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INTRODUCTION

QUANTUM CHAOS : the semi-classical analysis of quantum systems having a

chaotic Hamiltonian system as their classical limit.

EXAMPLES:

1. Quantum : ∆ on L2(M,dvol(g)); ∆ψn = λnψn;

Chaotic system : the geodesic flow on (M, g), a compact negatively curved

manifold. This is a Hamiltonian flow on T ∗M !

Semi-classical : λn → +∞.

2. Quantum : the Dirichlet laplacian ∆ on a domain Ω ⊂ R
2; ∆ψn = λnψn

Chaotic system : the billiard flow on Ω (Bunimovich, Sinaï). This is a

Hamiltonian flow on Ω × R
n.

Semi-classical : λn → +∞.

3. Quantum : quantum maps = unitary maps on N dimensional spaces.

Chaotic system : symplectic Anosov maps on the torus.

Semi-classical : N → +∞.



THE BASIC QUESTION: relate the asymptotic behaviour of the eigenvalues and

eigenfunctions to the statistical properties of the underlying classical dynamical

system. In particular, what is the signature of chaos on the eigenfunctions and on

the eigenvalues?

IN THIS TALK: I will talk mostly about the eigenfunctions . . . First task: illustrate the

issues in the case of billiards.

A rectangular, circular and Sinaï billiard



REGULAR VERSUS CHAOTIC MOTION: the example of billiards

• Motion in the circular billiard: no chaos here!

.

γ

θ 0

θ 1 = θ 0 + γ

α 0

θ 1
α 1 =  α0

Geometric description: initial data θ0, α0.

Then γ = 2α0, r− = cosα0, θn = θ0 + nγ

Hamiltonian description: initial data (~q, ~p) ∈ D × R
2.

Then E = ~p2

2 , L = (~q ∧ ~p)z are constants of the motion.

E and L determine α0 and r− = |L|√
2E

and vice versa.

The motion is now regular and stable: γ ′ = γ + ε⇒ θ′n = θn + nε.

The set of all orbits with fixed E and L fill an annulus r− ≤‖ ~q ‖≤ 1. If α0/2π is

not rational, each orbit fills this annulus uniformly in the sens that

1

T

∫ T

0

f(~q(t))dt
T→+∞
−→

∫ 2π

0

∫ 1

r−

f(~q)
dq

π(1 − r2−)
.



• The corresponding spectral (= quantum) problem:

∆ψ`,m = λ2
`mψ`,m, ` ∈ N

Lψ`,m ≡
1

i
∂θψ`,m = mψ`,m, m ∈ Z.

Note that [∆, L] = 0. Here

ψ`,m(r, θ) = N`,mJ|m|(λ`,mr)e
imθ.

One can prove that

lim
`,m→+∞; m

λ`,m
=r−

∫

D

f(r, θ) | ψ`,m(r, θ) |2 rdrdθ =

∫ 2π

0

∫ 1

r−

f(r, θ)
rdrdθ

π(1 − r2−)

LESSON : the behaviour of the classical motion seems to be reflected in the

eigenfunctions at large energies (= physics speak for high eigenvalues).



• Motion in the Sinaï billiard: chaos!

θ 0
,
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(π/2)−α ’0 = ε
0

+ θ 0
’

ε 1

ε0

Highly unstable flow: εn ≥ 3nε0.

There is only one constant of the motion: E = p2

2 .

A typical orbit explores the full energy surface (ergodic-

ity) and goes therefore everywhere in the billiard.

Moreover:
1

T

∫ T

0

f(~q(t))dt
T→+∞
−→

∫

Ω

f(~q)
dq

| Ω |
.



• The corresponding spectral (= quantum) problem: ∆ψn = λψn, n ∈ N.

THEOREM (Gérard-Leichtnam (93), Zelditch-Zworski (96)) Let Ω be an open set in

R
2 with a piecewise smooth boundary. Suppose the billiard flow on Ω is ergodic.

Let ψn be the eigenfunctions of the Dirichlet Laplacian on Ω, with eigenvalues

λn → +∞. Then there exists a density one subsequence ψnk
so that

lim
k→∞

∫

B⊂Ω

| ψnk
(x) |2 dx =

| B |

| Ω |
.

LESSON : the behaviour of the classical motion seems indeed to be reflected in the

eigenfunctions at large energies.

The “Schnirelman theorem” (Schnirelman (74), Zelditch (87,95), Colin de Verdière

(85), Helffer-Martinez-Robert (87)), . . . is a robust result. It always works if the

classical system is ergodic.



QUESTIONS BEYOND SCHNIRELMAN

QUESTION 1 Do there exist exceptional sequences of eigenfunctions that do NOT

converge semi-classically to Lebesgue measure? In other words, is the extraction of

a subsequence a necessity in the statement of this result or an artifact of the proof?

If you think the answer is NO, you are a believer in something that has been

baptized “unique quantum ergodicity”.

If you think the answer is YES, you have to confront the following question:

QUESTION 2 Can you characterize all possible limit measures?

It is easy to see that any such limit measure has to be invariant under the dynamics.

Particularly simple, easily understood candidate limit measures are measures

supported on a periodic orbit of the dynamics. So one may try to look for

subsequences ψn′

`
for which

lim
`→∞

∫

Ω

f(x) | ψn′

`
(x) |2 dx =

1

Tγ

∫ Tγ

0

f(γ(t))dt,

where t ∈ [0, Tγ ] 7→ γ(t) ∈ R is a periodic orbit of the flow.



ANSWERS to these questions are not available in general systems. Only in some

restricted classes of models have partial answers been obtained:

• For the (Hecke) eigenfunctions of the Laplace-Beltrami operator of a (class) of

constant negative curvature surfaces the ANSWER TO QUESTION 1 has been

proven to be NO (Lindenstrauss 2003).

• For certain quantum maps, the ANSWER TO QUESTION 1 has been proven to

be YES (Faure, Nonnenmacher, De Bièvre 2003)! A partial but reasonably complete

answer is then also known to question 2.



Quantum maps: a case study in quantum chaos
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INTRODUCTION

“Quantum maps” are a particularly simple class of systems on which to test various

conjectures, ideas, techniques in quantum chaos. A quantum map is a quantum

system obtained through the quantization of a discrete classical Hamiltonian system,

i.e. a symplectic map Φ on a compact symplectic manifold. The latter is usually

either the two-sphere, or the 2d-dimensional torus, viewed as a symplectic manifold.

Stripped to its mathematical bone, a quantum map is a family (U~,H~)~>0 of

unitaries U~ on finite (!) dimensional Hilbert spaces H~. One has

dimH~

~→0
−→ +∞

and one is interested in studying the eigenfunctions and eigenvalues of the U~ as

~ → 0.

The goal is to understand the asymptotic behaviour of the eigenfunctions and

eigenvalues in terms of the dynamical properties of Φ, especially when the latter is

chaotic.

Would an example help?



ANOSOV MAPS ON THE TORUS

Hyperbolic automorphisms (CAT maps) :

A ∈ SL(2,Z), | TrA |> 2 ⇒ Av± = e±γ0v±.

A acts as a symplectomorphism on T
2 = R

2/Z2 and is

• Hyperbolic : a.e. x, x′ ∈ T
2, t ∈ N (not too large),

d(x, x′) ∼ ε⇒ d(Atx,Atx′) ∼ εeγ0t.

• Exponentially mixing : ∀f, g ∈ C∞(T2),

|

Z

T2

(f ◦At)(x)g(x)dx−

Z

T2

f(x)dx

Z

T2

g(x)dx |≤ CA,f ‖ ∇g ‖1 e−γ0t.

Perturbed hyperbolic automorphisms : For g ∈ C∞(T2), φs, s ∈ R is the Hamiltonian

flow of g. Define Φε = φε ◦A.

For small ε, this is still hyperbolic and exponentially mixing, with exponent γε,

limε→0 γε = γ0 (Blank, Keller, Liverani 2002).



THE CORRESPONDING QUANTUM MAP

The Hilbert spaces With U(a)ψ(y) = e−
i
2~

a1a2e
i
~

a2yψ(y − a1) = e−
i
~

(a1P−a2Q)ψ(y),

define

H~ = {ψ ∈ S ′(R) | U(1, 0)ψ = ψ = U(0, 1)ψ}, 2π~N = 1 ⇒ dimH~ = N.

Then

ψ ∈ H~ ⇒ ψ(y) =
X

`∈Z

c`δ(y −
`

N
); c`+N = c`.

Weyl quantization For f ∈ C∞(T2), x = (q, p) ∈ T
2, write

f(x) =
X

n∈Z2

fne−i2π(n1p−n2q)

and define

OpWf = f̂ =
X

n∈Z2

fne−i2π(n1P−n2Q) =
X

n∈Z2

fnU(
n

N
) : H~ → H~.



The quantum dynamics Take A ∈ SL(2,Z), | TrA |> 2 and construct

M(A)ψ(y) =

(

i

2π~a12

)1/2 ∫

R

e
i

2~a12
(a22y2−yy′+a11y′2)ψ(y′)dy′.

Then, for all t ∈ Z,

M(A)H~ = H~ and M(A)−t OpWf M(A)t − OpW(f ◦At) = 0.

Now, for ε > 0 define the unitary operator

Uε = e−
i
~

εOpWgM(A) : H~ → H~.

This is the quantum map we wish to study. It is naturally related to the discrete

Hamiltonian dynamics on T
2 obtained by iterating Φε = φε ◦A. It acts on the N

dimensional spaces H~ and we are interested in the behaviour of its eigenfunctions

and eigenvalues in the N → ∞ limit:

Uεψ
(N)
j = eiθ

(N)
j ψ

(N)
j , j = 1 . . . N.



WHAT IS KNOWN?

1. The basic result : the Schnirelman theorem

THEOREM 1 (Bouzouina-DB 96) Let ε ≥ 0 and small.

Then, for “almost all” sequences ψN ∈ H~, so that UεψN = eiθNψN ,

〈ψN ,Op
WfψN 〉

N→+∞
→

Z

T2

f(x)dx, ∀f ∈ C∞(T2) (1)

COMMENTS: (i) This is proven by adapting known arguments, which is why it holds also for ε 6= 0

and on higher dimensional tori.

(ii) The result can be adapted for maps that are not continuous such as the Baker and sawtooth

maps (De Bièvre, Degli Esposti 1997) and to systems with a mixed phase space (Marklof, O’Keefe

2004).



2. Questions beyond Schnirelman

QUESTION 1 Do there exist exceptional sequences of eigenfunctions that do not converge

semi-classically to Lebesgue measure (for quantized automorphisms this means (1) does not hold).

QUESTION 2 Can you characterize all possible limit measures?

ANSWERS to these questions are not available in general systems. Only in some restricted

classes of models have partial answers been obtained:

• For the (Hecke) eigenfunctions of the Laplace-Beltrami operator of a (class) of constant negative

curvature surfaces the ANSWER TO QUESTION 1 has been proven to be NO (Lindenstrauss

2003).

• For quantized hyperbolic toral automorphisms, the ANSWER TO QUESTION 1 has been proven

to be YES:

THEOREM 2 (Faure-Nonnenmacher-DB 03) Let ε = 0. Let 0 ≤ α ≤ 1
2

, then there exists

Nk → ∞ and eigenfunctions ψNk
∈ HNk

so that

〈ψNk
,OpWfψNk

〉
Nk→+∞

→ αf(0) + (1 − α)

Z

T2

f(x)dx, ∀f ∈ C∞(T2).



• And what about QUESTION 2 for those systems?

Let µ be an A-invariant probability measure on T
2 that is singular with respect to

Lebesgue measure. Then THEOREM 2 easily implies (diagonalization trick) that

any probability measure on T
2 of the form

αµ+ (1 − α)dx

is a limit measure provided α ≤ 1/2. This is more or less optimal, since:

THEOREM 3 (Bonechi-DB 03, Faure-Nonnenmacher 04) Let ε = 0. Let µ be an

A-invariant PURE POINT measure. Let α > 1
2 . Then there does not exist

Nk → ∞ and eigenfunctions ψNk
∈ HNk

so that

〈ψNk
,OpWfψNk

〉
Nk→+∞

→ αµ(f) + (1−α)

∫

T2

f(x)dx, ∀f ∈ C∞(T2).

OPEN QUESTION: What happens to this result if µ is purely singular continuous?



• THEOREM 2 plays on the existence of a sequence of integers that is in fact very

special, and depends on A. It is also very sparse. By using number theoretic

properties of the M(A) very different results are obtained:

THEOREM 4 (Kurlberg-Rudnick 00) IfA ∈ SL(2,Z) is hyperbolic andA ≡ I2 mod

4, then there exists for each N a basis {ψ
(N)
1 , ψ

(N)
2 , . . . ψ

(N)
N } of eigenfunctions

of M(A) so that

〈ψ
(N)
jN

,OpWfψ
(N)
jN

〉
N→+∞
→

∫

T2

f(x)dx, ∀f ∈ C∞(T2) (2)

holds for any sequence ψjN
.

This obviously constitutes a strengthening of the Schnirelman theorem for the

particular class of A considered. The basis for which the result holds is explicitly

described. Indeed, the eigenvalues of M(A) may be degenerate so that it is

possible that exceptional sequences of eigenfunctions not belonging to the above

basis have a different semi-classical limit.

THEOREM 5 (Kurlberg-Rudnick 01) If A ∈ SL(2,Z) is hyperbolic and

a11a12 ≡ 0 ≡ a21a22 mod 2, then there exists a density one sequence of

integers (Ñ`)`∈N along which (1) holds.



THE UPSHOT OF ALL THIS:

The quantized hyperbolic toral automorphisms are ”uniquely quantum ergodic”for

typical values of ~, but not for special ones.

A FURTHER QUESTION : CAT maps are rather special because they are linear and

have many number theoretic properties that are not generic. A natural question is

therefore :

Which of Theorems 2,3,4,5 has a chance to generalize to ε 6= 0?

AN ANSWER?

THEOREM 1 is already stated for ε 6= 0.

THEOREM 2 uses one very special arithmetic property of the problem, and I don’t

think it should survive perturbation (ε 6= 0).

THEOREM 4,5,6, . . . rely on the arithmetic properties of the system . . .

CLAIM : THEOREM 3 ought to hold for ε 6= 0 as well.



Theorem 3 : the main ingredient

THEOREM (Bonechi-DB 03)“Congregate, and thou shalt be spread”

Let ε = 0. Let a0 ∈ T
2. If ϕN ∈ H~ is some sequence (not necessarily

eigenfunctions!) with the property that, for all f ∈ C∞(T2)

〈ϕN ,Op
WfϕN 〉

N→+∞
→ f(a0)

then there exists a sequence of times tN → ∞ so that

〈ϕN , U
−tN

0 OpWf U tN

0 ϕN 〉
N→+∞
→

∫

T2

f(x)dx.

Remark: The statement involves the simultaneous limit

“~ to zero, time to infinity”.

The time scales tN involved are logarithmic in ~. So if you want to prove something

like this for ε 6= 0 (perturbed automorphisms), you need to be able to control U tN
ε

at such time scales. For the Schnirelman theorem, that’s not needed since there,

you take ~ → 0 first, and then t→ ∞.



A VERSION OF THEOREM 3 FOR PERTURBED AUTOMORPHISMS

DEFINITION A sequence ϕN ∈ H~ is said to localize at a ∈ T
2 if

〈ϕN ,Op
Wf ϕN 〉

N→+∞
−→ f(a), ∀f ∈ C∞(T2).

This implies there exists r~ → 0 so that
∫

|x−a|≥r~

|〈ϕN , ϕ̃x〉|
2 dx

2π~

N→+∞
−→ 0.

THEOREM (J. M. Bouclet, SDB, 2004) Let Uε be as before. There exists δ0 > 0

with the following property. Let ψN be a sequence of eigenfunctions of Uε that

localizes on a periodic orbit of Φε. Then r~ ≥ ~
1
2−δ0 .

This gives some weak control on the way eigenfunctions may concentrate. If they do

so, they must do it slowly!

We have some sub-optimal control on the exponent δ. (Faure and Nonnenmacher

announced a (still sub-optimal) improvement on this.)



THE EGOROV THEOREM 1

Recall: We are given A ∈ SL(2,Z), g ∈ C∞(T2) and ε ≥ 0

The Lyapounov exponent γ0 is defined by Av± = e±γ0v±.

The classical dynamics is Φε = φε ◦A.

The quantum dynamics is Uε = e−
iε
~

OpWgM(A).

“THEOREM” Let f ∈ C∞(T2). There exists

Γε ≥ γ0, lim
ε→0

Γε = γ0,

such that, for all 0 < ν, for all t ∈ Z such that

0 ≤ |t| ≤ (
2

3Γε
− ν)| ln ~|

U−t
ε OpWf U t

ε − OpW(f ◦ Φt
ε)

~→0
−→ 0.



THE EGOROV THEOREM 2

Recall: Given A ∈ SL(2,Z), g ∈ C∞(T2) and ε ≥ 0. Av± = e±γ0v±

Dynamics : Φε = φε ◦A and Uε = e−
iε
~

OpWgM(A).

THEOREM Let f, g ∈ C∞(T2) be bounded and analytic in a strip of width δ0.

There exists

Γε ≥ γ0, lim
ε→0

Γε = γ0,

such that, for all 0 < ν, there exists J0 > 0 so that for all J ≥ J0 and for all t ∈ Z,

U−t
ε OpWf U t

ε−OpW(f◦Φt
ε) = ~

∑

1≤j<J

~
j−1OpW(Lt

jf) +~
JρJ (f, ε, ~, t)

where,

‖ ∂βLt
jf ‖∞≤‖ f ‖∞,δ0 Cj,βetΓε(|β|+ 3

2 j), ∀t ∈ Z.

and, for 0 ≤ |t| ≤ ( 2
3Γε

− ν)| ln ~|

‖ ~
JρJ (f, ε, ~, t) ‖H~→H~

→ 0.



COHERENT STATE PROPAGATION

Constructing coherent states: the recipe

Ingredients : ϕ ∈ S(R), 0 < σ < 1, a ∈ R
2.

Construction: For y ∈ R,

ϕ~(y) =
1

~σ/2
ϕ(

y

~σ
), ϕa,~(y) = U(a)ϕ~(y) ∈ S(R).

With P defined as P =
∑

n∈Z2(−1)n1n2U(n), it is a fact that

PS(R) = H~.

Define finally

ϕ̃a,~ = Sϕa,~ ∈ H~.

Done.

PROPOSITION :

〈ϕ̃a,~,Op
Wf ϕ̃a,~〉H~

N→+∞
→ f(a)



Evolving coherent states:

THEOREM

〈ϕ̃a,~, U
−t
ε OpWf U t

ε ϕ̃a,~〉H~

N→+∞
→

∫

T2

f(x)dx.

provided

(min(σ, 1 − σ) + ν)
1

γε
| ln ~| ≤ |t| ≤ (

2

3Γε
− ν)| ln ~|.

Recall that

γε ≤ γ0 ≤ Γε

and that

lim
ε→0

γε = γ0 = lim
ε→0

Γε

so that the time window is non-trivial.



The basic ingredient again:

DEFINITION A sequence ϕN ∈ H~ is said to localize at a ∈ T
2 if

〈ϕN ,Op
Wf ϕN 〉

N→+∞
−→ f(a), ∀f ∈ C∞(T2).

This implies there exists r~ → 0 so that
∫

|x−a|≥r~

|〈ϕN , ϕ̃x〉|
2 dx

2π~

N→+∞
−→ 0.

THEOREM Assume that ϕN ∈ H~ concentrates on some point a ∈ T
2 with

speed r~ such that

r~ ≤ ~
1/2−σ,

with σ > 0. Then, if σ is small enough, there exists t~ → ∞ and ε(σ) > 0 such

that for all |ε| ≤ ε(σ)

〈

ϕN , U
−t
ε OpW (f)U t

εϕN

〉

→

∫

T2

f(x) dx, ~ ↓ 0. (3)



BACK TO THEOREM 3

DEFINITION A sequence ϕN ∈ H~ is said to localize at a ∈ T
2 if

〈ϕn,Op
Wf ϕN 〉

N→+∞
−→ f(a), ∀f ∈ C∞(T2).

This implies there exists r~ → 0 so that
∫

|x−a|≥r~

|〈ϕN , ϕ̃x〉|
2 dx

2π~

N→+∞
−→ 0.

THEOREM Let Uε be as before. There exists δ0 > 0 with the following property.

Let ψN be a sequence of eigenfunctions of Uε that localizes at some point a ∈ T
2.

Then r~ ≥ ~
1
2−δ0 .

This gives some weak control on the way eigenfunctions may concentrate. If they do

so, they must do it slowly! We expect to be able to improve the exponent 1
2 − δ0

(Faure and Nonnenmacher announced a result in this direction).


