
Chaotic dynamics of a free particle interacting with a

harmonic oscillator

S. De Bièvre (Lille), P. E. Parris (Missouri), A. Silvius (Missouri)

Mai 2004



Ohm’s law and the pinball machine

• Ohm’s law: V = RI or ~E = ρ~j or ~v = qτ
m

~E.

m
d~v

dt
= q ~E − m

τ
~v, ~v(t) ∼ qτ

m
~E (t → ∞).

• The pinball machine (or the inelastic Lorentz gas)

Towards a Hamiltonian model for Ohm’s law?
(see, e.g., L. Bruneau and S.D.B., A Hamiltonian model for linear friction in a homogeneous medium, CMP 229, 511-542, 2002)



A 1-d inelastic Lorentz gas
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One can imagine putting the system on a slope, or that the particle is charged

and an electric field is applied.

Two examples of what may happen in one cell:
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The dynamics in one cell

• Phase space : q ∈] − 1 − L/2, 1 + L/2[, p, Φ, Π ∈ R

• Hamiltonian: Hα(q, p, Φ, Π) = 1
2

“

p2 + Π2 + Φ2
”

− αΦχ(q), where χ is the

characteristic function of [−1, 1]. Three parameters: α, L and E.

• The dynamics from the oscillator’s point of view, at fixed E > 0:

Φ

Π

ϕ+

ϕ− 1

0

−

+

D−(E) : disc at Φ = α, Π = 0, of

radius
√

2E + α2.

D+(E) : disc at origin, of radius
√

2E



Numerical observations 1: varying E

Oscillator phase diagrams for a system with α = 2, L = 2.37. Shown are 100

randomly chosen orbits, each visiting 500 times the Poincaré section at q = 0.



Numerical observations 2: varying α

Oscillator phase diagrams for a system with E = 0.85, L = 1 and

α = 0.7, 0.1, 0.032. Shown are 100 randomly chosen orbits, each visiting 500

times the Poincaré section at q = 0.
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Main features of the dynamics

Depending on the values of the three system parameters α, L, E one observes

the following types of behaviour:

• The phase space has one ergodic, chaotic component.

• Coexistence of a chaotic with a totally integrable component, Void I. The

boundary between the two is “clean”, without KAM type structures.

• One large, prominent elliptic island along the Π-axis: Void II.

• One-parameter families of parabolic periodic orbits, similar to bouncing

ball modes in billards.

• Other structures still!



The origin of the chaos: it’s a linked twist map

CLAIM: The dynamics is a succession of non-aligned shears, which is a

known source of hyperbolicity, hence of chaos.

INDEED:

• The simplest example: the composition of two linear shears (i.e.

parabolic linear maps) on the torus (x, y ∈ [0, 1] , a, b ∈ Z)
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• A generalization of this are linked toral twist maps (Burton-Easton

(1980) and Przytycki (1983)). They proved ergodicity for maps

T = T2 ◦ T1, with, for example, T1 and T2 of the following type

(x, y ∈ [0, 1]):

T1(x, y) = (x + 2yχ[1/2,1](y), y), T2(x, y) = (x, y + 4xχ[1/2,1](x)).

Here χ[1/2,1] is the characteristic function of [1/2, 1].
y

x

X2X10

X

X

3

X4X5 X6

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

A B

DC

In A, apply T1 (T2 is trivial).

In D, apply T2 (T1 is trivial).

In B alternate them.

In C, T is the identity.

On A ∪ B ∪ C, T is ergodic.



• And this is our situation:
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In A = D+ \ D−, apply T+.

In D = D− \ D+, apply T−.

In B = D+ ∩ D− alternate them.

In C, T is completely integrable.

Here, in scaled coordinates ζ = Φ
√

2E+α2
, η = Π

√

2E+α2
, one has

T+(r+, θ+) = (r+, θ+ + ϕ+(r+)), T−(r−, θ−) = (r−, θ− + ϕ−(r−)),

where

a− =
2√

2E + α2
, a− =

L√
2E + α2

, d =
α√

2E + α2

ϕ−(r−) =
a−

q

1 − r2
−

, ϕ+(r+)
a+

q

1 − d2 − r2
+



RULES OF THUMB:

• One expects chaos when a− and a+ are large, since then the shears are

large. So in particular L large should yield chaos.

• On the edge of either disc, the shears are always large. So trajectories

there should be unstable.

• In physical terms, this means one expects instability in the motion when

the particle is moving slowly. This means the time it takes to cross the

circle is long compared to the oscillator period. Small changes in particle

speed lead to large changes in the crossing time, hence to a large

uncertainty on the oscillator position: hence this yields the

unpredictability of the motion.



Void I: a region of complete integrability

SOURCE : There exists an open set of initial conditions with orbits forever

trapped in the interaction region q ∈ [−1, 1] iff

E <
1

2
α2 ⇔ d ≥ 1√

2
⇔ (d, 0) 6∈ D+.
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The edge is clean: no KAM structures (up to numerical accuracy)



Void II: a prominent elliptic island

SOURCE : The simplest imaginable periodic orbits in which the particle goes

around the full circle exactly once per period, crossing q = ±1

without ever bouncing back.
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There is an infinite number of such orbits, giving rise to fixed points in our

phase diagrams, accumulating at ζ = d ± 1, η = 0. There stability can be

explicitly determined.



Some more examples

α = 2 L = 2.105

In the second of these figures, there is a fixed point of the “lozenge” type in

between the two small elliptic islands. The trace of its stability matrix was

computed to be −2.026.



Outlook

• Can one prove the claims on ergodicity, and the existence of a mixed

phase space with two clear components, one integrable, one chaotic?

• Can one use some of the insights gained to understand the behaviour of a

particle in the 1-d pinball machine?

Work in progress. . .


