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INTRODUCTION

GOAL (i) Provide some (physics) background to the lectures of Lindenstrauss, Rudnick

and Venkatesh on “quantum equidistribution.”

(ii) Explain in which sense the questions they address are different sides of the

same coin.

READING

S. De Bièvre, Quantum chaos: a brief first visit , “Cuernavaca Summer School in

Harmonic Analysis and Mathematical Physics”, juin 2000, (58 pages), mp−arc

01-207, Contemporary Mathematics 289, 161-218 (2001).

S. De Bièvre, Recent results on quantum map eigenstates, Proceedings of QMATH

9, Giens, september 2004.

Both available at : http://euler.dms.umontreal.ca/ ∼debievre/

PREREQUISITES

Multivariable calculus, matrix algebra and some imagination.
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THE PLAN

LECTURE 1 : A CRASH COURSE IN CLASSICAL MECHANICS

LECTURE 2: A CRASH COURSE IN QUANTUM MECHANICS

LECTURE 3: TWO WORDS ON SEMICLASSICAL ANALYSIS

LECTURE 4: QUANTUM CHAOS ON THE TORUS,

EQUIPARTITION AND NUMBER THEORY
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LECTURE 1 : A CRASH COURSE IN CLASSICAL MECHANICS

NEWTON ↑ Remember “mass times acceleration equals force”?
mq̈(t) = F (q(t)), q(0) = q, q̇(0) = v. (1)

Given: the force F : Rn → Rn, the mass m and the initial data q, v ∈ Rn.

Unknown: the motion of the system t ∈ R 7→ q(t) ∈ Rn.

SO: Classical mechanics is about solving coupled non-linear second order ordinary

differential equations. . . of a special type :

A CONSERVATIVE FORCE is a force F (q) = −∇V (q) for a function

V : Rn → R (the potential ). Why “conservative”?

PROPOSITION Energy conservation Let

E : (q, v) ∈ Rn × Rn → 1
2
mv2 + V (q) ∈ R. ← ENERGY

Let t ∈ R 7→ q(t) ∈ Rn be a solution to (1), then, for all t ∈ R,

E(q(t), q̇(t)) = E(q(0), q̇(0)). ← ENERGY CONSERVATION
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EXAMPLES to keep in mind.

• The Kepler problem: d = 3, V (q) = −GmM
‖q‖ .

• Central potentials: V (q) = W (‖ q ‖).

• Harmonic systems: V (q) = 1
2mq

T Ω2q, where Ω2 is a positive definite n by n

matrix. Now q̈ = −Ω2q and

q(t) = cosΩtq +
sinΩt

Ω
v.

In general, the behaviour of the solutions depends on the type of potential one

considers. In particular, if V (q)→ +∞ when |q| → +∞, the motion is bounded:

sup
t∈R
|q(t)| ≤ C < +∞.

Indeed, for all t

V (q(t)) ≤ 1
2m

q̇(t)2 + V (q(t)) = E(q(0), q̇(0)).
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NEWTON ↓ HAMILTON↑
Introduce the Hamiltonian

H : x = (q, p) ∈ Rn × Rn 7→ p2

2m
+ V (q) ∈ R,

and observe that Newton’s equation (1) is equivalent to the first order system of

differential equations called Hamilton’s equations

q̇(t) =
p(t)
m

=
∂H

∂p
(x(t)), ṗ = −∇V (q(t)) = −∂H

∂q
(x(t)), (2)

with initial conditions x(0) = (q,mv). One defines the corresponding flow

ΦH
t : R2n 7→ R2n by ΦH

t (x) = (q(t), p(t)), where q(0) = q, p(0) = p.

Question: “What is the big deal?”
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Answer 1 “It’s pretty! Look!”

d

dt
f(q(t), p(t)) = ∂qf(x(t))q̇(t) + ∂pf(x(t))ṗ(t)

= ∂qf(x(t))∂pH(x(t))− ∂pf(x(t))∂qH(x(t))

:= {f,H}(x(t)),

where I introduced the Poisson bracket

{·, ·} : (f, g) ∈ C∞(R2n)× C∞(R2n) 7→ {f, g} ∈ C∞(R2n),

with {f, g}(x) = ∂qf(x)∂pg(x)− ∂pf(x)∂qg(x).

Properties: thanks to (3)-(4) below, C∞(R2n) is a Lie-algebra.

{f, g} = −{g, f} (Anti-symmetry) (3)

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 (Jacobi identity) (4)

{f, gh} = {f, g}h+ g{f, h} (Derivation) (5)
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Answer 2 “It’s also useful, look!”

DEFINITION A constant of the motion is a function f ∈ C∞(R2n) which is

constant along the solutions of (2): f ◦ ΦH
t = f for all t ∈ R.

Clearly f is a constant of the motion iff {f,H} = 0. Consequently H itself is

always a constant of the motion. Constants of the motion are a Good Thing: the

more, the merrier! Indeed, if f1, f2, . . . fk are constants of the motion, and

c ∈ Rk, then the flow ΦH
t leaves their common level surface

Σ(c) = {x ∈ R2n|fj(x) = cj , j = 1 . . . k}
invariant. So, if they are functionally independent, the flow takes place on a

(2n− k)-dimensional surface in R2n.

PROPOSITION If f and g are constants of the motion, then so is {f, g}.
So, the Poisson bracket is a machine for producing constants of the motion. . . .

EXAMPLE Central potentials: V (q) = W (‖ q ‖), q ∈ R3. Then the three

components `i(x) = (q ∧ p)i, i = 1 . . . 3 of the angular momentum vector are

constants of the motion. They satisfy {`1, `2} = `3 plus cyclic permutation.

Noticed the appearance of so(3)?

8



Answer 3: It has nice generalizations in various directions. (i) First, any function

f ∈ C∞(R2n) generates a flow Φf
t : R2n → R2n as follows: Φf

t (x) = x(t)
where t ∈ R 7→ x(t) ∈ R2n solves

q̇(t) =
∂f

∂p
(x(t)), ṗ = −∂f

∂q
(x(t)), x(0) = x = (q, p). (6)

EXAMPLES • On R6, let f(x) = q1p2 − q2p1 = `3(x). Then

q̇1(t) = −q2(t), q̇2(t) = q1(t), ṗ1(t) = −p2(t), ṗ2(t) = p1(t), q̇3 = 0 = ṗ3.

Then Φf
t (x) = (Rtq,Rtp), where Rt =




cos t − sin t 0

sin t cos t 0

0 0 1




• On R2, let f(q, p) = q2/2, then q̇ = 0, ṗ = −q, so q(t) = q, p(t) = p− tq
and

Φq2/2
t (q, p) = (q, p− tq) =


 1 0

−t 1





 q

p


 .
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The maps Φf
t are symplectic :

DEFINITION: a diffeomorphism Φ of R2n is symplectic if, for all f, g ∈ C∞(R2n),

{f ◦ Φ, g ◦ Φ} = {f, g} ◦ Φ.

(ii) Second, it is the start of symplectic geometry. . . . Roughly, a symplectic manifold

is a manifold N so that the vector space C∞(N) is equipped with a composition

law, called a Poisson bracket, satisfying (3)-(5), as well as the non-degeneracy

condition: {f, g} = 0,∀g ∈ C∞(N)⇒ f is a constant

FACT Locally, there always exist coordinates (called Darboux coordinates) onN so

that the Poisson bracket takes on the form it has on R2n.

EXAMPLES (a) Every cotangent bundle has a natural symplectic structure. The

geodesic flow on a Riemannian manifold can be viewed as a Hamiltonian flow on

the cotangent bundle of the manifold. (→ Lindenstrauss, Venkatesh, Marklof )
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Example: The Poincaré half plane. This is the upper half plane

q = (q1, q2) ∈ R× R+, viewed as a Riemannian manifold with line element:

ds2 = q−2
2 (dq21 + dq22).

This means that, if γ : t ∈ [a, b] 7→ γ(t) = (q1(t), q2(t)) ∈ R× R+ is a

smooth curve, then the length of this curve is defined by

s(t) =
∫ t

a

ds
dt′

(t′)dt′ =
∫ t

a

q−1
2 (t′)

√
q̇21(t′) + q̇2(t′)2dt′.

Now let p = (p1, p2) ∈ R2 and define H(q, p) = 1
2q

2
2(p2

1 + p2
2). Then

q̇1 = q22p1, q̇2 = q22p2, ṗ1 = 0, ṗ2 = −q2(p2
1 + p2

2).

Exercise: Taking second derivatives, show that you obtain the geodesic equations

of motion on the Poincaré half plane. Solve them. Use σ = ln q2. Note that

H(q(t), p(t)) =
1
2
q̇1(t)2 + q̇2(t)2

q2(t)2
.
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(b) The torus T2 = R2/Z2. Write x = (q, p) ∈ [0, 1[2 and define the Poisson

bracket as on R2. For example,

{cos q sin p, sin q cos p} = sin2 q sin2 p− cos2 q cos2 p.

For n = 1, the group SL(2,Z) acts on T2 by symplectic automorphisms. These

maps can have rich behaviour, despite their apparent simplicity (→ SDB, Rudnick ).

(c) The two-sphere with coordinates (θ, φ). Then

{f, g}(θ, φ) = − 1
sin θ

(∂θf∂φg − ∂φf∂θg) (θ, φ).
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Two extremes: complete integrability and ergodicity

Let ΦH
t be a Hamiltonian flow on R2n. It is said to be completely integrable if

there exist n functionally independent constants of the motion f1 . . . fn, with

{fi, fj} = 0. Supposing they are compact, the level surfaces

Σ(c) = {x ∈ R2n|fj(x) = cj} are then n-dimensional tori on which the

Hamiltonian flow acts as a translation flow (Liouville-Arnold).

Example H(x) = p2

2m +W (‖ q ‖), q, p ∈ R3. Take

f1 = H, f2 = `2, f3 = `z .

It is said to be ergodic if a typical trajectory explores the entire

2n− 1-dimensional energy surface . More precisely, given a typical trajectory on

the energy surface ΣE , the time it spends in any subset B of ΣE is asymptotically

equal to the relative size of that set in the full energy surface:

lim
T→∞

|{0 ≤ t ≤ T |x(t) ∈ B}|
T

=
|B|
|ΣE | .
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SUMMARY

For later purposes, remember the following populist slogans:

“The dynamics of many physical systems is given by a Hamiltonian flow ΦH
t

on R2n. The maps ΦH
t are symplectic, which just means they leave the

Poisson bracket invariant.”

“It is therefore of great importance to study Hamiltonian flows Φf
t on

arbitrary symplectic manifolds and to understand them thoroughly.”

“Since in such generality, only rather soft general statements can be made,

it is of interest to understand relevant examples, such as geodesic flows on

Riemannian manifolds, which display a rich variety of behaviour.”

“Since this is often still very hard, one can hope to get insight in various

issues by studying discrete dynamical systems, meaning iterations of a

fixed map Φ, where Φ is a symplectic map on a symplectic manifold

(Example: an element of SL(2,Z) on T2).”
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LECTURE 2: A CRASH COURSE IN QUANTUM MECHANICS

NEWTON ↓ HAMILTON ↔ SCHRÖDINGER ↑
SCHRÖDINGER Newton’s second law iznogood. To study the motion of a particle in

a potential V : R3 → R, solve not Newton’s equation nor Hamilton’s equation, but

my equation:

i~
∂ψt

∂t
(y) = − ~

2

2m
∆ψt(y) + V (y)ψt(y), ψ0 = φ, ‖ φ ‖= 1.

Here ~ is a physical constant called Planck’s constant and the unknown is the

function t ∈ R 7→ ψt ∈ L2(R3,C; dy). One calls ψt the wavefunction of the

particle at time t. It contains all information about the particle’s state. It “replaces”

(q(t), p(t)), which played this role in classical mechanics.
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To extract information about the particle from the wavefunction, proceed as follows:

The probability to find the particle at time t inside a set B ⊂ R3 is
∫

B

| ψt |2 (y)dy

and the probability that its momentum falls inside some set C ⊂ R3 is
∫

C

| ψ̃t |2 (p)dp,

where ψ̃t is the Fourier Transform of ψt:

ψ̃t(p) =
1

(2π~)3/2

∫

R3
e−i px

~ ψt(y)dy.

In particular, the mean position and momentum of the particle are
∫

R3
yj | ψt |2 (y)dy,

∫

R3
pj | ψ̃t |2 (p)dp.
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EHRENFEST Brilliant! However, people may find this strange, so let’s try to

demystify this. Introduce the operators on L2(R3,dy)

Pjψt(y) =
~
i
∂ψt

∂yj
(y), Qjψt(y) = yjψt(y).

Then

〈Qj〉t := 〈Qjψt, ψt〉 = 〈ψt, Qjψt〉 =
∫

R3
yj | ψt |2 (y)dy

and

〈Pj〉t := 〈Pjψt, ψt〉 = 〈ψt, Pjψt〉 =
∫

R3
pj | ψ̃t |2 (p)dp

are the mean position and momentum. Here

〈φ, ψ〉 :=
∫

R3
φ(y)ψ(y)dy.

Moreover, the “Canonical Commutation Relations” hold, namely

[Qj , Pk] = i~δjk ⇒ Heisenberg uncertainty principle.
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Now, if one defines Ĥ = P 2

2m + V (Q) one can rewrite the Schrödinger equation as

i~∂tψt = Ĥψt, ψ0 = φ.

Since, for all φ, ψ ∈ L2(R3, dy), 〈ψ, Ĥφ〉 = 〈Ĥψ, φ〉, you can solve it through

ψt = e−
i
~ tĤφ. Consequently

d

dt
〈ψt, Qjψt〉 = 〈∂tψt, Qjψt〉+ 〈ψt, Qj∂tψt〉

=
1
i~
〈ψt, [Qj , Ĥ]ψt〉 =

1
m
〈ψt, Pjψt〉,

and
d

dt
〈ψt, Pjψt〉 =

1
i~
〈ψt, [Pj , Ĥ]ψt〉 = −〈ψt,∇jV (Q)ψt〉.

Remember Hamilton’s formulation of Newton’s equation:

q̇ = p/m, ṗ = −∇V (q).
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WARNING Whereas Hamilton’s equations are a system of ordinary differential

equations for the unknown t 7→ (q(t), p(t)), the Ehrenfest equations

d

dt
〈ψt, Qjψt〉 =

1
m
〈ψt, Pjψt〉, d

dt
〈ψt, Pjψt〉 = −〈ψt,∇jV (Q)ψt〉.

are not in general a system for t 7→ (〈Q〉t, 〈P 〉t)!! Indeed, in general

〈ψt,∇jV (Q)ψt〉 =
∫

R3
∇jV (y)|ψt(y)|2dy 6=∇jV (〈ψt, Qjψt〉).

A notable exception is the case of a harmonic potential V (q) = 1
2q

T Ω2q. Then

d

dt
〈ψt, Qjψt〉 =

1
m
〈ψt, Pjψt〉, d

dt
〈ψt, Pjψt〉 = −Ω2

jk〈ψt, Qkψt〉.
The mean position and momentum then follow the classical trajectories of the

system in phase space. In particular

〈Q〉t = cos Ωt〈Q〉0 +
sin Ωt

Ω
〈P 〉0.

MORAL OF THE STORY: QUADRATIC HAMILTONIANS ARE

PARTICULARLY SIMPLE

19



QUESTION How to solve the Schrödinger equation i~∂tψt = Ĥψt, ψ0 = φ?

ANSWER Look for an orthonormal basis of eigenfunctions of Ĥ :

Ĥ(~)ψ~n = En(~)ψ~n, then ψt =
∑

n

e−
i
~En(~)t〈ψ~n, φ〉ψ~n.

Such a basis exists if V (q)→ +∞ as q →∞. Studying the behaviour of the

spectrum En(~) and of the eigenfunctions ψ~n leads to a wealth of interesting and

hard problems. The eigenvalue equations are partial differential equations and

explicit solutions are hardly ever available, except in some special cases, such as

the Kepler problem and for harmonic potentials.

One interesting question is the asymptotic behaviour along sequencesEn(~) that

converge to a fixed value Ec as ~ goes to zero: this is part of a field called

semi-classical analysis , for which specific techniques have been developed (see

Lecture 3).
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SUMMING UP

In quantum mechanics the time evolution of a system is no longer given by a

Hamiltonian flow ΦH
t on a symplectic manifold (the classical phase space ), but by

a unitary flow Ut = e−
i
~ Ĥt on a complex Hilbert spaceH (the quantum state

space ). A typical example, beyond the ones given, is

H = L2(M, dvolg), Ĥ = −~2∆g → Lindenstrauss, Venkatesh.

But one can also consider simpler examples, where the Hilbert space is

finite-dimensional and the flow is replaced by the iteration of a fixed unitary map (so

you obtain a Z-action, rather than an R-action)→Lecture 4, Rudnick.

(Incidentally, in quantum computing, quantum cryptography and quantum

information theory, one almost exclusively deals with finite dimensional Hilbert

spaces (the N -fold tensor product of C2 with itself): a computation is then a certain

product of unitaries.)
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LECTURE 3: SEMICLASSICAL ANALYSIS

DIRAC How exciting. Did you notice the amazing analogy between

{qj , pk} = δjk and 1
i~ [Qj , Pk] = δjk?

It looks as if in quantum mechanics the Lie-algebra of operators on the Hilbert

space L2(Rn) replaces the Lie-algebra of smooth functions on phase space R2n

of Hamiltonian mechanics. In classical mechanics the observables are represented

by functions on phase space, in quantum mechanics by operators on a Hilbert

space. Can anyone come up with a Lie-algebra homomorphism between these two?

I mean, a map

Op : f ∈ C∞(R2n)→ Op(f) : D ⊂ L2(Rn)→ D ⊂ L2(Rn),

such that
1
i~

[Op(f),Op(g)] = Op({f, g}),
and such that Op(qj) = Qj ,Op(pj) = Pj .

VAN HOVE No, that does not exist (1957).

WEYL Well, it almost exists (± 1930).
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For

f(q, p) =
∫

R2n

f̃(a)e−
i
~ (a1p−a2q) da

(2π~)n
,

set

OpW (f) =
∫

R2n

f̃(a)e−
i
~ (a1P−a2Q) da

(2π~)n
←WEYL QUANTIZATION

Then
1
i~

[OpW (f),OpW (g)] = OpW ({f, g})+O(~), ← SEMICLASSICAL

and there is no error term as long as f and g are polynomials of degree at most two
in the qj and the pj . Quite explicitly, one has for example for f(q, p) = h(q),

respectively g(q, p) = k(p)

OpW (f) = h(Q) OpW (g) = k(P ).

and

OpWqjpj =
1
2
(QjPj + PjQj) 6=QjPj ← ORDERING PROBLEM.
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A crucial, all important property of the Weyl quantization is the following theorem:

THEOREM (EGOROV) For all f, g ∈ C∞(R2n), one has, for all t ∈ R

e
i
~OpW (g)tOpW (f)e−

i
~OpW (g)t = OpW (f ◦ Φg

t ) +Ot(~)

Moreover, if g is a quadratic function, the error term vanishes.

QUESTION Why is this useful?

ANSWER Note that OpWH = Ĥ if H(q, p) = p2

2m + V (q). So, since the

solution ψt of the Schrödinger equation i~∂tψt = Ĥψt with initial condition

ψ0 = φ is ψt = e−
i
~ Ĥt φ, we find that

〈ψt,OpW(f)ψt〉 = 〈φ,OpW(f ◦ ΦH
t )φ〉+Ot(~).

TO CONCLUDE If we know enough about the classical evolution ΦH
t appearing in

the right hand side, we can infer from it information about the quantum evolution in

the left hand side, in the limit of small ~.
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LECTURE 4 : QUANTUM CHAOS ON THE TORUS

QUANTUM CHAOS The semi-classical analysis of quantum systems having a

chaotic Hamiltonian system as their classical limit.

TWO FAMILIES OF EXAMPLES

1. Quantum : ∆ on L2(M, dvol(g)); ∆ψn = λnψn;

Chaotic system : the geodesic flow on (M, g), a compact negatively curved

manifold. This is a Hamiltonian flow on T ∗M !

Semi-classical : λn → +∞.← Lindenstrauss, Venkatesh

2. Quantum : quantum maps = unitary maps on N dimensional spaces.

Chaotic system : symplectic Anosov maps on the torus.

Semi-classical : N → +∞.← Rudnick, I

THE BASIC QUESTION Relate the asymptotic behaviour of the eigenvalues and

eigenfunctions to the statistical properties of the underlying classical dynamical

system. In particular, what is the signature of chaos on the eigenfunctions and on

the eigenvalues? I will talk only about the eigenfunctions.
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THE CLASSICAL DYNAMICS: Continuous Automorphisms of the Torus (CAT)

Consider A ∈ SL(2,Z), | TrA |> 2 ⇒ Av± = e±γ0v±.

A acts as a symplectic map on T2 = R2/Z2. It defines a discrete dynamical

system by iteration. It is

• Hyperbolic : a.e. x, x′ ∈ T2, t ∈ N (not too large),

d(x, x′) ∼ ε⇒ d(Atx,Atx′) ∼ εeγ0t.

• Exponentially mixing : ∀f, g ∈ C∞(T2),

|
∫

T2
(f◦At)(x)g(x)dx−

∫

T2
f(x)dx

∫

T2
g(x)dx |≤ CA,f ‖ ∇g ‖1 e−γ0t.

• Ergodic: for all f ∈ C∞(T2), for almost all x0 ∈ T2

lim
T→∞

1
T

T∑
t=1

f(Atx0) =
∫

T2
f(x)dx.
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Some typical examples

A =


 2 1

1 1


← THE ARNOLD CAT MAP

or, more generally, for a, b ∈ N∗

Aa,b =


 1 a

0 1





 1 0

b 1


 = Φp2/2

a ◦ Φq2/2
−b =


 1 + ab a

b 1


 .

Also, for g ∈ N∗, Ag =


 2g 1

4g2 − 1 2g


 .

Of course, they all act linearly on R2 and pass through the quotient by Z2 since

they have integer entries. They are area-preserving (because detA = 1) and

hence symplectic, meaning

{f ◦A, g ◦A} = {f, g} ◦A.
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THE CORRESPONDING QUANTUM MAP From Lectures 1 and 2, we know that if

a particle moves in one dimension, its phase space is R2 and the quantum Hilbert

space is L2(R, dy), so that the wavefunctions are functions ψ(y) of one variable.

The classical dynamical system is then a Hamiltonian flow ΦH
t on R2 (i.e. an

R-action), and the quantum dynamics is a unitary flow e−
i
~ tOpW(H) on

L2(R,dy).

The link between these two theories is provided by semi-classical analysis, through

the Weyl quantization of the classical observables and the limit ~→ 0.

In the present situation, the classical dynamics is a Z action on T2, obtained by

iterating a fixed element A ∈ SL(2,Z).

QUESTION What is the quantum Hilbert space of states? And the dynamics? And

the quantization of observables?
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The Hilbert spaces Since the system has a two-dimensional phase space, it is

reasonable to expect to describe the quantum states with wavefunctions ψ(y) of

one variable. But since the phase space is a torus, one expects that the

wavefunctions must be periodic ψ(y − 1) = ψ(y), as well as their Fourier

transforms: ψ̃(p− 1) = ψ̃(p). This intuition leads to the following definition.

With

U(a)ψ(y) = e−
i
~ (a1P−a2Q)ψ(y) = e−

i
2~a1a2e

i
~a2yψ(y − a1),

define

H~ = {ψ ∈ S ′(R) | U(1, 0)ψ = ψ = U(0, 1)ψ}, 2π~N = 1⇒ dimH~ = N.

Then

ψ ∈ H~ ⇒ ψ(y) =
∑

`∈Z
c`δ(y − `

N
); c`+N = c`.
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Weyl quantization For f ∈ C∞(T2), x = (q, p) ∈ T2, write

f(x) =
∑

n∈Z2

fne−i2π(n1p−n2q)

and define

OpWf = f̂ =
∑

n∈Z2

fne−i2π(n1P−n2Q) =
∑

n∈Z2

fnU(
n

N
) : H~ → H~.
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The quantum dynamics Let’s treat an example. For a, b ∈ N∗, we have

Aa,b =


 1 a

0 1





 1 0

b 1


 = Φp2/2

a ◦ Φq2/2
−b =


 1 + ab a

b 1




Defining (following Schrödinger!)

M(A) = e−
i

2~aP 2
e

i
2~ bQ2

,

it is easy to check that, provided a and b are even, for all t ∈ Z,

M(A)H~ = H~ and M(A)−t OpWf M(A)t −OpW(f ◦At) = 0.

This is the EGOROV theorem, and there is no error term in ~ because the dynamics

is linear. A similar construction works for all hyperbolic elements of SL(2,Z).
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M(A) is the quantum map we wish to study. It is naturally related to the discrete

Hamiltonian dynamics on T2 obtained by iterating A. It acts on the N dimensional

spacesH~ and we are interested in the behaviour of its eigenfunctions and

eigenvalues in the N →∞ limit:

M(A)ψ(N)
j = eiθ

(N)
j ψ

(N)
j , j = 1 . . . N.
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The basic result : the Schnirelman theorem. EQUIDISTRIBUTION AT LAST

THEOREM 1 (Bouzouina-DB 96) For “almost all” sequences ψN ∈ H~, so that

M(A)ψN = eiθNψN ,

〈ψN ,OpWfψN 〉 N→+∞→
∫

T2
f(x)dx, ∀f ∈ C∞(T2) (7)

COMMENTS: (i) This is proven by adapting known arguments, which is why it holds

also for ε 6= 0 and on higher dimensional tori.

(ii) The result can be adapted for maps that are not continuous such as the Baker

and sawtooth maps (De Bièvre, Degli Esposti 1997) and to systems with a mixed

phase space (Marklof, O’Keefe 2004).
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SOME SIMPLE COMPUTATIONS

Notation a, b ∈ Rn ⇒ ab =
∑n

j=1 ajbj

mq̈(t) = −∇V (q(t))⇒ d
dt

1
2
mq̇(t)2 =

n∑

j=1

mq̈j(t)q̇j(t)

= mq̇(t)q̈(t)

= −q̇(t)∇V (q(t))

= − d
dt
V (q(t)).

Suppose V (q) = W (‖ q ‖), ‖ q ‖=
√
q21 + q22 + q23 . Recall that

`3(x) = q1p2 − q2p1. Then

{`3(x), V (q)} = −∂p`3(x)∂qV (q) = −∂p`3(x)
q

‖ q ‖W
′(‖ q ‖)

= −(q1∂p1`3(x) + q2∂p2`3(x))
1
‖ q ‖W

′(‖ q ‖)

= −(q1(−q2) + q2(q1))
1
‖ q ‖W

′(‖ q ‖) = 0.
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SOME MORE SIMPLE COMPUTATIONS

〈φ, Pjψ〉 =
~
i

∫

R3
φ(y)∂jψ(y)dy = −~

i

∫

R3
∂jφ(y)ψ(y)dy = 〈Pjφ, ψ〉

〈φ, P 2ψ〉 =
3∑

j=1

〈φ, P 2
j ψ〉 =

3∑

j=1

〈Pjφ, Pjψ〉 =
3∑

j=1

〈P 2
j φ, ψ〉 = 〈P 2φ, ψ〉

[Q1, P1]ψ(y) =
~
i

(y1∂1ψ(y)− ∂1(y1ψ)(y)) = i~ψ(y)

[Qj , P
2] =

3∑

k=1

[Qj , P
2
k ] =

3∑

k=1

Pk[Qj , Pk] + [Qj , Pk]Pk = 2i~Pj .

If A is an operator on L2(R3), then, since i~∂tψt = Ĥψt,

d
dt
〈ψt, Aψt〉 = 〈∂tψt, Aψt〉+ 〈ψt, A∂tψt〉

= − 1
i~
〈Ĥψt, Aψt〉+ 1

i~
〈ψt, AĤψt〉 =

1
i~
〈ψt, [A, Ĥ]ψt〉.
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STILL SOME MORE SIMPLE COMPUTATIONS

If f(q, p) = cos p cos q, (q, p) ∈ R2, then

f(q, p) =
1
4
(ei(p+q) + ei(p−q) + e−i(p−q) + e−i(p+q))

=
∫

R2
f̃(a1, a2)e−

i
~ (a1p−a2q) da1da2

(2π~)

with f̃(a1, a2) =
2π~
4

(δ(a1 + ~)δ(a2 − ~) + δ(a1 + ~)δ(a2 + ~)

+δ(a1 − ~)δ(a2 − ~) + δ(a1 − ~)δ(a2 + ~)).

So OpW(f) =
1
4
((ei(P+Q) + ei(P−Q) + e−i(P−Q) + e−i(P+Q))

6= cosP cosQ.

Indeed cosP cosQ =
1
4
(eiP eiQ + eiP e−iQ + e−iP eiQ + e−iP e−iQ)

and

[Q,P ] = i~ ⇒ eiQeiP = ei(Q+P )e
i
2~ 6= ei(Q+P ).
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Exercise Let f(q, p) = sin q and g(q, p) = cos p. Prove that

‖ 1
i~

[OpWf,OpWg]−OpW({f, g}) ‖≤ C~.

Generalize the result to f, g ∈ C∞(T2).
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THE STRUCTURES OF CLASSICAL MECHANICS

• INGREDIENT One symplectic manifold N with a Poisson bracket {f, g} for

f, g ∈ C∞(N).

• CONSTRUCT h ∈ C∞(N); t ∈ R −→ Φh
t ∈ Diffsympl(N), an R-action

on N (i.e. Φh
t1 ◦ Φh

t2 = Φh
t1+t2 : N → N ) by symplectic diffeomorphisms

(meaning {f ◦ Φh
t , g ◦ Φh

t } = {f, g} ◦ Φh
t ).

• PROPERTIES d
dtf ◦ Φh

t = {f, h} ◦ Φh
t .

EXAMPLES •N = R2n, h(x) = H(x) = p2

2m + V (q), with x = (q, p). The

flow ΦH
t (x) = (q(t), p(t)) then describes the motion of a particle in the potential

V since Hamilton’s equations for this H imply that mq̈(t) = −∇V (q(t)).

•N = H× R2 and h(x) = H(x) = 1
2q

2
2(p2

1 + p2
2), with x = (q, p). The flow

ΦH
t (x) = (q(t), p(t)) then describes geodesic motion onH since the curve

t ∈ R→ q(t) ∈ H is a geodesic. What Jens (I mean Professor Marklof) calls the

unit (co)tangent bundle is ΣE := {x ∈ N |H(x) = E} with E = 1.
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VARIATIONS – GENERALIZATIONS • Take (N, {·, ·}) and a fixed symplectic

diffeomorphism Φ. Consider t ∈ Z→ Φt ∈ Diffsympl(N). This is a Z-action on

N : a discrete dynamical system. Example: N = T2,Φ = A ∈ SL(2,Z).

• Let (N, {·, ·}) be a symplectic manifold and G a group. A symplectic action of G

on N is a group homomorphism φ : g ∈ G 7→ φg ∈ Diffsympl(N) (i.e.

φg1 ◦ φg2 = φg1g2 ). Example: G = SL(2,R) and N = H× R2 (cfr. Jens!).

The action φ is transitive if there are no non-trivial G-invariant subsets of N . In the

previous example the action is NOT transitive since each surface ΣE is

SL(2,R)-invariant; the action is transitive on each ΣE , though (Jens again!).

QUESTION Given a Lie-group G, can you classify all symplectic transitive

G-actions?
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THE STRUCTURES OF QUANTUM MECHANICS

• INGREDIENT One Hilbert spaceH. Note that the vectorspace of linear

operators onH, L(H) comes with a bilinear antisymmetric form, namely the

commutator [A,B] = AB −BA which is a derivation (A,B,C ∈ L(H))

[A,BC] = [A,B]C +B[A,C]

and satisfies the Jacobi identity

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

• CONSTRUCT Take C = C∗ ∈ L(H). Make

UC
t := exp−iCt, t ∈ R→ UC

t ∈ U(H), a unitary representation of R on

H (i.e. UC
t1U

C
t2 = UC

t1+t2 ) (Venkatesh!).

• PROPERTIES d
dtU

C
−tAU

C
t = iUC

−t[C,A]UC
t = UC

−t
[A,C]

i UC
t .

EXAMPLES • H = L2(R3, dy). C = Ĥ = P 2

2m + V (Q).

• H = L2(H,dvolg), C = −∆g .
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VARIATIONS – GENERALIZATIONS • Take a Hilbert spaceH and a fixed unitary

map U . Consider t ∈ Z→ U t ∈ U(H). This is a unitary representation of Z on

H: a discrete quantum dynamical system. Example: Lecture 4 and Rudnick’s

quantum equidistribution lectures.

• LetH be a Hilbert space and G a group. A unitary representation of G onH is a

group homomorphism U : g ∈ G 7→ Ug ∈ U(H) (i.e. Ug1 ◦ Ug2 = Ug1g2 )

(Venkatesh! He wrote ρ where I write U , but it’s the same thing). Example:

G = SL(2,R) andH = L2(H, dvolg).

A representation is irreducible if there are no non-trivialG-invariant closed

subspaces ofH. In the previous example the representation is NOT irreducible

since−∆g has invariant subspaces; the representation is irreducible when

restricted to one of those, though (Venkatesh again!).

QUESTION Given a Lie-group G, can you classify all its irreducible unitary

representations?
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On the unusual choice of words in mathematics
or

Why hardly anybody takes us seriously

In mathematics, the following is true.

THEOREM Most real numbers are irrational. Most irrational numbers are normal.

Most real numbers are therefore normal. But for any real number you may come

across, it is impossible to tell if it is normal. Unless, of course, it is rational, in which

case it is not normal.

Is the following true in Real Life?

Most real people are irrational. Most irrational people are normal. Most real people

are therefore normal. But for any real person you may come across, it is impossible

to tell if he is normal. Unless, of course, he is rational, in which case he is not

normal.
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