2)).

If =ζ ≤ 0, we apply the previous discussion to ζ̄.

Remark 3 (1) A subset U ⊂ C is said to be conjugate symmetric if ζ ∈ U if
and only if ζ̄ ∈ U .

For an arbitrary conjugate symmetric subset U ⊂ C we put

UH = {q ∈ H;σ(q) ⊂ U}.

Note that, for every ζ ∈ U and u ∈ C with |u| ≤ |=ζ|, setting

q±ζ (u) := <ζ ± i
√

(=ζ)2 − |u|2, u) ∈ C2, |u| ≤ |=ζ|,

we have
UH = {Q(q±ζ (u)); ζ ∈ U, u ∈ C, |u| ≤ |=ζ|},

via Remark 2.
If U ⊂ C is open and conjugate symmetric, the set UH is also open via the

upper semi-continuity of the spectrum (see [5], Lemma VII.6.3.).
(2) A subset A ⊂ H is said to be spectrally saturated if whenever σ(r) = σ(q)

for some r ∈ H and q ∈ A, we also have r ∈ A.
For an arbitrary A ⊂ H, we put S(A) = {ζ ∈ C;∃q ∈ A : ζ ∈ σ(q)}. As

above, we also put SH = {q ∈ H;σ(q) ⊂ S} for an arbitrary subset S ⊂ C.
(3) A subset A ⊂ H is spectrally saturated if and only if there exists a

conjugate symmetric subset S ⊂ C such that A = SH. In this case, S = S(A).
Indeed, if S ⊂ C is conjugate symmetric and A = SH, then clearly A is

spectrally saturated. Conversely, if A is spectrally saturated, then A = S(A)H,
because we always have A ⊂ S(A)H, and fixing r ∈ S(A)H, we can find q ∈ A
with σ(q) = σ(r), so r ∈ A. Finally, if S(A)H = SH for some conjugate
symmetric S ⊂ H, we must have S = S(A).

(4) If Ω ⊂ H is an open spectraly saturated set, then S(Ω) ⊂ C is open.
Indeed, we have an injective R-linear map S(Ω) 3 ζ 7→ Q((ζ, 0)) ∈ Ω, and
the subset {Q((ζ, 0)); ζ ∈ S(Ω)} is open in the vector space {Q((ζ, 0)); ζ ∈ C}.
Hence the subset U ⊂ C is open if and only if UH is open, via an assertion in
(1), from above.
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An important particular case is when U = Dr := {ζ ∈ C; |ζ| < r}, for some
r > 0. Because the norm of the normal operator induced by q on C2 is equal to
its spectral radius, we must have UH = {q ∈ H; ‖q‖ < r}.

(5) We finally note that, for a given conjugate symmetric subset U ⊂ C, the
set UH is precisely the circularization of U , via Proposition 2, so it is axially
symmetric (see [9], Section 1.1 and [4], Definition 4.3.1). Nevertheless, we con-
tinue to call such a set spectrally saturated, a name which better reflects our
spectral approach.

Remark 4 Let U ⊂ C be conjugate symmetric, and let F : U 7→M2. We write

F (ζ) =

(
f11(ζ) f12(ζ)
f21(ζ) f22(ζ)

)
, ζ ∈ U,

with fmn : U 7→ C, m,n ∈ {1, 2}, and set

F∼(ζ) =

(
f22(ζ) −f21(ζ)

−f12(ζ) f11(ζ)

)
, ζ ∈ U.

In other words, F∼(ζ) = (F (ζ))∼ for all ζ ∈ U , where ”∼“ designates the skew
complex conjugation (see Remark 1).

We temporarily say that F is skew conjugate symmetric if F (ζ̄) = F∼(ζ), ζ ∈
U . Clearly, the function F is skew conjugate symmetric if and only if f11(ζ) =

f22(ζ̄) and f12(ζ) = −f21(ζ̄), implying f22(ζ) = f11(ζ̄) and f21(ζ) = −f12(ζ̄) for
all ζ ∈ U . In fact, the function F is skew conjugate symmetric if and only if F
has the form

F (ζ) =

(
f1(ζ) f2(ζ)

−f2(ζ̄) f1(ζ̄)

)
, ζ ∈ U, (5)

for some functions f1, f2 : U 7→ C.

Remark 5 It is interesting to compare the stem functions (see for instance [9],
Section 1.1), with the skew symmetric conjugate functions. To transpose this
discussion in our context, let us remark that the tensor product H ⊗R C may
be identified with M2 = H + iH, which is a direct sum, via the isomorphism
induced by the decomposition

a =
a + a∼

2
+ i

a− a∼

2i
, a ∈M2,

with a + a∼, i(a − a∼) ∈ H (see Remark 1). The corresponding conjugation
of M2 is in this case a = b + ic 7→ ā = b − ic, where b, c ∈ H are uniquely
determined by a given a ∈M2.

With this identification, a stem function is a map F : U 7→M2, where U ⊂ C
is conjugate symmetric, with the property F (ζ̄) = F (ζ) for all ζ ∈ U . Explicitly,
if

F (ζ) =

(
f1(ζ) f2(ζ)
f3(ζ) f4(ζ)

)
, F (ζ)∼ =

(
f4(ζ) −f3(ζ)

−f2(ζ) f1(ζ)

)
, ζ ∈ U,
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then F (ζ) = F1(ζ) + iF2(ζ), with F1(ζ) = F1(ζ̄) and F2(ζ) = −F2(ζ̄), where

F1(ζ) =
1

2

(
f1(ζ) + f4(ζ) f2(ζ)− f3(ζ)

f3(ζ)− f2(ζ) f4(ζ) + f1(ζ)

)
, ζ ∈ U,

and

F2(ζ) =
1

2i

(
f1(ζ)− f4(ζ) f2(ζ) + f3(ζ)

f3(ζ) + f2(ζ) f4(ζ)− f1(ζ)

)
, ζ ∈ U.

In addition,

f1(ζ) + f4(ζ) = f1(ζ̄) + f4(ζ̄), f2(ζ)− f3(ζ) = f2(ζ̄)− f3(ζ̄),

f1(ζ)− f4(ζ) = −f1(ζ̄) + f4(ζ̄), f2(ζ) + f3(ζ) = −f2(ζ̄)− f3(ζ̄).

Consequently, f1(ζ) = f4(ζ̄), and f2(ζ) = −f3(ζ̄), and so

F (ζ) =

(
f1(ζ) f2(ζ)

−f2(ζ̄) f1(ζ̄)

)
, ζ ∈ U,

showing that every stem function is skew symmetric conjugate, via (5).
Conversely, when F is given by (5), so it is skew symmetric conjugate, we

have

F∼(ζ) =

(
f1(ζ̄) f2(ζ̄)

−f2(ζ) f1(ζ)

)
, ζ ∈ U.

Setting F1(ζ) = (1/2)(F (ζ) +F∼(ζ)) and F2(ζ) = (1/2i)(F (ζ)−F∼(ζ)), which
are clearly H-valued functions, and F (ζ) = F1(ζ)+ iF2(ζ), a direct computation
shows that F(ζ̄) = F1(ζ) − iF2(ζ), showing that F is a stem function. Some
easy details are left to the reader.

As the term ”stem function“ is currently used in literature, from now on
we shall designate a skew symmetric function as a stem function. Nevertheless,
we shall use the definition of the skew symmetric function rather than that
equivalent of stem function, which is more appropriate to our framework.

Finally, note that a stem function is not necessarily H-valued. Using the
notation from above, the stem function F is H-valued if and only if f1(ζ̄) = f1(ζ)
and f2(ζ̄) = −f2(ζ) for all ζ ∈ U .

Remark 6 With the notation from Definition 1, and because for each z ∈
C2 the operator Q(z) is normal on the Hilbert space C2, we have a direct
sum decomposition C2 = N+(z) ⊕ N−(z), where N±(z) = {w ∈ C2;Q(z)w =
s±(z)w}. The projections E±(z) of C2 onto N±(z) are given by E±(z)w =
〈w, ν±(z)〉ν±(z), w ∈ C2.

For every function f : σ(Q(z)) 7→ C we may define the operator

f(Q(z))w = f(s+(z))〈w, ν+(z)〉ν+(z) + f(s−(z))〈w, ν−(z)〉ν−(z), (6)

where w ∈ C2 is arbitrary, with a slight but traditional abuse of notation.
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We note that formula (6) is a particular case of the functional calculus given
by the spectral theorem for compact normal operators (see for instance [10],
Section VIII.2, or [11], Chapter 3).

In particular, for f(ζ) = (λ− ζ)−1, ζ ∈ σ(Q(z))), λ 6= ζ, we have

(λI−Q(z))−1 = (λ− s+(z))−1E+(z) + (λ− s−(z))−1E−(z), λ /∈ σ(Q(z)),

a formula to be later used.
More generally, for a fixed z = (z1, z2) ∈ C2 and a function F : σ(Q(z)) 7→

M2, we may define the operator (in fact a matrix with respect to the canonical
basis of C2) by the formula

F (Q(z))w = F (s+(z))〈w, ν+(z)〉ν+(z) + F (s−(z))〈w, ν−(z)〉ν−(z), (7)

where w ∈ C2 is arbitrary, as an extension of (6). Using the notation from
Definition 1, formula (7) can be also written as

F (q)w = F (s+(q))〈w, ν+(q)〉ν+(q) + F (s−(q))〈w, ν−(q)〉ν−(q), w ∈ C2,

for each F : σ(q) 7→ M2. In addition, if q = Q(z), one can use the notation
N±(q) = N±(z) and E±(q) = E±(z). In fact, if U ⊂ C is conjugate symmetric,
the formula from above leads to a function F : UH 7→M2 (keeping, as usual, the
same notation). Finally, when q = sI, s ∈ R, then F (q) = F (s)I, via Lemma
1(c).

Theorem 1 Let U ⊂ C be a conjugate symmetric subset, and let F : U 7→M2.
The matrix F (q) is a quaternion for all q ∈ UH if and only if F is a stem
function.

Proof We fix a point ζ ∈ U . As ζ̄ ∈ U , we may assume, with no loss of
generality, that =ζ ≥ 0.

Case 1 We assume that =ζ > 0, and choose a quaternion q ∈ UH with
σ(q) = {ζ, ζ̄}. Writing q = Q(z) with z = (z1, z2) ∈ C2, because =ζ > 0, we
may assume z2 6= 0, via Remark 2. Let ν±(z) be the canonical eigenvectors of
Q(z), given by Definition 1. We also have s+(z) = ζ, s−(z) = ζ̄.

We show first that F (Q(z)) ∈ H if and only if

F (s+(z))ν+(z) = F∼(s−(z))ν+(z). (8)

Let us look for the matrix form of F (Q(z)). To simplify the computation, we
set s± = s±(z), F± = F (q±(z)), ν±(z) = (ν±1, ν±2), and fix a w = (w1, w2) ∈
C2.

Note that

(w1ν+1 + w2ν+2)

(
ν+1

ν+2

)
=

(
|ν+1|2 ν+1ν+2

ν+1ν+2 |ν+2|2
)(

w1

w2

)
,

(9)
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(w1ν−1 + w2ν−2)

(
ν−1

ν−2

)
=

(
|ν+2|2 −ν+1ν+2

−ν+1ν+2 |ν+1|2
)(

w1

w2

)
,

via Lemma 2.
Setting

F+ =

(
f+

11 f+
12

f+
21 f+

22

)
, F− =

(
f−11 f−12

f−21 f−22

)
,

formulas (7) and (9) lead to

F (Q(z)) =

(
f+

11 f+
12

f+
21 f+

22

)(
|ν+1|2 ν+1ν+2

ν+1ν+2 |ν+2|2
)

+(
f−11 f−12

f−21 f−22

)(
|ν+2|2 −ν+1ν+2

−ν+1ν+2 |ν+1|2
)
.

Note that(
|ν+1|2 ν+1ν+2

ν+1ν+2 |ν+2|2
)∼

=

(
|ν+2|2 −ν+1ν+2

−ν+1ν+2 |ν+1|2
)
.

Therefore, the matrix F (Q(z)) is a quaternion if and only if((
f+

11 f+
12

f+
21 f+

22

)
−
(
f−11 f−12

f−21 f−22

)∼)( |ν+1|2 ν+1ν+2

ν+1ν+2 |ν+2|2
)

is a quaternion, via the properties of the skew complex conjugation. Equiva-
lently, F (Q(z)) is a quaternion if and only if the matrix(

(f+
11 − f

−
22)|ν+1|2 + (f+

12 + f−21)ν+1ν+2 (f+
11 − f

−
22)ν+1ν+2 + (f+

12 + f−21)|ν+2|2

(f+
21 + f−12)|ν+1|2 + (f+

22 − f
−
11)ν+1ν+2 (f+

21 + f−12)ν+1ν+2 + (f+
22 − f

−
11)|ν+2|2

)

is a quaternion, that is,

(f+
11 − f

−
22)|ν+1|2 + (f−11 − f

+
22)|ν+2|2 + (f+

12 − f
−
12 − f

+
21 + f−21)ν+1ν+2 = 0

(10)

(f−12 + f+
21)|ν+1|2 + (f+

12 + f−21)|ν+2|2 + (f+
11 − f

−
11 + f+

22 − f
−
22)ν+1ν+2 = 0.

Let us make condition (10) more explicit. To have a notation even simpler,

we set x := f+
11 − f

−
22, y := f−11 − f

+
22, u := f+

12 + f−21, v = f−12 + f+
21. We also put

a := ν+1, b := ν+2, c := ab̄. Equations (10) become

|a|2x+ |b|2y + c̄(u− v) = 0, |a|2v + |b|2u+ c(x− y) = 0.

Equivalently, (
|a|2 |b|2
c −c

)(
x
y

)
=

(
−c̄ c̄
−|b|2 −|a|2

)(
u
v

)
.
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As we have (
|a|2 |b|2
c −c

)−1

=
1

c(|a|2 + |b|2)

(
c |b|2
c −|a|2

)
,

we deduce that(
x
y

)
=

1

c(|a|2 + |b|2)

(
−|a|2|b|2 − |b|4 0

0 |a|2|b|2 + |a|4
)(

u
v

)
,

whence

x = − b
a
u, y =

ā

b̄
v.

Because

a =
z2√

|z2|2 + |s+(z)− z1|2
, b =

s+(z)− z1√
|z2|2 + |s+(z)− z1|2

,

we obtain

f+
11 − f

−
22 =

z1 − s+(z)

z2
(f+

12 + f−21),

f−11 − f
+
22 =

z̄2

s−(z)− z̄1
(f−12 + f+

21).

Therefore,

f+
11z2 + f+

12(s+(z)− z1) = f−22z2 − f−21(s+(z)− z1),

f+
21z2 + f+

22(s+(z)− z1) = −f+
12z2 + f−11(s+(z)− z1),

and so(
f+

11 f+
12

f+
21 f+

22

)(
z2

s+(z)− z1

)
=

(
f−22 −f−21

−f−12 f−11

)(
z2

s+(z)− z1

)
,

which is (8), modulo a multiplicative constant. In other words, F (Q(z)) ∈ H if
and only if (8) holds.

Next we apply Remark 2. Because =ζ > 0, we define

zu = (<ζ + i
√

(=ζ)2 − |u|2, u) ∈ C2,

for some u ∈ C with 0 6= |u| < =ζ. Let also ν+(zu) be the corresponding
canonical eigenvector of Q(zu). Because s+(zu) = ζ = s+(z), the previous
argument shows that F (Q(zu)) is a quaternion if and only if F (ζ)ν+(zu) =
F∼(ζ̄)ν+(zu). Now, there are pairs u1, u2 such that ν+(zu1

), ν+(zu2
) are linearly

independent. For instance, if 0 < u1 = −u2 < =(ζ), the vectors

(u1, i(=ζ −
√

(=ζ)2 − u2
1)), (u2, i(=ζ −

√
(=ζ)2 − u2

2))
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are linearly independent. Indeed, if not, we would have

=ζ −
√

(=ζ)2 − u2
1 = −=ζ +

√
(=ζ)2 − u2

1),

implying u1 = 0, which is not possible. Having two linearly independent vectors
ν+(zu1), ν+(zu2), with the hypothesis F (Q(zu1)), F (Q(zu2)) ∈ H we deduce
that the equality F (ζ) = F∼(ζ̄) holds.

If =ζ < 0, a similar argument shows that F (ζ) = F∼(ζ̄) (see also Remark
7). In particular, if F (Q(z)) ∈ H for Q(z) ∈ UH, the equality F (ζ) = F∼(ζ̄) is
true for all ζ ∈ U with =ζ 6= 0.

Case 2 We assume that ζ ∈ U ∩ R, and put x = ζ. When z = (x, 0) with
x ∈ R, we have Q(z)) = xI and so F (Q(z)) = F (x)I. In this case, it is obvious
that F (x)I is a quaternion if and only if F (x) = F∼(x).

Consequently, if F (q) ∈ H for all q ∈ UH, the function F is a stem one.
Final Case To finish the proof, we have to show that if F is a stem function,

we must have F (q) ∈ H for all q ∈ UH.
Fixing a point q = Q(z) with z = (z1, z2), assuming z2 6= 0, if ζ = s+(z),

condition (8) cleraly holds, so F (q) ∈ H.
Next assume that z2 = 0 but =z1 6= 0. In this case, using the notation from

Definition 1, we have s+(q) = z1, s−(q) = z̄1, ν+(q) = (1, 0), ν−(q) = (0, 1), and
with F as in formula (5), formula (7) leads to

F (q)w = F (z1)〈w, ν+(q)〉ν+(q) + F∼(z̄1)〈w, ν−(q)〉ν−(q) =(
f1(z̄1) f2(z1)

−f2(z̄1) f1(z̄1)

)(
w1

0

)
+

(
f1(z̄1) f2(z̄1)

−f2(z1) f1(z1)

)(
0
w2

)
=(

f1(z1) f2(z̄1)

−f2(z̄1) f1(z1)

)(
w1

w2

)
for all w = (w1, w2) ∈ C2, which shows that F (q) is a quaternion.

Finally, if z2 = 0 and =z1 = 0 the assertion is given by Case 2, from above.

Remark 7 There is a parallel treatment of Case 1 from the previous proof,
leading to a similar statement. We first introduce the function

G :=

(
f21 f22

−f11 −f12

)
: U 7→M2,

whose entries are given by the original function

F =

(
f11 f12

f21 f22

)
: U 7→M2.

Then we prove that

G(s−(z))ν−(z) = G∼(s+(z))ν−(z). (11)
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To infer (11), we use conditions (10), written as

(f+
11 − f

−
22)|ν−2|2 + (f−11 − f

+
22)|ν−1|2 − (f+

12 − f
−
12 − f

+
21 + f−21)ν−1ν−2 = 0.

(12)

(f−12 + f+
21)|ν−2|2 + (f+

12 + f−21)|ν−1|2 − (f+
11 − f

−
11 + f+

22 − f
−
22)ν−1ν−2 = 0.

As in the proof of Case 1, we obtain the equality(
−f+

12 f+
11

−f+
22 f+

21

)(
z2

s−(z)− z1

)
=

(
f−21 f−22

−f−11 −f−12

)(
z2

s−(z)− z1

)
, (13)

which is relation (11), modulo a multiplicative factor. Using, as above, Re-
mark 2, we deduce the equality G(s−(z)) = G∼(s+(z)), which is equivalent to
F (s−(z)) = F∼(s+(z)).

We have, in fact, an equivalent formulation of Theorem 1, asserting that
F (q) ∈ H for all q ∈ UH if and only if G(ζ) = G∼(ζ̄) for all ζ ∈ U , that is, if
and only if G is a stem function.

Corollary 1 Let U ⊂ C be a conjugate symmetric subset, and let f : U 7→ C.

We have f(q) ∈ H for all q ∈ UH if and only if f(ζ) = f(ζ̄) for all ζ ∈ U .

Proof. We apply Theorem 1 to the function F = fI : U 7→ M2. This

function is a stem one if and only if f(ζ) = f(ζ̄) for all ζ ∈ U .

Corollary 2 Let U ⊂ C be an open conjugate symmetric subset, and let F :
U 7→ H. Then we have F (q) ∈ H for all q ∈ UH if and only if F (ζ) = F (ζ̄) for
all ζ ∈ U .

Proof. The property F : U 7→ H implies that F∼ = F . Therefore, F is a
stem function if and only if F (ζ) = F (ζ̄) for all ζ ∈ U .

Remark 8 Let U ⊂ C be a conjugate symmetric set, and let F : U 7→ M2 be
a stem function. The formula

F (q)w = F (s+(q))〈w, ν+(q)〉ν+(q) + F (s−(q))〈w, ν−(q)〉ν−(q),

where q ∈ UH and w ∈ C2 are arbitrary, is an ”extension“ of the function F
to UH, in a sense to be specified. Note that we have an embedding U 3 ζ 7→
qζ := Q((ζ, 0)) ∈ H, which is the restriction of an R-linear map isometry. In
fact, writing ζ = x+ iy, with x, y ∈ R unique, we have

qζ =

(
x+ iy 0

0 x− iy

)
= xI + yJ,

allowing us to identify the set U with the set

UJ := {qζ ; ζ ∈ U} = {xI + yJ;x+ iy ∈ U} ⊂ H.
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Because F is a stem function, we must have

F (ζ) =

(
f1(ζ) f2(ζ)

−f2(ζ̄) f1(ζ̄)

)
, ζ ∈ U,

given by formula (5).
As we have σ(qζ) = {ζ, ζ̄}, it follows from Lemma 1 that s+(qζ) = ζ, s−(qζ) =

ζ̄, ν+(qζ) = (1, 0), ν−(qζ) = (0, 1), and hence, as in the proof of Theorem 1,

F (qζ)

(
w1

w2

)
= F (ζ)

(
w1

0

)
+ F (ζ̄)

(
0
w2

)
=

(
f1(ζ) f2(ζ̄)

−f2(ζ̄) f1(ζ)

)(
w1

w2

)
for all (w1, w2) ∈ C2, so

F (qζ) =

(
f1(ζ) f2(ζ̄)

−f2(ζ̄) f1(ζ)

)
, ζ ∈ U.

Let Fs(U,M2) = {F : U 7→ M2;F (ζ̄) = F∼(ζ), ζ ∈ U}, which is an R-
algebra of M2-valued functions on U , consisting of all stem functions on U .
Let also F(U,H) = {G : U 7→ H}, which an R-algebra of H-valued functions
on U . Setting κ(ζ) = qζ , ζ ∈ U , we have an injective unital morphism of R-
algebras given by Fs(U,M2) 3 F 7→ F ◦ κ ∈ F(U,H). Therefore, the map
UH 3 q 7→ F (q) ∈ H given by (7), which extends the map qζ 7→ F (qζ), may
be also regarded as an ”extension“ of F ∈ Fs(U,M2) (modulo the map κ).
Note also that the function UH 3 q 7→ F (q) ∈ H is uniquely determined by the
function U 3 ζ 7→ F (ζ) ∈M2, when the latter is a stem function.

In particular, if f ∈ Fs(U) := {g : U 7→ C; g(ζ̄) = g(ζ), ζ ∈ U}, then

f(Q(ζ, 0)) =

(
f(ζ) 0

0 f(ζ)

)
= Q((f(ζ), 0)), ζ ∈ U.

4 Analytic Functional Calculus for Quaternions

Regarding, as before, the quaternions as normal operators, we now investigate
some consequences of their analytic functional calculus, in the classical sense
(see [5], Section VII.3, for details). The frequent use of various versions of the
Cauchy formula is simplified by adopting the following definition. Let U ⊂ C
be open. An open subset ∆ ⊂ U will be called a Cauchy domain (in U) if
∆ ⊂ ∆̄ ⊂ U and the boundary ∂∆ of ∆ consists of a finite family of closed
curves, piecewise smooth, positively oriented. Note that a Cauchy domain is
bounded but not necessarily connected.
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Lemma 3 Let U ⊂ C be a conjugate symmetric open set and let F : U 7→ M2

be an analytic function. For every q ∈ UH we set

FH(q) =
1

2πi

∫
Γ

F (ζ)(ζI− q)−1dζ, (14)

where Γ is the boundary of a Cauchy domain in U containing the spectrum σ(q).
Then we have FH(q) ∈ H for all q ∈ UH if and only if F is a stem function.

Proof. We first assume that q /∈ RI. If σ(q) = {s+, s−} with s± = s±(q), the
points s+, s− are distinct and not real, by Lemma 1. We fix an r > 0 sufficiently
small such that, setting D± := {ζ ∈ U ; |ζ − s±| ≤ r}, we have D± ⊂ U and
D+ ∩D− = ∅. Then

FH(q) =
1

2πi

∫
Γ+

F (ζ)(ζI− q)−1dζ +
1

2πi

∫
Γ−

F (ζ)(ζI− q)−1dζ,

where Γ± is the boundary of D±. We may write F (ζ) =
∑
k≥0(ζ−s+)kAk with

ζ ∈ D+, Ak ∈ M2 for all k ≥ 0, as a uniformly convergent series. Similarly,
F (ζ) =

∑
k≥0(ζ − s−)kBk with ζ ∈ D−, Bk ∈ M2 for all k ≥ 0, as a uniformly

convergent series.
Note that

1

2πi

∫
Γ+

F (ζ)(ζI− q)−1dζ =
∑
k≥0

(
Ak

1

2πi

∫
Γ+

(ζ − s+)k(ζI− q)−1dζ

)
= A0E+,

because the integral

1

2πi

∫
Γ+

(ζ − s+)k(ζI− q)−1dζ

is equal to E+ := 1
2πi

∫
Γ+

(ζI−q)−1dζ when k = 0, which is the projection of C2

onto the space N+ := {v; qv = s+v}, and it is equal to 0 when k ≥ 1, because
(ζI− q)−1E+ = (ζ − s+)−1E+ (see Remark 6).

Similarly

1

2πi

∫
Γ−

F (ζ)(ζI− q)−1dζ =
∑
k≥0

(
Bk

1

2πi

∫
Γ−

(ζ − s−)k(ζI− q)−1dζ

)
= B0E−

because, as above, the integral

1

2πi

∫
Γ−

(ζ − s−)k(ζI− q)−1)dζ

is equal to E− := 1
2πi

∫
Γ−

(ζI − q)−1dζ when k = 0, which is the projection of

C2 onto the space N− := {v; qv = s−v}, and it is equal to 0 when k ≥ 1, since
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(ζI − q)−1E− = (ζ − s−)−1E−. Note also that E+w = 〈w, ν+(q)〉ν+(q), and
E−w = 〈w, ν−(q)〉ν−(q), all w ∈ C2. Consequently,

FH(q) = F (s+)E+ + F (s−)E−,

and the right hand side of this equality coincides with formula (7).
Assume now that σ(q) = {s}, where s := s+ = s− ∈ R. We fix an r > 0

such that D := {ζ ∈ U ; |ζ − s| ≤ r} ⊂ U . Then we have

FH(q) =
1

2πi

∫
Γ

F (ζ)(ζI− q)−1dζ,

where Γ is the boundary of D. We write F (ζ) =
∑
k≥0(ζ − s)kAk with ζ ∈ D,

Ak ∈M2 for all k ≥ 0, as a uniformly convergent series. Note also that

1

2πi

∫
Γ

F (ζ)(ζI− q)−1dζ =
∑
k≥0

(
Ak

1

2πi

∫
Γ

(ζ − s)k(ζI− q)−1dζ

)
= A0,

because the integral
1

2πi

∫
Γ

(ζ − s)k(ζI− q)−1dζ

is equal to I when k = 0, and equal to 0 when k ≥ 1, since (ζI−q)−1 = (ζ−s)−1I.
Consequently, FH(q) = A0 = F (s)I.

In both situations, the matrix FH(q) is equal to the right hand side of formula
(7). Therefore, we must have FH(q) ∈ H if and only if F (s+) = F∼(s−), via
Theorem 1. In other words, FH(q) ∈ H for all q ∈ UH if and only if F : U 7→M2

is a stem function.

Remark 9 It follows from the proof of the previous lemma that the element
FH(q), given by formula (14), coincides with the element F (q) given by (7).
Nevertheless, we keep the notation FH(q) whenever we want to emphasize that
it is defined via (14).

Corollary 3 Let U ⊂ C be a conjugate symmetric open set and let f : U 7→ C
be an analytic function. For every q ∈ UH we set

fH(q) =
1

2πi

∫
Γ

f(ζ)(ζI− q)−1dζ, (15)

where Γ is the boundary of a Cauchy domain in U containing the spectrum σ(q).
Then we have fH(q) ∈ H if and only if f(s+(q)) = f(s−(q)) for all q ∈ UH.

Proof. The assertion is a direct consequence of Lemma 3, applied to the the
function fI.

Remark 10 Let U ⊂ C be open and conjugate symmetric. As already seen,
for every point ζ ∈ U the quaternion Q((ζ, 0)) is an element of UH because its
spectrum equals the set {ζ, ζ̄}. According to Corollary 3, an analytic function
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f : U 7→ C has the property fH(q) ∈ H for all q ∈ UH if and only if f(ζ̄) = f(ζ)
for all ζ ∈ U . This shows, in particular, that the set Os(U), consisting of all
analytic functions f : U 7→ C with the property f(ζ̄) = f(ζ) for all ζ ∈ U , is
compatible with the analytic functional calculus of the quaternions. Clearly,
Os(U) is a unital R-subalgebra of the C-algebra O(U) of all analytic functions
in U .

More generally, if F ∈ O(U,M2), where O(U,M2) is the C-algebra of all M2-
valued analytic functions in U , we have the property FH(q) ∈ H for all q ∈ UH
if and only if F is a stem function, by Lemma 3. In this case, we have

F (ζ) =

(
f1(ζ) f2(ζ)

−f2(ζ̄) f1(ζ̄)

)
, ζ ∈ U,

by formula (5).
Let us denote by Os(U,M2) the set of all analytic stem functions F ∈

O(U,M2), so Os(U,M2) ⊂ Fs(U,M2), where the latter is introduced in Remark
8.

Note that if f1 ∈ Os(U) and f2 ∈ iOs(U), we have

F (ζ) =

(
f1(ζ) f2(ζ)
f2(ζ) f1(ζ)

)
∈ Os(U,M2).

The converse is not true, in general. For instance, if f(ζ) = ζ + i on U = C,

we have f(ζ̄) = ζ − i, so f /∈ Os(U) but

F (ζ) =

(
ζ + i 0

0 ζ − i

)
∈ Os(U,M2).

It is easily seen that Os(U,M2) is a unital R-subalgebra of the C-algebra
O(U,M2), and it is also an Os(U)-module.

Finally, if ∆ ⊂ C is an open disk centered at 0, each function F ∈ Os(∆,M2)
can be represented as a convergent series F (ζ) =

∑
k≥0 akζ

k, ζ ∈ ∆, with
ak ∈ H for all k ≥ 0.

Definition 2 Let Ω ⊂ H be a spectrally saturated open set, and let U =
S(Ω) ⊂ C (which is also open by Remark 3(4)). Then we put

R(Ω) = {fH; f ∈ Os(U)},

and
R(Ω,H) = {FH;F ∈ Os(U,M2)}.

In fact, these are R-linear spaces, having some important properties:

Theorem 2 Let Ω ⊂ H be a spectrally saturated open set, and let U = S(Ω) ⊂
C. The space R(Ω) is a unital commutative R-algebra, the space R(Ω,H) is a
right R(Ω)-module, and the map

Os(U,M2) 3 F 7→ FH ∈ R(Ω,H)
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is a right module isomorphism. Moreover, for every polynomial P (ζ) =∑m
n=0 anζ

n, ζ ∈ C, with an ∈ H for all n = 0, 1, . . . ,m, we have PH(q) =∑m
n=0 anq

n ∈ H for all q ∈ H.

Proof. The R-linearity of the maps

Os(U,M2) 3 F 7→ FH ∈ R(Ω,H), Os(U) 3 f 7→ fH ∈ R(Ω),

is clear. As the second one is also multiplicative follows from the multiplicativiry
of the analytic functional calculus at any point q ∈ H.

In fact, we have a more general property, specifically (Ff)H(q) = FH(q)fH(q)
for all F ∈ Os(U,M2), f ∈ Os(U), and q ∈ Ω. This follows from the equalities,

(Ff)H(q) =
1

2πi

∫
Γ0

F (ζ)f(ζ)(ζI− q)−1dζ =

(
1

2πi

∫
Γ0

F (ζ)(ζI− q)−1dζ

)(
1

2πi

∫
Γ

f(η)(ηI− q)−1dη

)
= FH(q)fH(q),

obtained as in the classical case (see [5], Section VII.3), which holds because
f is C-valued and commutes with the quaternions in M2. Here Γ, Γ0 are the
boundaries of two Cauchy domains ∆, ∆0 respectively, such that ∆ ⊃ ∆̄0, and
∆0 contains σ(q).

Note that, in particular, for every polynomial P (ζ) =
∑m
n=0 anζ

n with an ∈
H for all n = 0, 1, . . . ,m, we have PH(q) =

∑m
n=0 anq

n ∈ H for all q ∈ H.
Another stated property is the injectivity of the map

Os(U,M2) 3 F 7→ FH ∈ R(Ω,H)

Indeed, if the function FH is null, the function U 3 ζ 7→ FH(qζ) ∈ H is null too,
so F ∈ Os(U,M2) should be null as well (see Remark 8).

Corollary 4 Let Ω ⊂ H be a spectrally saturated open set, and let U = S(Ω) ⊂
C. The map

Os(U) 3 f 7→ fH ∈ R(Ω)

is a unital R-algebra isomorphism. Moreover,
(a) for every polynomial p(ζ) =

∑m
n=0 anζ

n with an real for all n = 0, 1, . . . ,m,
we have pH(q) =

∑m
n=0 anq

n ∈ H for all q ∈ Ω;
(b) if f ∈ Os(U) has no zero in U , we have (fH(q))−1 = f−1

H (q) for all q ∈ Ω.

The assertions are direct consequences of the previous proof.

Corollary 5 Let r > 0 and let U ⊃ {ζ ∈ C; |ζ| ≤ r} be a conjugate symmetric
open set. Then for every F ∈ Os(U,M2) one has

FH(q) =
∑
n≥0

F (n)(0)

n!
qn, ‖q‖ < r,

where the series is absolutely convergent.
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Proof. Indeed, as we have (ζI − q)−1 =
∑
n≥0 ζ

−n−1qn, where the series is
uniformly convergent on {ζ; |ζ| = r} for each fixed q with ‖q‖ < r, we infer that

FH(q) =
1

2πi

∫
|ζ|=r

F (ζ)(ζI− q)−1dζ =

∑
n≥0

(
1

2πi

∫
|ζ|=r

F (ζ)

ζn+1
dζ

)
qn =

∑
n≥0

F (n)(0)

n!
qn.

Remark 11 For every function F ∈ Os(U,M2), the derivatives F (n) also belong
to Os(U,M2), where U ⊂ C is a conjugate symmetric open set. To check this

assertion, we note first that if f ∈ O(U), setting f∗(ζ) := f(ζ̄) for all ζ ∈ U , we

can easily see that f∗ ∈ O(U) and (f∗)′(ζ) = f ′(ζ̄), for all ζ ∈ U .
Because

F (ζ) =

(
f1(ζ) f2(ζ)
−f∗2 (ζ) f∗1 (ζ)

)
, ζ ∈ U,

we have

F (ζ)′ =

(
f ′1(ζ) f ′2(ζ)
−(f∗2 )′(ζ) (f∗1 )′(ζ)

)
, ζ ∈ U,

showing that F ′ ∈ Os(U,M2).
Now fixing F ∈ Os(U,M2), we may define its extended derivatives with

respect to the quaternionic variable via the formula

F
(n)
H (q) =

1

2πi

∫
Γ

F (n)(ζ)(ζI− q)−1dζ, (16)

for the boundary Γ of a Cauchy domain ∆ ⊂ U , n ≥ 0 an arbitrary integer, and
σ(q) ⊂ ∆.

In particular, if F ∈ Os(∆,M2), with ∆ a disk centered at zero, and so we
have a representation as a convergent series F (ζ) =

∑
k≥0 akζ

k with coefficients

in H, then (16) gives the equality F ′H(q) =
∑
k≥1 kakq

k−1, which looks like a

(formal) derivative of the function FH(q) =
∑
k≥0 akq

k.

Remark 12 Let U ⊂ C be an arbitrary open set and let F ∈ O(U,M2) be an
arbitrary analytic function. Let also ∆0,∆ be open discs in U with boundaries
Γ0,Γ respectively, such that ∆0 ⊂ ∆̄0 ⊂ ∆ ⊂ ∆̄ ⊂ U . We recall that

‖F (n)(ζ)‖ ≤ n!r(Γ)

d(Γ,Γ0)n+1
sup
θ∈Γ
‖F (θ)‖, ζ ∈ ∆0, n ≥ 0,

where r(Γ) is the radius of Γ, and d(Γ,Γ0) = inf{|θ − θ0|; θ ∈ Γ, θ0 ∈ Γ0}. Of
course, these are Cauchy’s derivative inequalities, with explicit constants, which
will be used in the sequel.
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Lemma 4 (1) Let D+,∆0+,∆+ be disks in a conjugate symmetric open subset
U ⊂ C, such that

D+ ⊂ D̄+ ⊂ ∆0+ ⊂ ∆̄0+ ⊂ ∆+ ⊂ ∆̄+ ⊂ {ζ ∈ C;=ζ > 0}.

Let also F ∈ Os(U,M2). Then we have the estimates

‖F (n)
H (q)‖ ≤

(
2n!r(Γ0+)

d(Γ+,Γ0+)n+1d(Γ0+, C0+)

)
sup
ζ∈Γ+

‖F (ζ)‖, n ≥ 0,

for all q ∈ UH with s+(q) ∈ D+, where C0+,Γ0+,Γ+ are the boundaries of
D+,∆0+,∆+, respectively.

(2) Let D,∆0,∆ be disks in a conjugate symmetric open subset U ⊂ C,
U ∩ R 6= ∅, such that the centers of D,∆0,∆ belong to R, and

D ⊂ D̄ ⊂ ∆0 ⊂ ∆̄0 ⊂ ∆ ⊂ ∆̄ ⊂ U.

Let also F ∈ Os(U,M2). Then we have the estimates

‖F (n)
H (q)‖ ≤

(
n!r(Γ0)

d(Γ,Γ0)n+1d(Γ0, C)

)
sup
ζ∈Γ
‖F (ζ)‖, n ≥ 0,

for all q ∈ UH with σ(q) ⊂ D, where C,Γ0,Γ are the boundaries of D,∆0,∆,
respectively.

Proof. (1) First of all, for each subset A+ ⊂ {ζ ∈ C;=ζ > 0}, we put
A− := {ζ̄; ζ ∈ A+}.

Secondly, for every q ∈ H with σ(q) ⊂ D+ ∪D− the eigenvalues s±(q) of the
normal operator q on C2 are distinct and we have a direct sum decomposition
C2 = C2

+ ⊕ C2
−, where C2

± = {z ∈ C2; qz = s±(q)z}. Let also E±(q) be
the orthogonal projection of C2 onto C2

±. Therefore, ‖(ζI − q)−1E±(q)‖ =
|ζ − s±(q)|−1, whenever ζ /∈ σ(q) (see also Remark 6).

Next, using Cauchy’s inequalities, we obtain∥∥∥∥∥ 1

2πi

∫
Γ0+

F (n)(ζ)(ζI− q)−1E+(q)dζ

∥∥∥∥∥ ≤(
n!r(Γ0+)

d(Γ+,Γ0+)n+1

)
sup
ζ∈Γ+

‖F (ζ)‖ sup
ζ∈Γ0+

|ζ − s+(q)|−1 ≤(
n!r(Γ0+)

d(Γ+,Γ0+)n+1d(Γ0+, C0+)

)
sup
ζ∈Γ+

‖F (ζ)‖,

because supζ∈Γ0+
|ζ − s+(q)|−1 ≤ d(Γ0+, C0+)−1 when s+(s) ∈ D0+, where

C0+,Γ0+,Γ+ are the boundaries of D+,∆0+,∆+, respectively.
Similarly, ∥∥∥∥∥ 1

2πi

∫
Γ0−

F (n)(ζ)(ζI− q)−1E−(q)dζ

∥∥∥∥∥ ≤
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(
n!r(Γ0−)

d(Γ−,Γ0−)n+1d(Γ0−, C0−)

)
sup
ζ∈Γ−

‖F (ζ)‖,

where C0−,Γ0−,Γ− are the boundaries of D,∆0−,∆−, respectively.
Because of symmetric conjugation, and the properties of F , we may set

M := sup
ζ∈Γ+

‖F (ζ)‖ = sup
ζ∈Γ−

‖F (ζ)‖, r := r(Γ0+) = r(Γ0−),

d := d(Γ+,Γ0+) = d(Γ−,Γ0−), d0 = d(Γ0+, C0+) = d(Γ0−, C0−),

and as we have,

F
(n)
H (q) =

1

2πi

∫
Γ0+

F (n)(ζ)(ζI− q)−1E+(q)dζ+

1

2πi

∫
Γ0−

F (n)(ζ)(ζI− q)−1E−(q)dζ,

we infer that

‖F (n)
H (q)‖ ≤ 2rn!M

d0dn+1
,

which are the desired estimates.
(2) The proof is similar to that of part (1). In fact, following the lines of the

previous proof, we have

‖F (n)
H (q)‖ ≤

(
n!r(Γ0)

d(Γ,Γ0)n+1d(Γ0, C0)

)
sup
ζ∈Γ
‖F (ζ)‖,

because ‖(ζI− q)‖−1 ≤ d(Γ0, C0)−1 when σ(q) ⊂ D0.

Proposition 1 Let U ⊂ C be a conjugate symmetric open set containing 0,
and let F ∈ Os(U,M2). Then there exists an open disk V ⊂ U of center 0 such
that Q((λ, 0)) ∈ VH for all λ ∈ V and

F (λ) =
∑
n≥0

F
(n)
H (q)

n!
(λI− q)n, q ∈ VH,

where the series is absolutely convergent in M2.

Proof. We choose the disks D,∆0,∆ as in Lemma 4(2). In addition, we
assume that all of them are centered at 0.

According to Lemma 4(2), we deduce that

lim sup
n→∞

(
‖F (n)

H (q)‖
n!

)1/n

≤ d(Γ,Γ0)−1 <∞,

whenever σ(q) ⊂ D. Therefore, the formal series

G(λ) =
∑
n≥0

F
(n)
H (q)

n!
(λI− q)n
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is absolutely convergent if ‖λI− q‖ < δ, where δ = d(Γ,Γ0).
Because this estimate does not depend on the radius of D, say ρ, which shall

determine ρ such that V = D ⊂ ∆0.
We assume that 0 < 2ρ < δ. If λ ∈ V , then λ̄ ∈ V , so Q((λ, 0)) ∈ VH. Next,

if q ∈ VH, as both s±(q) ∈ V , we must have |λ − s±(q)| < 2ρ < δ, implying
‖λI− q‖ < δ.

Note that

G(λ) =
∑
n≥0

1

2πin!

(∫
Γ0

F (n)(ζ)(ζI− q)−1dζ

)
(λI− q)n =

∑
n≥0

1

2πi

∫
Γ0

(
1

2πi

∫
Γ

F (θ)

(θ − ζ)n+1
dθ

)
(ζI− q)−1(λI− q)ndζ =

1

2πi

∫
Γ

F (θ)

 1

2πi

∫
Γ0

∑
n≥0

(θ − ζ)−n−1(λI− q)n(ζI− q)−1dζ

 dθ.

Because ‖λI− q‖ < δ ≤ |θ − ζ| for all θ ∈ Γ and ζ ∈ Γ0, the following series is
convergent, and∑

n≥0

(θ − ζ)−n−1(λI− q)n = ((θ − ζ − λ)I + q)−1.

Hence

1

2πi

∫
Γ0

∑
n≥0

(θ − ζ)−n−1(λI− q)n(ζI− q)−1dζ = (θ − λ)−1I,

which implies the equality G(λ) = F (λ).

Remark 13 (1) Let U ⊂ C be a conjugate symmetric open set and let F ∈
Os(U,M2) be arbitrary. We can easily describe the zeros of FH. Indeed, as we
have FH(q) = F (s+(q))ν+(q) + F (s−(q))ν−(q), we have FH(q) = 0 if and only
if F (s±(q)) = 0. Therefore, setting Z(F ) := {λ ∈ U ;F (λ) = 0}, and, similarly,
Z(FH) := {q ∈ UH;FH(q) = 0}, we must have

Z(FH) = {q ∈ UH;σ(q) ⊂ Z(F )}.

In particular, if U is connected and Z(F ) has an accumulation point in U , then
FH = 0.

(2) Let us observe that if F ∈ Os(U,M2) has the property that FH(x+yJ) =
0 for all x+ iy ∈ U , then F = 0, and so FH = 0. Indeed, with the notation from
Remark 8, because we have

F (ζ) =

(
f1(ζ) f2(ζ)

−f2(ζ̄) f1(ζ̄)

)
, F (qζ) =

(
f1(ζ) f2(ζ̄)

−f2(ζ̄) f1(ζ)

)
, ζ ∈ U,

the assertion is clear.
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Remark 14 Theorem 2 and its consequences suggest a definition for H-valued
”analytic functions“ as elements of the set R(Ω,H), where Ω is a spectrally
saturated open subset of H. Because the expression ”analytic function“ is quite
improper in this context, the elements of R(Ω,H) will be called Q-regular func-
tions on Ω. In fact, the functions from R(Ω,H) may be also regarded as Cauchy
transforms of the (stem) functions from Os(U,M2), with U = S(Ω).

We recall that there exists a large literature dedicated to a concept of ”slice
regularity“, which is a form of holomorphy in the context of quaternions (see for
instance [4] and works quoted within). Till the end of this section we shall try
to clarify the connection between these concepts, showing that they coincide on
spectrally saturated open sets.

For M2-valued functions defined on subsets of H, the concept of slice regu-
larity (see [4]) is defined as follows.

Let S be the unit sphere of purely imaginary quaternions (see Example 1).
Let also Ω ∈ H be an open set, and let F : Ω 7→M2 be a differentiable function.
In the spirit of [4], we say that F is (right) slice regular in Ω if for all s ∈ S,

∂̄sF (xI + ys) :=
1

2

(
∂

∂x
+Rs

∂

∂y

)
F (x+ ys) = 0,

on the set Ω ∩ (RI + Rs), where Rs is the right multiplication of the elements
of M2 by s.

Note that, unlike in [8], we use the right slice regularity rather than the left
one because of our regard to H as an algebra of operators on C2.

Of course, we are mainly interested by slice regularity of H-valued functions,
but the concept is valid for M2-valued functions and plays an important role in
our discussion.

Example 2 (1) The convergent series of the form
∑
k≥0 akq

k, on a set {q ∈
H; ‖q‖ < r}, with ak ∈ H for all k ≥ 0, are H-valued slice regular on their
domain of definition. In fact, if actually ak ∈M2, such functions are M2-valued
right slice regular on their domain of definition.

(2) The matrix Cauchy kernel on the open set Ω ⊂ H, defined by

Ω 3 q 7→ (ζI− q)−1 ∈M2,

is slice regular on Ω ⊂ H, whenever ζ /∈ S(Ω). Indeed, for q = x + ys ∈
Ω ∩ (RI + Rs), we can write

∂

∂x
((ζ − x)I− ys)−1 = ((ζ − x)I− ys)−2,

Rs
∂

∂y
((ζ − x)I− ys)−1 = ((ζ − x)I− ys)−1s((ζ − x)I− ys)−1s =

−((ζ − x)I− ys)−2,

because ζI, s and ((ζ − x)I− ys)−1 commute in M2. Therefore,

∂̄s((ζI− q)−1) = ∂̄s(((ζ − x)I− ys)−1) = 0.
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Lemma 5 Let Ω ⊂ H be a spectrally saturated open set. Then every function
F ∈ R(Ω,H) is right slice regular on Ω.

Proof. We fix a function F ∈ R(Ω,H), and let U = S(Ω). We use the
representation

FH(q) =
1

2πi

∫
Γ

F (ζ)(ζI− q)−1dζ, q ∈ Ω, σ(q) ⊂ ∆,

where Γ is boundary of a Cauchy domain ∆ ⊂ ∆̄ ⊂ U . Because we have

∂̄s((ζI− q)−1) = ∂̄s(((ζ − x)I− ys)−1) = 0

for q = x+ ys ∈ Ω ∩ (RI + Rs) as in Exercise 2(2), we infer that

∂̄s(FH(q)) =
1

2πi

∫
Γ

F (ζ)∂̄s((ζI− q)−1)dζ = 0,

which implies the assertion.

Lemma 6 Let U ⊂ C be a conjugate symmetric open set, let UJ = {xI + yJ ∈
H;x + iy ∈ U, x, y ∈ R}, and let f : UJ 7→ H be such that ∂̄Jf(xI + yJ) = 0.
Then there are two functions g, h : UJ 7→ CJ such that ∂̄Jg = 0, ∂̄Jh = 0 in UJ,
and f = g + Lh, where CJ = {xI + yJ ∈ H;x+ iy ∈ U, x, y ∈ R}.

Proof. We proceed as in Lemma 4.1.7 in [4]. We write f = f0I + f1J +
f2K + f3L, where f0, f1, f2, f3 are R-valued functions. Then

2∂̄Jf(xI + yJ) =

(
∂

∂x
+RJ

∂

∂y

)
f(xI + yJ) =

(
∂f0

∂x
− ∂f1

∂y

)
I +

(
∂f1

∂x
+
∂f0

∂y

)
J + L

((
∂f3

∂x
− ∂f2

∂y

)
I +

(
∂f3

∂y
+
∂f2

∂x

)
J

)
=

2∂̄J(f0I + f1J) + 2L(∂̄J(f3I + f2J) = 0.

Therefore, we may take g = f0I + f1J and h = f3I + f2J.

As mentioned in Remark 3(5), a fixed conjugate symmetric open set U ⊂ C
can be associated with an axially symmetric set (see Definition 4.3.1 and Lemma
4.3.8 from [4]), given by the formula

Ũ := {xI + ys;x+ iy ∈ U, s ∈ S},

which is the circularization of U (as in [9], Section 1.1).

Proposition 2 For every conjugate symmetric open set U ⊂ C we have the
equality UH = Ũ .

26



Proof. If q ∈ UH, we can write q = Q(z+(u)) or q = Q(z−(u)), where
z±(u) = (x ± i

√
y2 − |u|2, u) ∈ C2, and x ± iy ∈ U , for some complex number

u with |u| ≤ |y|, by Remark 3. As we have

Q(z±(u)) = xI±
√
y2 − |u|2J + u1K + u2L,

with u = u1 + iu2, u1, u2 ∈ R, and for y 6= 0, we have

s± := y−1(±
√
y2 − |u|2J + u1K + u2L) ∈ S,

it follows that q ∈ Ũ .
When y = 0, then x ∈ U ⊂ Ũ .
Conversely, let q ∈ Ũ , so q = xI + ys for some s ∈ S, and x + iy ∈ U . Of

course, s = a1J + a2K + a3L; a1, a2, a3 ∈ R, a2
1 + a2

2 + a2
3 = 1.

To have q ∈ UH, we must solve the equation, q = Q((x1±i
√
y2

1 − |u|2, u), for
some x1 + iy1 ∈ U , and |u|2 ≤ y2

1 , whose spectrum is {x1 ± iy1}. On the other
hand, according to Example 1, the spectrum of q is the set {x ± iy}. Hence,
we have the necessary conditions x1 = x and y1 = ±y. Note that we must
have u = a2y + ia3y, and a1y = ±|a1y|, which leads to a solution of the given
equation for a suitable choice from {±y}. Consequently, q ∈ UH.

Lemma 7 Let U ⊂ H be a conjugate symmetric open set, and let ΦJ : UJ 7→ H
be such that ∂̄JΦJ = 0. Then there exists a function Φ ∈ R(UH,H) with ΦJ =
Φ|UJ.

Proof. According to Lemma 6, we can write ΦJ = FJ + LGJ, with FJ, GJ :
UJ 7→ CJ, and ∂̄JFJ = 0, ∂̄JGJ = 0 in UJ. Note that we can write

CJ =

{(
x+ iy 0

0 x− iy

)
;x, y ∈ R

}
,

and

∂̄J =
1

2

(
∂
∂x + i ∂∂y 0

0 ∂
∂x − i

∂
∂y ,

)
.

Because ∂̄JFJ = 0, showing that the function FJ is analytic in UJ, we have
a local convergent series representation of this function under the form

FJ(xI + yJ) =
∑
k≥0

Ak((x− x0) + (y − y0)J)k

in a neighborhood of each fixed point x0 + y0J ∈ UJ, where Ak ∈ CJ for all
k ≥ 0. Using this local representation written in a matricial form, we derive the
existence of an analytic function fJ ∈ O(U) such that

FJ(xI + yJ) =

(
fJ(x+ iy) 0

0 fJ(x+ iy)

)
, x+ yJ ∈ UJ.
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Similarly,

GJ(xI + yJ) =

(
gJ(x+ iy) 0

0 gJ(x+ iy)

)
, x+ yJ ∈ UJ,

with gJ ∈ O(U). If

F (ζ) =

(
fJ(ζ) 0

0 fJ(ζ̄)

)
, G(ζ) =

(
gJ(ζ) 0

0 gJ(ζ̄)

)
, ζ ∈ U,

we have F,G ∈ Os(U,M2), and FH(qζ) = fJ(xI + yJ), GH(qζ) = gJ(xI + yJ),
with ζ = x + iy, via Remark 8. Moreover, F + LG ∈ Os(U,M2), so setting
Φ(q) = FH(q) + LGH(q) for all q ∈ UH, we have Φ ∈ R(UH,H) via Theorem 2.

Theorem 3 Let Ω ⊂ H be a spectrally saturated open set, and let Φ : Ω 7→ H.
The following conditions are equivalent:

(i) Φ is a slice regular function;
(ii) Φ ∈ R(Ω,H), that is, Φ is Q-regular.

Proof. If Φ ∈ R(Ω,H), then Φ is slice regular, by Lemma 5, so (ii)⇒ (i).
Conversely, let Φ be slice regular in Ω. Then we have ∂̄JΦJ = 0, where

ΦJ = Φ|UJ. It follows from Lemma 7 that there exists Ψ ∈ R(UH,H) with
ΨJ = ΦJ. This implies that Φ = Ψ, because both Φ,Ψ are uniquely determined
by ΦJ,ΨJ, respectively, the former by (the right side version of) Lemma 4.3.8
in[4], and the latter by Remark 13(2). Consequently, we also have (i)⇒ (ii).

Remark 15 An important integral formula extending Cauchy’s formula to an-
alytic functions in several variables is Martinelli’s formula. Its first version ap-
pears in [14], and it was later independently obtained in [2]. With our notation
and framework, it can be stated in the following way.

Let D ⊂ C2 be a bounded domain with piecewise-smooth boundary ∂D, and
lat f : D̄ 7→ C be a function analytic in D and continuous on D̄. Then

f(w) =

∫
∂D

f(z)M(z,w)

for all w ∈ C2, where

M(z,w) =
1

(2πi)2
‖Q(z)−Q(w)‖−2((z̄1 − w̄1)dz̄2 − (z̄2 − w̄2)dz̄1) ∧ dz,

with dz := dz1 ∧ dz2.
In the last section we present a version of this formula, valid for commuting

pairs of real operators.
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5 Quaternionic Spectrum of Real Operators

For a real or complex Banach space V, we denote by B(V) the algebra of all
bounded R-( respectively C-)linear operators on V. If necessary, the identity on
V will be denoted by IV . Nevertheless, a multiple of the identity λIV will be
often identified with the scalar λ, when no confusion is possible.

Inspired by Definition 4.8.1 from [4] (see also [3]; in fact, a similar idea goes
back to Kaplansky, see [12]), we give the folowing.

Definition 3 Let X be a real Banach space. For a given operator T ∈ B(X ),
the set

ρH(T ) := {Q(z) ∈ H; z = (z1, z2), (T 2 − (z1 + z̄1)T + |z1|2 + |z2|2)−1 ∈ B(X )}

is said to be the quaternionic resolvent (or simply the Q-resolvent) of T .
The complement σH(T ) = H \ ρH(T ) is called the quaternionic spectrum (or

simply the Q-spectrum) of T .

We note that if q = Q(z), with z = (z1, z2) ∈ C, setting <q = <z1, we have

T 2 − (z1 + z̄1)T + |z1|2 + |z2|2 = T 2 − 2<q T + ‖q‖2,

and the right hand side is precisely the expression used in Definition 4.8.1 from
[4]. Note also that Definition 3 applies to the class of R-linear operators, which
is larger that the class of H-linear operators.

Remark 16 Looking at Definition 3, we observe that if {s±(z)} are the eigen-
valuse of Q(z), we have Q(z) ∈ ρH(T ) if and only if the operator

T 2 − (s+(z) + s−(z))T + s+(z)s−(z)

is invertible. Since this property depends only on the eigenvalues of Q(z), it
follows that Q(w) ∈ ρH(T ) whenever for Q(z) ∈ ρH(T ) we have σ(Q(w)) =
σ(Q(z)), because this equality is equivalent to z1 + z̄1 = w1 + w̄1 and |z1|2 +
|z2|2 = |w1|2 + |w2|2. In particular, Q(z) ∈ ρH(T ) if and only if Q(z∗) ∈ ρH(T ),
where z∗ = (z̄1,−z2) if z = (z1, z2) (see the second section), and Q(z) ∈ σH(T )
implies that Q((s±(z), 0)) ∈ σH(T ). In fact both sets ρH(T )and σH(T ) are
spectrally saturated in H (see Remark 3(2)).

The complex spectrum of operator T ∈ B(X ) on the real Banach space X is
given by

σC(T ) := {λ ∈ C;Q((λ, 0)) ∈ σH(T )}.

Because the Q-spectrum of T is spectrally saturated, we have σH(T ) =
σC(T )H. We also have λ ∈ σC(T ) if and only if λ̄ ∈ σC(T ). In addition λ ∈
ρC(T ) := C \ σC(T ) if and only if the operator T 2 − 2<λT + |λ|2 is invertible.

Let X be a real Banach space, and let T ∈ B(X ). We denote by XC the
complexification of X , written as XC = X ⊕ iX , or simply as X + iX . The
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operator T can be extended to XC via the formula TC(x + iy) = Tx + iTy for

all x, y ∈ X . It is clear that TC is a bounded C-linear operator. Let T
(2)
C be the

2× 2 diagonal operator with TC on the diagonal, acting on X 2
C := XC ⊕XC. As

for every z ∈ C2 the matrix Q(z) also acts on X 2
C , we may state the following.

Lemma 8 A quaternion Q(z) is in the set ρH(T ) if and only if the operators

T
(2)
C −Q(z) and T

(2)
C −Q(z∗) are invertible in B(X 2

C).

Proof. The assertion follows via the equalities(
TC − z1 −z2

z̄2 TC − z̄1

)(
TC − z̄1 z2

−z̄2 TC − z1

)
=(

TC − z̄1 z2

−z̄2 TC − z1

)(
TC − z1 −z2

z̄2 TC − z̄1

)
=(

(TC − z1)(TC − z̄1) + |z2|2 0
0 |z2|2 + (TC − z̄1)(TC − z1)

)
.

Consequently, the operators T
(2)
C −Q(z), T

(2)
C −Q(z∗) are invertible in B(X 2

C)
if and only if the operator

(TC − z1)(TC − z̄1) + |z2|2 = T 2
C − (z1 + z̄1)TC + |z1|2 + |z2|2

is invertible in B(XC). Because we have

T 2
C − (z1 + z̄1)TC + |z1|2 + |z2|2 = (T 2 − (z1 + z̄1)T + |z1|2 + |z2|2)C,

the operators T
(2)
C − Q(z), T

(2)
C − Q(z∗) are invertible in B(X 2

C) if and only if
the operator T 2 − (z1 + z̄1)T + |z1|2 + |z2|2 is invertible in B(X ).

Example 3 One of the simplest possible example is to take X = R and T the
operator Tx = τx for all x ∈ R, where τ ∈ R is fixed. We have XC = C, and TC
is given by the same formula, acting on C.

The Q-spectrum of T is then the set

{Q(z); z = (z1, z2) ∈ C, τ2 − τ(z1 + z̄1) + |z1|2 + |z2|2 = 0} =

{Q(z); z = (z1, z2) ∈ C,<z1 = τ,=z1 = z2 = 0} = {Q((τ, 0))}.
Consequently, σH(T ) = {Q((τ, 0))}, and σC(T ) = {τ}.

More examples can be found in [4], Section 4.9, which can be easily adapted
to our context. For instance (see Example 4.9.3 from [4]), if an operator M is
given by the matrix

M =

(
a 0
0 b

)
, a, b ∈ R,

acting on X = R2, we identify XC with C2, and MC is given by the same matrix,
acting on C2. We have Q(z) ∈ σH(M), z = (z1, z2), if and only if z is a solution
of at least one of the equations

a2 − 2<z1 a+ |z1|2 + |z2|2 = 0; b2 − 2<z1 b+ |z1|2 + |z2|2 = 0.
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Therefore, we should have either <z1 = a, =z1 = z2 = 0, or <z1 = b, =z1 =
z2 = 0. Hence σH(M) = {Q(a, 0)), Q(b, 0))}. Moreover, σC(M) = {a, b}.

Note that σC(T ) = σ(TC), and σC(M) = σ(MC). This is a general property,
proved in Lemma 9.

Remark 17 Let again X be a real Banach space, and let XC be its complexi-
fication. For every u = x+ iy ∈ XC with x, y ∈ X we put ū = x− iy. In other
words, the map XC 3 u 7→ ū ∈ XC is a conjugation, also denoted by C. Hence
C is R-linear and C2 is the identity on XC.

Fixing an operator S ∈ B(XC), we define the operator S[ ∈ B(XC) to be
equal to CSC. It is easily seen that the map B(XC) 3 S 7→ S[ ∈ B(XC) is a
unital conjugate-linear automorphism, whose square is the identity on B(XC).
Because X = {u ∈ XC;Cu = u}, we have S[ = S if and only if S(X ) ⊂ X . In
particular, X is invariant under S + S[, and if T ∈ B(X ), we have T [C = TC.

Lemma 9 Let X be a real Banach space, and let T ∈ B(X ). We have the
equality σC(T ) = σ(TC).

Proof. We first recall that λ ∈ σ(TC) if and only if λ̄ ∈ σ(TC) (see Remark
16). Next, if λ /∈ σ(TC), then

(T
(2)
C −Q((λ, 0)))−1 =

(
(TC − λ)−1 0

0 (TC − λ̄)−1

)
,

showing that λ /∈ σC(T ). Hence, σC(T ) ⊂ σ(TC).
Conversely, if λ /∈ σC(T ), so λ̄ /∈ σC(T ), we have Q((λ, 0)), Q((λ̄, 0) /∈ σH(T ).

Then both (T
(2)
C − Q((λ, 0)))−1, (T

(2)
C − Q((λ̄, 0)))−1 belong to B(X 2

C). Hence,
as in Lemma 8, the operator

T 2
C − 2<λTC + |λ|2 = (TC − λ)(TC − λ̄)

must be invertible, implying that TC − λ is invertible, so λ /∈ σ(TC).

Remark 18 If X is a real Banach space, and T ∈ B(X ), both σH(T ) and
σC(T ) are nonempty compact subset of H, C, respectively. Indeed, if ‖Q(z)‖ =

‖Q(z∗)‖ > ‖T (2)
C ‖, both operators T

(2)
C −Q(z) and T

(2)
C −Q(z∗) are invertible in

B(X 2
C), via a classical argument of perturbation theory (see [5], VII.6.1). There-

fore, the set σH(T ) is bounded, because T
(2)
C is bounded. Next, if Q(z), Q(z∗) ∈

ρH(T ), the operator T 2
C − (z1 + z̄1)TC + |z1|2 + |z2|2 must be invertible, as in the

proof of Lemma 8. Therefore, there is an ε > 0 such that ‖Q(w) −Q(z)‖ < ε,
with w = (w1, w2), implying that the operator T 2

C− (w1 + w̄1)TC + |w1|2 + |w2|2
is invertible too, by continuity reasons. Hence ρH(T ) is an open set (via Lemma
8), showing that σH(T ) is compact. Finally, since σC(T ) = σ(TC), and the latter
is compact and nonempty, it follows that σH(T ) is also nonempty.
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Remark 19 If X is a real Banach space, and T ∈ B(X ), we have the usual
analytic functional calculus for the operator TC ∈ B(XC). That is, if U ⊃ σ(TC)
is an open set in C and F : U 7→ B(XC) is analytic, we may put

F (TC) =
1

2πi

∫
Γ

F (ζ)(ζ − TC)−1dζ,

where Γ is the boundary of a Cauchy domain containing σ(TC) in U . In fact,
because σ(TC) is conjugate symmetric, we may and shall assume that both U
and Γ are conjugate symmetric. A natural question is when we have F (TC)[ =
F (TC), which would imply the invariance of X under F (TC).

With the conditions of the remark from above we have the following.

Theorem 4 If F : U 7→ B(XC) is analytic and F (ζ)[ = F (ζ̄) for all ζ ∈ U ,
then F (TC)[ = F (TC) for all T ∈ B(X ).

Proof. As in Remark 19, we have

F (TC) =
1

2πi

∫
Γ

F (ζ)(ζ − TC)−1dζ,

where both U and Γ are conjugate symmetric. We put Γ± := Γ ∩ C±, where
C+ (resp. C−) equals to {λ ∈ C;=λ ≥ 0} (resp. {λ ∈ C;=λ ≤ 0}). We write
Γ+ = ∪mj=1Γj+, where Γj+ are the connected components of Γ+. Similarly, we
write Γ− = ∪mj=1Γj−, where Γj− are the connected components of Γ−, and Γj−
is the reflexion of Γj+ with respect of the real axis.

As Γ is a finite union of Jordan piecewise smooth closed curves, for each index
j we have a parametrization φj : [0, 1] 7→ C such that φj([0, 1]) = Γ+j . Taking

into account the positive orientation, the function t 7→ −φj(t) is a parametriza-
tion of Γ−j . Setting Γj = Γ+j ∪ Γ−, we can write

Fj(TC) :=
1

2πi

∫
Γj

F (ζ)(ζ − TC)−1dζ =

1

2πi

∫ 1

0

F (φj(t))(φj(t)− TC)−1φ′j(t)dt

− 1

2πi

∫ 1

0

F (φj(t))(φj(t)− TC)−1φ′j(t)dt.

Therefore,

Fj(TC)[ = − 1

2πi

∫ 1

0

F (φj(t))
[(φj(t)− TC)−1φ′j(t)dt

+
1

2πi

∫ 1

0

F (φj(t))
[(φj(t)− TC)−1φ′j(t)dt.
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According to our assumption on the function F , we obtain Fj(TC) = Fj(TC)[

for all j, and therefore

F (TC)[ =

m∑
j=1

Fj(TC)[ =

m∑
j=1

Fj(TC) = F (TC)

.

Example 4 Let X = R2, so XC = C2. Let us first observe that

S =

(
a1 a2

a3 a4

)
⇐⇒ S[ =

(
ā1 ā2

ā3 ā4

)
,

for all a1, a2, a3, a4 ∈ C.
Next we consider the operator T ∈ B(R2) given by the matrix

T =

(
u v
−v u

)
,

where u, v ∈ R, v 6= 0. The extension TC of the operator T to C2 is given by the
same formula. In fact, TC is a quaternion, denoted by τ , for simplicity. Note
that

σ(τ) = {λ ∈ C; (λ− u)2 + v2 = 0} = {u± iv}.

Let U ⊂ C be an open set with U ⊃ {u ± iv}, and let F : U 7→ M2 = B(C2)
be analytic. We shall compute explicitly F (τ). Assuming v > 0, we have
s±(τ) = u ± iv, and ν±(τ) = (

√
2)−1(1,±i). As in the proof of Lemma 3, we

have
FH(τ) = F (s+(τ))E+(τ) + F (s−(τ))E−(τ) =

1

2
F (u+ iv)

(
1 −i
i 1

)
+

1

2
F (u− iv)

(
1 i
−i 1

)
,

because

E±(τ)w = 〈w, ν±(τ)〉ν±(τ)w =
1

2

(
1 ∓i
±i 1

)(
w1

w2

)
,

for all w = (w1, w2) ∈ C2.
Therefore,

F (TC) =
F (u+ iv)

2

(
1 −i
i 1

)
+
F (u− iv)

2

(
1 i
−i 1

)
.

Assume now that F (TC)[ = F (TC). Then we must have

(F (u+ iv)− F (u− iv)[)

(
1 −i
i 1

)
= (F (u+ iv)[ − F (u− iv))

(
1 i
−i 1

)
.
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We also need the equalities(
1 −i
i 1

)(
1
i

)
= 2

(
1
i

)
,

(
1 −i
i 1

)(
1
−i

)
= 0,

(
1 i
−i 1

)(
1
−i

)
= 2

(
1
−i

)
,

(
1 i
−i 1

)(
1
i

)
= 0,

With this remark we finally deduce that

(F (u+ iv)− F (u− iv)[)

(
1
i

)
= 0,

and

(F (u− iv)− F (u+ iv)[)

(
1
−i

)
= 0,

which are necessary conditions for the equality F (TC)[ = F (TC). As a matter
of fact, this example shows that the condition used in Theorem 4 is sufficient
but it might not be necessary.

Remark 20 (1) Let U ⊂ C be a conjugate symmetric open set, and let X
be a real Banach space. We denote by Oc(U,B(XC)) the set of all analytic
maps F : U 7→ B(XC) such that F (ζ)[ = F (ζ̄) for all ζ ∈ U . When X = R,
we put Oc(U,B(XC)) = Oc(U). In this case, we have Oc(U) = Os(U), and
Oc(U,B(XC)) is a Oc(U)-module.

Moreover, Oc(U,B(XC)) is a unital R-algebra, containing all polynomials
P (ζ) =

∑m
k=0(Ak)Cζ

k, with Ak ∈ B(X ).
(2) The injective linear map M2 3 a 7→Ma ∈ B(X ), given Mab = ab, b ∈M2

induces an injective linear map of Os(U,M2)) into Oc(U,B(M2)). Specifically,
given F ∈ Os(U,M2)), that is, an analytic stem functions (see Remark 5), we
have MF ∈ Oc(U,B(M2)), where MF (ζ)b = F (ζ)b for all ζ ∈ U and b ∈ M2.
Indeed, as we have M2 = H + iH, with the conjugation C : u + iv 7→ u −
iv, u, v ∈ H, and writing F (ζ) = F1(ζ) + iF2(ζ) with F1, F2 H-valued, for
b = u+ iv, u, v ∈ H, we have

M [
F (ζ)b = CMF (ζ)Cb = C(F1(ζ) + iF2(ζ))(u− iv) =

C(F1(ζ)u+ F2(ζ)v + i(F2(ζ)u− F1(ζ)v) =

(F1(ζ)− iF2(ζ))(u+ iv) = MF (ζ̄)b,

for every ζ ∈ U . This remark shows that the space Os(U,M2)) may be regarded
as a subspace of Oc(U,B(M2)).

Fixing F ∈ Oc(U,B(XC)), we must have F (TC)[ = F (TC) for all T ∈ B(X ).
This allows us to define F (T ) = F (TC)|X , because X is invariant under F (TC).
In addition, we have the following.
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Theorem 5 For every T ∈ B(X ), the map

Oc(U,B(XC)) 3 F 7→ F (T ) ∈ B(X )

is R-linear and has the property (Ff)(T ) = F (T )f(T ) for all f ∈ Oc(U) and
F ∈ Oc(U,B(XC)). Moreover, P (T ) =

∑m
k=0AkT

k for any polynomial P (ζ) =∑m
k=0Akζ

k, ζ ∈ C, with coefficients Ak ∈ B(X ).

Proof. The assertion is a direct consequence of the analytic functional calcu-
lus of the operator TC, and Theorem 4. We omit the details.

Remark 20 shows that functional calculus given by Theorem 2 is compatible
with that given by Theorem 5.

Definition 4 Let X be a real Banach space. We say that X is a (left) H-module
if there exists a unital R-algebra morphism of H into B(X ). In this case, the
elements of H in B(X ) may regarded as R-linear operators.

Corollary 6 If X is a H-module, for every polynomial P (ζ) =
∑m
k=0Akζ

k, ζ ∈
C, with coefficients Ak ∈ H, we have P (T ) =

∑m
k=0AkT

k.

Example 5 Given a measurable space (Ω,Σ), and a positive measure µ on Σ,
one of the most interesting quaternionic spaces seems to be the space L2(Ω, µ;H),
consisting of Σ-measurable H-valued functions F , with the property ‖F‖22 :=∫

Ω
‖F (ω)‖2dµ(ω) < ∞, F ∈ L2(Ω, µ;H). In fact this space admits a H-valued

inner product given by

〈F,G〉2 =

∫
Ω

F (ω)G(ω)∗dµ(ω), F,G ∈ L2(Ω, µ;H),

which induces the norm ‖∗‖22. Of course, with respect to this norm, L2(Ω, µ;H)
is, in particular, an R-Banach space. It is also a bilateral H-module.

Because M2 = H + iH, if X = L2(Ω, µ;H), we may identify the space XC
with the space L2(Ω, µ;M2), consisting of Σ-measurable M2-valued functions
F , with the property

∫
Ω
‖F (ω)‖2dµ(ω), which is the natural extension of the

previous norm.
Next, let Θ : Ω 7→ H be a µ-essentially bounded function. We may define on

L2(Ω, µ;H) the operator TF (ω) = Θ(ω)F (ω), ω ∈ Ω, F ∈ L2(Ω, µ;H), which is
R-linear. Note also that

‖TF‖22 =

∫
Ω

Θ(ω)F (ω)F (ω)∗Θ(ω)∗dµ(ω) =

∫
Ω

‖Θ(ω)‖2‖F (ω)‖2dµ(ω) ≤ ‖Θ‖2∞
∫

Ω

‖F (ω)‖2dµ(ω),

where ‖Θ‖∞ is the essentiel upper bound of ‖Θ(ω)‖ on Ω, showing that the
operator T is bounded.
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The space L2(Ω, µ;H) has also a right H-module structure induced by the
map H 3 q 7→ Rq ∈ B(L2(Ω, µ;H)), given by (RqF )(ω) = F (ω)q, ω ∈ Ω. With
respect to this structure, the operator T is right H-linear.

The operator TC, that is the natural extension of T to L2(Ω, µ;M2), is given
by the same formula, written for functions F ∈ L2(Ω, µ;M2).

Let us compute the Q-spectrum of T . According to Definition 3, we have

ρH(T ) = {q ∈ H; (T 2 − 2<q T + ‖q‖2)−1 ∈ B(X )}.

Consequently, q ∈ σH(T ) if and only if zero is in the (essential) range of the
function

τ(q, ω) := Θ(ω)2 − 2<qΘ(ω) + ‖q‖2, ω ∈ Ω.

In other words, we must have

σH(T ) = {q ∈ H;∀ε > 0 µ({ω; ‖τ(q, ω)‖ < ε}) > 0},

and so
σC(T ) = {ζ ∈ C;∀ε > 0 µ({ω; ‖τ(qζ , ω)‖ < ε}) > 0},

where qζ = Q((λ, 0)).
In particular, if P (ζ) =

∑m
j=1Rqjζ

j , we have P (T ) =
∑m
j=1RqjT

j ∈
B(L2(Ω, µ;H)), where q1, . . . , qm ∈ H. Of course, for every open conjugate sym-
metric subset U ⊂ C containing σC(T ), and for every function F ∈ Oc(U,B(XC)),
we may construct the operator F (T ) ∈ B(L2(Ω, µ;H)).

Assuming Ω a Hausdorff compact space and Θ continuous, the Q-spectrum
of T is given by the set

σH(T ) = {q ∈ H; {q, q∗} ∩Θ(Ω) 6= ∅},

via Lemma 8. In fact, it is the spectrum σC(T ) which can be used for the
computation of the analytic functional calculus of T . If we write Θ(ω) as
Q((θ1(ω), θ2(ω)), ω ∈ Ω, for some continuous functions θ1, θ2 : Ω 7→ C, we
have the equality

σC(T ) = {ζ ∈ C;∃ω ∈ Ω : ζ2 − 2<(θ1(ω))ζ + |θ1(ω)|2 + |θ2(ω)|2 = 0}.

6 Quaternionic Joint Spectrum of Paires

A strong connection between the spectral theory of pairs of commuting opera-
tors in a complex Hilbert space and the algebra of quaternions has been firstly
noticed in [19]. Other connections will be presented in this section.

Let X be a real Banach space, and let T = (T1, T2) ⊂ B(X ) be a pair of
commuting operators. The extended pair TC = (T1C, T2C) ⊂ B(XC) also consists
of commuting operators. For simplicity, we set

Q(TC) :=

(
T1C, T2C,
−T2C, T1C,

)
which acts on the complex Banach space X 2

C .
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Definition 5 Let X be a real Banach space. For a given pair T = (T1, T2) ⊂
B(X ) of commuting operators, the set of those Q(z) ∈ H, z = (z1, z2) ∈ C2,
such that the operator

T 2
1 + T 2

1 − 2<z1T1 − 2<z2T2 + |z1|2 + |z2|2

is invertible in B(X ) is said to be the quaternionic joint resolvent (or simply the
Q-joint resolvent) of T.

The complement σH(T) = H\ρH(T) is called the quaternionic joint spectrum
(or simply the Q-joint spectrum) of T.

Lemma 10 A quaternion Q(z) (z ∈ C2) is in the set ρH(T) if and only if the
operators Q(TC)−Q(z), Q(TC)−Q(z∗) are invertible in B(X 2

C).

Proof The assertion follows from the equalities(
T1C − z1 T2C − z2

−T2C + z̄2 T1C − z̄1

)(
T1C − z̄1 −T2C + z2

T2C − z̄2 T1C − z1

)
=

(
T1C − z̄1 −T2C + z2

T2C − z̄2 T1C − z1

)(
T1C − z1 T2C − z2

−T2C + z̄2 T1C − z̄1

)
=

[(T1C − z1)(T1C − z̄1) + (T2C − z2)(T2C − z̄2)]I.

for all (z = (z1, z2) ∈ C2).
Consequently, the operators Q(TC)−Q(z), Q(TC)−Q(z∗) are invertible in

B(X 2
C) if and only if the operator (T1C − z1)(T1C − z̄1) + (T2C − z2)(T2C − z̄2) is

invertible in B(XC). Because we have

T 2
1C + T 2

2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2 =

[T 2
1 + T 2

1 − 2<z1T1 − 2<z2T2 + |z1|2 + |z2|2]C,

the operators Q(TC)−Q(z), Q(TC)−Q(z∗) are invertible in B(X 2
C) if and only

if the operator T 2
1 +T 2

1 − 2<z1T1− 2<z2T2 + |z1|2 + |z2|2 is invertible in B(X ).

Lemma 10 shows that the set σH(T) is ∗-invariant, that is q ∈ σH(T) if and
only if q∗ ∈ σH(T). Putting

σC2(T) := {z ∈ C2;Q(z) ∈ σH(T},

the set σC2(T) is also ∗-invariant, that is, z ∈ σC2(T) if and only if z∗ ∈ σC2(T)

Remark 21 For the extended pair TC = (T1C, T2C) ⊂ B(XC) of the commuting
pair T = (T1, T2) ⊂ B(X ) there is an interesting connexion with the joint
spectral theory of J. L. Taylor (see [17]; see also [21]). Namely, if the operator
T 2

1C + T 2
2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2 is invertible, then the point

z = (z1, z2) belongs to the joint resolvent of TC. Indeed, setting

Rj(TC, z) = (TjC − z̄j)(T 2
1C + T 2

2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2)−1,
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q = Q(z) for j = 1, 2, we clearly have

(T1C − z1)R1(TC, z) + (T2C − z2)R2(TC, z) = I,

which, according to [17], implies that z is in the joint resolvent of TC. A similar
argument shows that, in this case the point z∗ also belongs to the joint resolvent
of TC. In addition, if σ(TC) designates the Taylor spectrum of TC, we have the
inclusion σ(TC) ⊂ σC2(T). In particular, for every complex-valued function f
analytic in a neighborhood of σC2(T), the operator f(TC) can be computed via
Taylor’s analytic functional calculus. In fact, we have a Martinelli type formula
for the analytic functional calculus:

Theorem 6 Let X be a real Banach space, let T = (T1, T2) ⊂ B(X ) be a pair
of commuting operators, let U ⊂ C2 be an open set, let D ⊂ U be a ∗-invariant
bounded domain containing σC2(T), with piecewise-smooth boundary Σ, and let
f ∈ O(U). Then we have

f(TC) =
1

(2πi)2

∫
Σ

f(z))L(z,TC)−2(z̄1 − T1C)dz̄2 − (z̄2 − T2C)dz̄1]dz1dz2,

where

L(z,TC) = T 2
1C + T 2

2C − 2<z1T1C − 2<z2T2C + |z1|2 + |z2|2.

Proof. Theorem III.9.9 from [21] implies that the map O(U) 3 f 7→ f(TC) ∈
B(XC), defined in terms of Taylor’s analytic functional calculus, is unital, linear,
multiplicative, and ordinary complex polynomials in z are transformed into
polynomials in TC by simple substitution, where O(U) is the algebra of all
analytic functions in the open set U ⊂ C2, provided U ⊃ σ(TC).

The only thing to prove is that, when U ⊃ σC2(T), Taylor’s functional
calculus is given by the stated (canonical) formula. In order to do that, we use
an argument from the proof of Theorem III.8.1 in [21], to make explicit the
integral III(9.2) from [21].

We consider the exterior algebra

Λ[e1, e2, ξ̄1, ξ̄2,O(U)⊗XC] = Λ[e1, e2, ξ̄1, ξ̄2]⊗O(U)⊗XC,

where the indeterminates e1, e2 are to be associated with the pair TC, we put
ξ̄j = dz̄j , j = 1, 2, and consider the operators δ = (z1−T1C)⊗ e1 + (z2−T2C)⊗
e2, ∂̄ = (∂/∂z̄1) ⊗ ξ̄1 + (∂/∂z̄2) ⊗ ξ̄2, acting naturally on this exterior algebra,
via the calculus with exterior forms.

To simplify the computation, we omit the symbol⊗, and the exterior product
will be denoted simply par juxtaposition.

We fix the exterior form η = η2 = fye1e2 for some f ∈ O(U) and y ∈ XC,
which clearly satisfy the equation (δ + ∂̄)η = 0, and look for a solution θ of the
equation (δ + ∂̄)θ = η. We write θ = θ0 + θ1, where θ0, θ1 are of degree 0 and
1 in e1, e2, respectively. Then the equation (δ + ∂̄)θ = η can be written under
the form δθ1 = η, δθ0 = −∂̄θ1, and ∂̄θ0 = 0. Note that

θ1 = fL(z,TC)−1[(z̄1 − T1C)ye2 − (z̄2 − T2C)]ye1
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is visibly a solution of the equation δθ1 = η. Further, we have

∂̄θ1 = fL(z,TC)−2[(z1 − T1C)(z̄2 − T2C)yξ̄1e1 − (z1 − T1C)(z̄1 − T1C)yξ̄2e1+

(z2 − T2C)(z̄2 − T2C)yξ̄1e2 − (z2 − T2C)(z̄1 − T1C)yξ̄2e2] =

δ[fL(z,TC)−2(z̄1 − T1C)yξ̄2 − fL(z,TC)−2(z̄2 − T2C)yξ̄1],

so we may define

θ0 = −fL(z,TC)−2(z̄1 − T1C)yξ̄2 + fL(z,TC)−2(z̄2 − T2C)yξ̄1.

Formula III(8.5) from [21] shows that

f(TC)y = − 1

(2πi)2

∫
U

∂̄(φθ0)dz1dz2 =

1

(2πi)2

∫
Σ

f(z))L(z,TC)−2[(z̄1 − T1C)ydz̄2 − (z̄2 − T2C)ydz̄1]dz1dz2,

for all y ∈ XC, via Stokes’s formula, where φ is a smooth function such that
φ = 0 in a neighborhood of σC2(T), φ = 1 on Σ and the support of 1 − φ is
compact.

Remark 22 (1) We may extend the previous functional calculus to B(XC)-
valued analytic functions, setting, for such a function F and with the notation
from above,

F (TC) =
1

(2πi)2

∫
Σ

F (z))L(z,TC)−2(z̄1 − T1C)dz̄2 − (z̄2 − T2C)dz̄1]dz1dz2.

In particular, if F (z) =
∑
j,k≥0AjkCz

j
1z
k
2 , with Aj,k ∈ B(X ), where the series is

convergent in neighborhood of σC2(T), we may define

F (T) := F (TC)|X =
∑
j,k≥0

AjkT
j
1T

k
2 ∈ B(X ).

(2) The connexion of the spectral theory of pairs with the algebra of quater-
nions is even stronger in the case of complex Hilbert spaces. Specifically, if H
is a complex Hilbert space and V = (V1, V2) is a commuting pair of bounded
linear operators on H, a point z = (z1, z2) ∈ C2 is in the joint resolvent of V if
and only if the operator Q(V)−Q(z) is invertible in H2, where

Q(V) =

(
V1 V2

−V ∗2 V ∗1

)
.

(see [19] for details). In this case, there is also a Martinelli type formula
which can be used to construct the associated analytic functional calculus (see
[20],[21]). An approach to such a construction in Banach spaces, by using a
so-called splitting joint spectrum, can be found in [16].

39



References

[1] G. Birkhoff and J. von Neumann: Ann. Math. 37, 823 (1936).

[2] S. Bochner, Analytic and meromorphic continuation by means of Green’s
formula: Ann. of Math. (2) , 44 : 4 (1943) pp. 652-673.

[3] F.Colombo, J. Gantner, D. P. Kimsey: Spectral Theory on the S-Spectrum
for Quaternionic Operators, Birkhäuser, 2018.
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