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Abstract

We study the closed Hamiltonian dynamics of a free particle moving on a ring, over one section of which it interacts linearly
with a single harmonic oscillator. On the basis of numerical and analytical evidence, we conjecture that at small positive energies
the phase space of our model is completely chaotic except for a single region of complete integrability with a smooth sharp
boundary showing no KAM-type structures of any kind. This results in the cleanest mixed phase space structure possible, in
which motions in the integrable region and in the chaotic region are clearly separated and independent of one another. For certain
system parameters, this mixed phase space structure can be tuned to make either of the two components disappear, leaving a
c ures appear,
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ompletely integrable or completely chaotic phase space. For other values of the system parameters, additional struct
uch as KAM-like elliptic islands, and one parameter families of parabolic periodic orbits embedded in the chaotic sea.
re analogous to bouncing ball orbits seen in the stadium billiard. The analytical part of our study proceeds from a g
escription of the dynamics, and shows it to be equivalent to a linked twist map on the union of two intersecting disks
2005 Elsevier B.V. All rights reserved.
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. Introduction

The one-dimensional free particle and the one-dimensional harmonic oscillator are arguably the two
uantum mechanical systems that exist. Nonetheless, and in spite of the intrinsic simplicity of such syste
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treated in isolation, the problem of an essentially free particle interacting locally with one or more oscillators
is difficult and important to a large class of physical systems. It arises in a variety of contexts, ranging from
fundamental studies aimed at understanding the emergence of dissipation in Hamiltonian systems[1], to electron-
phonon interactions in solids[2,3], and, more recently, to basic issues associated with the phenomena of quantum
decoherence. In the condensed matter literature, in particular, a great deal of theoretical work has focused on the
nature of electron–phonon interactions, and the rich variety of behavior that occurs, such as the emergence of
“polaronic” quasi-particles. In one version of the well-known Holstein molecular crystal model, a tight-binding
electron in a crystal moves between different unit cells, in each of which it interacts with a local oscillator[2]. Even
in the simplest “spin-boson” form of this problem, in which the particle can be conceived as moving between just
two sites, and in which it interacts with a single collective oscillator, the problem is not exactly soluble, and has
been the subject of intense investigations regarding the appropriateness of various semi-classical approximations
[4].

In this paper we show that the situation can be just as complex in completely classical versions of the problem. We
study here the surprisingly rich classical dynamics of what is perhaps the simplest Hamiltonian model that one can
think of that incorporates the essential features of this local free particle–oscillator interaction[5]. Specifically, we
consider a single classical particle of massm, positionx, and momentump0 that moves on a ring, the circumference
of which is divided into two sections. On one section the particle moves freely, on the other it interacts with a single
oscillator of massM and frequencyω. The associated Hamiltonian we write in the form

H = p2
0

2m
+ P2

2M
+ 1

2
Mω2X2 − F0Xρ(x), (1)

whereP is the oscillator momentum, andF0 describes the strength of the interaction, which is linear in the oscillator
coordinateX, but not in the particle positionx. In the Hamiltonian(1), ρ(x) is a form factor localized aroundx = 0
that describes the range of the interaction. We takeρ to equal unity throughout the interaction region|x| ≤ σ̂,
and to vanish on the section of the ringσ̂ + L̂/2 > |x| > σ̂ lying outside this range. With this choice, except at
those moments of the evolution when the particle arrives atx = ±σ̂, the particle and the oscillator are effectively
uncoupled, and evolve independently. At “impacts”, i.e., when the particle arrives at the edges of the interaction
region, the particle receives an impulsive kick from the oscillator that conserves the total energy of the system.
After each such kick, the particle again moves as a free particle either inside or outside of the interaction region.
It is this essentially uncoupled evolution of the two subsystems between impulsive kicks of the particle atx = ±σ̂
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Despite its apparent simplicity, and as can be seen in the numerically determined phase plots appearinFigs.

–4, the model has a striking combination of features that are not often seen together in a single closed Ha
ystem. First, for any given system parameters, the phase space has a very simply described, completely
egion of controllable size for all energies ranging from that of the ground state,Êg = −F2

0/2Mω2, up to a critica
ositive energŷEc = |Êg| (SeeFig. 1(a) and (b)). For small positive energies the region of phase space out

his region, which we refer to as Void I, appears in our numerical calculations to be fully chaotic, with no sec
AM structures, even very close to the edge of the Void (See, e.g.,Fig. 1(b)). This then makes for the simple
ossible mixed phase space structure, in which motions in the completely integrable region and in the chao
re clearly separated and independent of one another. We are unaware of other Hamiltonian systems wh

his clean separation, although it does appear in a piecewise linear symplectic map on the torus that was
onstructed to exhibit this property[6].

As a second striking feature of the model, we identify one-parameter families of marginally unstable p
rbits, that appear as circular arcs in the oscillator phase space (SeeFig. 9), and are similar to the so-called bounc
all orbits that arise in the stadium billiard.

We furthermore show that for fixed, suitably-chosen system parameters, the statistical properties of the
n the different energy surfaces can vary greatly. For some values of the energy, the dynamics is co

ntegrable, whereas for others it is fully chaotic or displays a mixed, KAM-type behavior. Among the rich
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Fig. 1. Oscillator phase space diagrams for a system withα = 2 andL = 4.74, and varying values of the energyE = 0,1,2,3,6, and 10, as
shown (see Section2 for the definition of the reduced parameters used). The vertical axis in each figure is the scaled oscillator coordinateζ − d,
and the horizontal axis the reduced oscillator momentumη defined in Eq.(13).

Fig. 2. Oscillator phase space diagrams for a system withE = 0.85 andL = 2, and values of the coupling strengthα = 0.7,0.1, and 0.032 (See
Section2 for the definition of the reduced parameters used). The vertical axis in each figure is the scaled oscillator coordinateζ − d, and the
horizontal axis the reduced oscillator momentumη defined in Eq.(13). The prominent elliptic island in these figures is what is referred to in the
text as Void II. In the last two figures other secondary KAM structures appear at the edges of the Void.
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Fig. 3. Oscillator phase space diagrams for a system withα = 2 andL = 2.105, and energyE = 0.85, 1.35, and 3. The vertical axis in each
figure is the scaled oscillator coordinateζ − d, and the horizontal axis the reduced oscillator momentumη defined in Eq.(13).

of structures that arise, we identify and locate the central fixed point of a KAM-type elliptic island that we refer to
as Void II. In some cases Void II appears alone, as inFig. 1(d)–(f) andFig. 2, while in others Void I and Void II both
appear, as inFig. 4(b) and (c). Finally, in the limit of small coupling strengthsF0, the phase space displays typical
KAM structures of the type that generally occur when a completely integrable motion is subject to a small nonlinear
perturbation, as inFig. 2. This, however, by no means exhausts the variety of structures that seem to appear (See
Fig. 5).

The presence of chaos in our coupled particle–oscillator model can be understood intuitively as follows. A
trajectory of the combined system will tend to be unstable whenever the time the particle takes between two impacts
at x = ±σ̂ is long compared to the oscillator period. Indeed, when the particle goes slowly, a small change in its
velocity at one impact will lead to a large change in the relatively fast moving oscillator coordinate at the next impact.
As a result, the height of the potential barrier the particle meets at that moment becomes highly unpredictable, and
this is the source of the instability. That this simple picture is in agreement with observed behavior can be seen in

Fig. 4. Oscillator phase space diagrams for a system withE = 1.6 andα = 2, and values of the lengthL = 4,2, and 0.32, of the non-interacting
region as shown (see Section2 for the definition of the reduced parameters used). The vertical axis in each figure is the scaled oscillator coordinate
ζ − d, and the horizontal axis the reduced oscillator momentumη defined in Eq.(13). At the center of each of these figures is a small Void I.
A appears to
g

s L is decreased, Void II appears and then ascends toward the impenetrable Void I. The collision between these two elliptic islands
enerate considerable structure.
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Fig. 5. Visualization of the Poincaré section atx = 0 of the energy surface for a particle–oscillator system withE = 1.6,α = 2, andL = 0.32
(see section2 for the definition of the reduced parameters used). We display phase points generated, as described in the text, for 100 initial
conditions randomly chosen on the energy surface. The same data appear inFig. 4(c). This representation of the energy surface is as seen by an
observer located outside the energy surface, upside down in theΠ-p plane.

Fig. 3, in which it is clear for a givenF0 andL̂ (represented in that figure by the dimensionless parametersα andL
introduced in the next section), that the fraction of phase space outside Void I that is chaotic tends to increase as the
total energy of the system (and thus the particle speed) decrease. Similarly, increasingL̂ tends to increase the chaotic
fraction of phase space outside of Void I, since for largerL̂ the particle spends more time between succesive visits
atx = ±σ̂ whenever it is outside the interaction region. A more precise and quantitative analysis of the mechanism
leading to chaos in this model will be given in Section3, where we will show that the dynamics can be analyzed
in terms of a discontinuous linked twist map on the union of two intersecting disks. This is a generalization of the
linked twist maps on the torus introduced and studied in[7].

The rest of the paper is laid out as follows. In the next section, we simplify the Hamiltonian(1) by reducing the
six system parameters with which it is associated down to two. Following this reduction, we present phase-space
plots of the results of a numerical integration of the equations of motion for the system. In Section3, we develop
a geometric description of the dynamics that makes it relatively straightforward to explain the main features seen
in numerical studies, including the emergence of chaos at positive energies (Section4), the existence of islands of
regular motion of two different generic types, which we refer to as Void I and Void II (studied in Sections5 and 6,
respectively), and the presence of arcs of marginally stable periodic orbits that appear as sets of zero measure in the
chaotic portions of our phase space diagrams (Section5). In addition, we analytically demonstrate the existence of
unstable isolated periodic orbits of arbitrarily large period (Section6). In the last section, we summarize our results,
and comment on their ramifications.

2. Dimensional reduction of the Hamiltonian

The system described by the HamiltonianH(x, p0, X, P) as given in(1) depends upon six system parameters:
the two massesm andM, the oscillator frequencyω, and the coupling strengthF0, as well as the widths 2̂σ and
L̂ of the interacting and non-interacting sections of the ring on which the particle moves. To reduce the number of
inessential parameters in the system, we now introduce a dimensionless timeτ = ωt, and dimensionless variables
and momenta

p0
√

mω ˜
√

Mω ˜ P

p̃ = √

mω
q̃ = x, Φ = X, Π = √

Mω
(2)
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where is an arbitrary constant having units of action that plays no part in the subsequent dynamics. The new
variables obey the equations of motion

dq̃

dτ
= p̃

dp̃

dτ
= α̃Φ̃

dχ̃

dq̃
(q̃)

dΦ̃

dτ
= Π̃

dΠ̃

dτ
= −Φ̃ + α̃χ̃(q̃)

(3)

which are the canonical equations generated by a transformed HamiltonianH̃α̃ = H/ω, where

H̃α̃ = 1

2
(p̃2 + Π̃2 + Φ̃2) − α̃Φ̃χ̃(q̃), (4)

α̃ =
√
F2

0/Mω3, and the function ˜χ(q̃) = ρ(q̃
√
/mω) vanishes outside the interaction region extending between

q̃ = ±σ ≡ ±σ̂(mω/)1/2. Explicitly, we write

χ̃(q̃) ≡ χ(q̃/σ) = θ

(
q̃

σ
+ 1

)
− θ

(
q̃

σ
− 1

)
(5)

whereθ(x) is the Heaviside step function. This form for the functionχ allows an additional simplification through
the scale transformation

q = q̃

σ
p = p̃

σ
Φ = Φ̃

σ
Π = Π̃

σ
. (6)

With a suitable redefinition of the coupling constantα̃ = ασ, we obtain the following one parameter family

Hα = 1

2
(p2 + Π2 + Φ2) − αΦχ(q) (7)

of reduced HamiltoniansHα = H̃α̃σ
−2 describing the system, where now the interaction region is associated with

the fixed intervalq ∈ [−1,1]. Note that in this form the dimensionless coupling constant√
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mσ̂2ω2 (8)

nvolves the ratio of the (original) ground state energy of the system to the kinetic energy of a particle tha
he interaction region in one oscillator period.

We have thus reduced the number of system parameters down to the single explicit parameterα describing the
oupling strength, and one additional parameterL = L̂/σ̂ associated with the total range 2+ L of the particle
oordinateq. We note in passing that with this choice for the functionχ(q), the coupling parameter is equal to
quilibrium valueΦin

eq = α of the oscillator coordinate when the particle is in the interaction regionq ∈ [−1,1],

nd that the ground state, which now has rescaled energyEg = −α2/2, occurs when the particle and the oscilla
re both at rest, with the particle in the interaction region.

The equations of motion corresponding to(7)

q̇ = p ṗ = αΦ[δ(q + 1) − δ(q − 1)]

Φ̇ = Π Π̇ = −Φ + αχ(q),
(9)

ith dots denoting derivatives with respect toτ, show that the particle feels an impulsive force only when it rea
he edges of the interaction region, but otherwise travels as a free particle. The particle’s momentum u
iscontinuous changes at these moments, but its position remains a continuous function of time. The

mparted to the particle atq = ±1 is readily computed from the oscillator displacement using only conservat
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total energy. When the particle enters the interaction region, the oscillator experiences an interaction force of finite
magnitudeα that suddenly shifts the equilibrium position about which it oscillates fromΦout

eq = 0 toΦin
eq = α, but

the amplitude and momentum of the oscillator remain continuous functions of time. Thus, when the particle is in the
interaction region, the oscillator phase point (Φ(τ),Π(τ)) rotates at unit angular speed about the equilibrium state
(Φ,Π) = (α,0), and when the particle is outside the interaction region, a similar free rotation takes place about the
origin of the oscillator phase plane. As mentioned in the introduction, it is this essentially uncoupled evolution of
the two subsystems between impulsive kicks of the particle atq = ±1 that makes it straightforward to numerically
and analytically track the resulting dynamics.

As in any system with two degrees of freedom, the energy surfaces associated with(7)are three dimensional. Their
two-dimensional sections atq = 0 are ellipsoids centered at (Φ,Π,p) = (α,0,0). InFig. 5we display phase points
recorded on the Poincaré section atq = 0 andp > 0 arising from the numerically determined evolution of 100 initial
conditions randomly chosen on such an energy surface and evolved for a time corresponding to 500 passages through
the section. Note that the Hamiltonian(7) is invariant with respect to the parity operation of the particle. Thus, if
(Φ(t),Π(t), p(t), q(t)) is a solution to the equations of motion, so is (Φ(t),Π(t),−p(t),−q(t)), and for symmetrized
pairs of randomly chosen initial conditions, the corresponding set of phase points recorded at−p will be the same
as atp, i.e., the back half of the ellipsoid, if displayed, would be a mirror image of the front half. This symmetry,
together with time reversal invariance explains the additionalΠ → −Π symmetry that our phase plots exhibit.

As a result it therefore suffices to represent the evolution by simply recording theoscillator phasepoint(Φ(t), π(t))
each time thatq = 0 andp is positive. Such a representation is obtained by numerically computing the return map
for this Poincaŕe section, and has been used inFigs. 1–4 and 9.

3. Geometric description of the dynamics

Although the dynamics of the system recorded atq = 0 shows most clearly the inherent symmetries of the
system, to actually explain the features that appear in our phase plots, it is obviously necessary to consider those
times at which the particle reaches the edges of the interaction region atq = ±1. At fixed energyE, and with the
positionq = ±1 of the particle determined up to a sign, the state of the system at these moments is also conveniently
represented as a point in theΦ − Π oscillator phase plane. In general, at a givenE > 0, the available phase space
for the oscillator when the particle is in the interaction zone is a diskD−(E) of radius

√
2E + α2 centered at the

p ticle is
o t
t s
t
s constant,
t r
E

d edges
o
d

S one
a es
t (
t

oint (α,0) in the (Φ,Π) plane, that obviously contains the origin of the phase plane. Similarly, when the par
utside the interaction zone, the available phase space for the oscillator is a diskD+(E) of radius

√
2E centered a

he origin. Any point (Φ,Π) in the setSin(E) = D−(E) \ D+(E), i.e., insideD−(E) but outsideD+(E), correspond
o a state with the particle definitely inside the interaction region, and any point inSout(E) = D+(E) \ D−(E) to a
tate with the particle definitely outside the interaction region. Depending on the energy and the coupling
wo distinct situations can occur: either the diskD+(E) does not contain the center ofD−(E), which occurs fo
< α2/2, and is depicted inFig. 6(a), or it does contain the center ofD−(E), which occurs whenE > α2/2 and is

epicted inFig. 6(b). It should be obvious from the geometry of both figures that the circles which form the
f the two disks always intersect on theΠ axis. In the following, given a pointX = (Φ,Π), we denote byA± its
istance from the center ofD±(E). Physically,12A

2+ = 1
2(Φ2 + Π2) is the uncoupled oscillator energy.

We can now give a simple qualitative description of the motion of the system in geometric terms (seeFig. 6(b)).
uppose that, for fixedE > 0, the system is such that att = 0 the particle is on the left edge of the interaction z
nd moving inward, i.e.,q(0) = −1 andq̇(0) > 0, so thatX0 = (Φ0,Π0) ∈ D−(E). As the particle now cross

he interaction region toq = 1, the oscillator phase point simply rotates on a circular arc around the pointα,0)
hrough an angle that, in our dimensionless units, can be written

ϕ−(A−) = 2

q̇(0)
= 2√

2E + α2 − A2−
, (10)
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Fig. 6. The oscillator phase plane showing the disksD+(E) andD−(E) for (a)E < α2/2, and (b) forE > α2/2. On these figures the horizontal
axis corresponds to the oscillator coordinateΦ and the vertical axis to the oscillator momentumΠ.

where the second form follows through energy conservation. Note that the rotation angle depends monotonically on
the radius of the circle on which the phase point moves, so that two nearby phase points at different radii will rotate
through different angles. In this way ashearT− is induced on the diskD−(E). Since the angleϕ−(A−) diverges as
A− approaches the radius ofD−(E), the strength of the shear diverges near the edge, and the dynamics becomes
increasingly sensitive to small changes inA−.

If the new phase pointX1 so obtained lies inSin(E), the particle encounters a potential energy barrier atq = 1 that
is greater than its kinetic energy. Consequently, it reflects from the barrier, reversing its motion to cross the interaction
region back toq = −1, during which time the oscillator phase point continues its rotation about the center ofD−(E),
through the same angleϕ−(A−). The process then repeats itself, generating a sequence of oscillator phase points
X1, X2,, . . . separated by equal angular displacementsϕ−(A−) until, for somek, the phase pointXk falls insideS(E).

At such a time, the particle has sufficient kinetic energy to overcome the barrier it encounters, and passes out
of the interaction region with a new kinetic energy equal toE − 1

2A
2+, whereA+ is the distance between the point

Xk and the origin (the center of the diskD+(E)). The particle then travels through a distanceL around the outer
section of the ring, and arrives again atq = ±1, while the oscillator phase point rotates on theseconddiskD+(E)
through an angle

ϕ+(A+) = L√
2E − A2+

(11)

about the origin of the phase plane. Thus, adifferentshearT+ is induced on the diskD+(E). The new phase point
Xk+1 so obtained is depicted inFig. 6(b). Obviously this way of depicting the evolution can be repeated indefinitely,
and provides an efficient way to analyze and explain various features of the dynamics.

4. The emergence of chaos

For example, the description given in the last section makes it clear that the mechanism underlying the appearance
of chaos in this system is the existence of the two non-aligned shearsT+ andT−. This is a well-known phenomenon.
For example, on a torusx, y ∈ [0,1], successive application of the two shears
(
x

y

)
→
(
x + ay

y

)
and

(
x

y

)
→
(

x

y + bx

)
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yields a hyperbolic map

(
x

y

)
→
(

1 a

b 1 + ab

)(
x

y

)

and leads to chaotic dynamics if|2 + ab| > 2. Locally, the two shearsT+ andT− have exactly this structure, but
in polar coordinates and with the role ofa andb played byϕ′+(A+) andϕ′−(A−). The divergence ofϕ±(A±) at the
edges of the disks thus provides a clear mechanism for the emergence of chaos in certain regions of phase space.
In fact, the dynamical system defined on the two disks described in the last section is a generalization of what is
referred to in the literature as a linked twist map. Some simple examples of such maps (on a torus rather than on
a union of disks) have rigourously been shown to exhibit ergodicity and chaotic behavior[7]. The discontinuity
of the functionsϕ± at the edges of the discs and the fact that the two shears are not transverse everywhere in the
intersection region would make a completely rigorous analysis of the ergodic properties of our model considerably
more complicated.

Note that in this essentially geometric description, the dynamics depends only on three independent parameters
E,L, andα. It is helpful to simplify the geometric nature of the description even further, by reorganizing the
parameters as follows. First, we re-express the coupling strength of the system through the parameter

d = α√
2E + α2

(12)

and introduce rescaled oscillator variables

ζ = Φ√
2E + α2

, η = Π√
2E + α2

(13)

which locate the oscillator phase point at radii

r± = A±√
2
, 0 ≤ r− < 1, 0 ≤ r+ <

√
1 − d2 (14)

f
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2E + α

rom the centers, respectively, of a diskD− of unit radius centered at (d,0), and a diskD+ of radius
√

1 − d2

entered at the origin. With this choice, the dynamics now occurs on the disksD±, and the rotation anglesϕ± that
he oscillator phase points sweep through during one traversal of the interaction zone can be simply writt

ϕ−(r−) = ϕ−(A−) = a−√
1 − r2−

, a− = 2√
2E + α2

(15)

ϕ+(r+) = ϕ+(A+) = a+√
1 − d2 − r2+

, a+ = L√
2E + α2

. (16)

n this new description, we can thus taked, a+, anda− as the three independent parameters describing the sy
ote that numerical data in the oscillator phase plots appearing throughout this paper are presented in te
caled oscillator variables (ζ − d, η), and thus always appear on a disk of unit radius centered at the origin
isk is essentially a shifted version of the diskD− defined above, but is rotated by 90 degrees, so that the osc
oordinate appears on the vertical, rather than the horizontal axis. In what follows we will use both the sc
nscaled variables as is appropriate to the discussion at hand.
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5. Motion confined to the interaction region

In this section we analyze the motion of the system when the particle never leaves the interaction region. In
particular, we explain the basic features of Void I, the region of complete integrability that occurs at the center of
the phase space plots inFig. 1(a) and (b), and inFig. 4. In addition, we demonstrate and explain the existence of
arcs of parabolic fixed points embedded in the chaotic regions of phase space.

The easiest case of confined motion to understand is the one in which the total energy is negative, and the particle
isenergeticallyconfined to the interaction region. For this situation the dynamics is totally integrable, since the speed
and kinetic energy of the particle are constants of the motion, and the oscillator coordinateΦ(t) is never negative.
There are essentially three types of trajectories. The first type includes those in which only the motion of the particle
is excited, soΦ = α andΠ = 0 are constant. Since the particle does not have enough kinetic energy to overcome
the barriers it encounters atq = ±1, it reflects at each impact with the boundary. The trajectory is trivially periodic,
with period 4/q̇. In the second type of motion, the particle is at rest in the interaction region and the oscillator
performs simple harmonic motion of amplitudeΦ0 < α aboutΦ = α. Periodic orbits of this type are also possible,
of course, at any positive energy. Finally, there are confined motions in which both of the “modes” described above
are excited. The trajectory is Lissajou-like, and the orbit is closed if the oscillator period and the traversal time 2/q̇

are commensurate. Otherwise it sweeps out a rectangle in the two-dimensional (q,Φ) configuration space, with
q ∈ [−1,1], andΦ ∈ [α − Φ0, α + Φ0], for some positive amplitudeΦ0 < α of oscillation.

When the total energyE = 0, possible motions with the particle confined to the interaction region include all of
the types described above. In addition, oscillations of amplitudeΦ0 = α are now allowed; in that case the particle
is at rest somewhere in the interaction region. We note that that the only other motions atE = 0 are the unstable
equilibrium points corresponding to the particle at rest outside the interaction region with the oscillator at rest as
well.

We now give a description of all orbits at positive energy for which the particle never leaves the interaction zone.
It is clear fromFig. 6 (a), the scaled version of which appears inFig. 7, and the geometric description of Section
3, that for any energyα2/2 > E > 0, the diskD+ does not contain the center ofD−. Thus, for this situation, all
initial conditions withr− < RI , indicated by the shaded region inFig. 7, in which

RI = d −
√

1 − d2, (17)
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ill give rise to trajectories for which the particle remains in the interaction region. Indeed, since the c
adiusr− does not then intersectD+, successive rotations of such a point throughϕ−(r−) can never lead to a poi
ying in D+. The elliptic regions of complete integrability at the center ofFig. 1(a) and (b), and inFig. 4, which
e have already referred to as Void I, correspond precisely to trajectories of this kind. InFig. 8we show a typica
eriodic orbit of this type in theq − Φ plane. Shaded portions of that figure indicate classically forbidden re
t this energy. From the equivalent point of view of a particle moving in a two dimensional potentialV (q,Φ), it

s interesting that the motion remains trapped within the interaction region although there is no actual
nergy barrier preventing it from leaving. Finally, we note that asE is increased from zero at constantα the radius
f Void I shrinks, as described by(17), until it finally disappears at the critical valueE = α2/2, (corresponding t
= 1/

√
2), as inFig. 1(c). ForE ≤ 0 Void I fills the entire oscillator phase space, as inFig. 1(a).

Aside from these trajectories that remain within Void I, there are at any positive energy still other initial con
hat give rise to trajectories in which the particle remains in the interaction region. As we will show, howev
rajectories are then necessarily periodic. Indeed, supposer− > d − √

1 − d2. Then the circle of radiusr− does
ecessarily intersectD+, and successive rotations throughϕ−(r−) will take the orbit intoD+ whenever the rotatio
ngleϕ−(r−) is an irrational multiple of 2π. Thus for the orbit to remain inD−, it is necessary that the rotati
ngleϕ−(r−) = 2π,/k be rational, and hence that the orbit be periodic. Note thatk is then the period of the orb
where it is understood that the integerskand, are relatively prime). Furthermore, for such ak−periodic orbit to be
ossible, the phase points must somehow arrange to miss the intersection withD+ as they advance aroundD− in
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Fig. 7. The rescaled oscillator phase plane showing the disksD+ andD−. The shaded region indicates those initial conditions inD− which never
enter the intersectionSof D− andD+, and thus lead to trajectories in which the particle remains in the interaction region. These trajectories
make up what we have referred to as Void I, with the center ofD− corresponding to the center of that elliptic island.

angular steps of 2π,/k. Clearly, for this to happen, the angleδ(r−) subtended by the two intersection points of the
edge of the diskD+ and the circle of radiusr− on which the phase point moves must be smaller than the angular
separation between neighboring orbit points, i.e.,

δ(r−) < 2π/k.

For fixed points (k = 1), this condition on the angleδ(r−) is automatically satisfied, but for periodic orbits with
k ≥ 2, the condition imposes a bound onr− that prevents, e.g., periodic orbits of this type occuring too close to the
edge ofD−.

These arguments show that, in general, fixed points of the dynamics will occur at the radii

r,,− =
√

1 −
( a−

2π,

)2
, > a−/2π (18)

F
a the region
b

ig. 8. A partial trajectory in theq − Φ plane for a motion in which the particle remains confined to the interaction region. For this systemα = 1
ndE = 0.2. Shaded portions indicate energetically inaccessible regions of configuration space for a system with this energy, and
etween the vertical dashed lines indicates the interaction region as described in the text.
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for whichϕ−(r,,−) = 2π,. Note that this infinite sequence of valuesr,,− accumulates atr− = 1, i.e., at the edge of
D−. It follows that any phase point inSin = D−(E) \ D+(E) with r− = r,,− will be a fixed point of the dynamics.
The set of such points for a given value of, is an arc in the phase plane. InFig. 9, such an arc of fixed points with
, = 1 appears near the edge of Void I.

Now suppose for some value ofk > 1 andr− we haveϕ−(r−) = 2π,/k, andδ(r−) < 2π/k. In this situation
there will existkarcs of angular span 2π/k − δ(r−) centered at (d,0), each point of which is associated with a period
k orbit. Several arcs associated with higher order orbits of this type also appear inFig. 9, and can occasionally be
seen in some of our other phase plots. If the phase points were recorded atq = ±1, then each arc that appeared in
such a diagram would, by the arguments given above, lie outside of the intersection region withD−, which is at
the bottom of each phase diagram in this paper. However, because the phase points in these figures are recorded at
q = 0 whenp is positive, the angular position of each arc is rotated by an odd multiple ofϕ−(r−)/2 from where
it would be if recorded atq = ±1. This is due to the rotation of the oscillator phase point that occurs while the
particle travels from the edge of the interaction region back to the center, where the phase point is recorded. Since
this rotation is a function of the radiusr−, arcs of this kind can generally appear at any orientation in the phase
diagram.

On general arguments it is to be expected that periodic trajectories of this kind are parabolic. Indeed, the stability
matrix associated with a phase point lying on such an arc has a vanishing Lyapunov exponent along the direction
tangent to the arc itself, since neighboring points along the arc are periodic orbits of the same order. On the other
hand, in any neighborhood of such a point there will be initial conditions at radiir− just above or below the arc
that will not satisfy(18) for any values of, andk. Such points will give rise to trajectories in which the particle
eventually does pass outside the interaction region, to end up at the mercy of the alternating shearsT+ andT−,
which give rise to the chaotic portions of the phase diagram. Thus, in general, we expect arcs of periodic trajectories
of this type to be largely immersed in the chaotic parts of the phase diagram.

From the discussion above, which focuses on motions confined to the interaction region, one may wonder whether
there are counterparts to these motions which take place with the particle confined entirely outside the interaction
zone. In fact, it is easy to convince oneself that such motions are relatively few and far between. Indeed, for any
pointX0 in Sout, the circle on which it moves necessarily intersectsD−. Moreover, the angleδ+(r+) subtended by
the two intersection points of the edge of the diskD− and the circle of radiusr+ on which the phase point moves
is now greater thanπ. Hence, only period one orbits are able to avoid entering the interaction region. Such fixed
points will occur whenever the time the particle takes to traverse the non-interaction region is an integer multiple
of the oscillator period.

Fig. 9. Phase plot showing arcs of periodic orbits. In this figure one can see a single arc of fixed points lying just outside of Void I, and, moving
out from the center, sets of arcs corresponding to orbits of periodk = 3,2,3, and 2, corresponding, respectively, to, = 4,3,5, and 5.
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6. Other periodic orbits: Void II

Having thus classified all orbits in which the particle never leaves the interaction region, we now turn to the more
complicated situation in which the particle explores the entire configuration space available to it. Of course, it is
impossible to classify all such orbits, since they are precisely the ones that are responsible for the variety of intricate
structures that appear, as well as for the chaos. Nonetheless, some of the more prominent features of our figures can
be explained quantitatively. Indeed, we show in the analysis below that the fixed point at the centers of the elliptic
islands that we have referred to as Void II arise from a relatively simple type of orbit in which the particle traverses
each section of the ringexactly once per period. We also show that an infinite number of such fixed points exists,
and that most of them are hyperbolic, and thus unstable.

Conceptually, such an orbit can be viewed within the geometric picture developed above, as follows. Consider
a phase pointX0 on theζ-axis withinD− at an instant when the particle is at the center of the interaction region
and is moving to the right (SeeFig. 10(a)). When the particle reachesq = 1, the oscillator phase point has rotated
through an angleϕ−(r−)/2 about the center ofD− to the pointX1, as shown. The particle now leaves the interaction
region and travels around the ring toq = −1, while the oscillator phase point rotates through an angleϕ+(r+) to a
pointX2. For the particle to now re-enter the interaction region, the pointX2 must lie in the intersection regionS,
as shown inFig. 10(a). If, in addition, the system is to return to its original stateX0 when the particle arrives again
atq = 0, it is obviously necessary forX2 to fall on the circle of radiusr− on which it started, as inFig. 10(b). Thus,
all periodic orbits that traverse each section of the ring exactly once per period have verticesX1 andX2 that lie on a
“lozenge” structure of this type. Using relatively simple arguments, given below, we can locate the tops of all such
lozenge orbits and demonstrate in the process that they are infinite in number.

To proceed, we recall that any pointX1 which forms the top or bottom of a lozenge orbit can be be obtained by
rotating some point on the segment(d − 1, d + 1) through an angleϕ−(r−)/2. The locusΓ− of all such points is
depicted inFig. 11as a solid curve passing through the center ofD−. But any such pointX1 can also be obtained
by rotating some point on the segment (−√

1 − d2,
√

1 − d2) backwards in timethrough an angle−ϕ+(r+)/2. The
locusΓ+ of this set of points is depicted as a solid line passing through the center ofD+ in the same figure. It should
now be clear that the intersection points of these two curves locate all possible valuesX1 associated with periodic
orbits of this type. For eachX1 so located, the corresponding fixed pointX0 is obtained by rotatingX1 through
−ϕ−(r−)/2. Since these two curves intersect an infinite number of times, the number of such fixed points is, itself,
infinite. Indeed, the pointsX(∞)

1 andX(∞)
2 at the intersections of the edges ofD− andD+ are accumulation points

of lozenge tips. In addition, any point where either of the two curves plotted inFig. 11crosses the edge of the disk
in which it did not originate will also be an accumulation point of lozenge tips. As a result, it is clear that the points

Fig. 10. Motion on the disksD− andD+, of lozenge orbits associated with fixed points of the dynamics.
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Fig. 11. Intersection of the curvesΓ− andΓ+, described in the text, locating the tipX1 of a lozenge orbit. Each curve wraps an infinite number
of times around the edge of the disk in which it originates.

X
(∞)
0± with coordinates (1± d,0) are accumulation points for fixed points of the dynamics. As we will show shortly,

and as one might expect from the discussion of Section4, fixed points that occur too near the edge of either disk
(where the shear strengths diverge) will be unstable.

On the other hand, the fixed points at the centers of the elliptic islands visible inFig. 1(c)–(e),Fig. 2(a) and (c),
Fig. 3(c), andFig. 4(b) and (c) are clearly stable, and can therefore not be associated with an intersection ofΓ+
andΓ− that is too close to the edge of either disk. Based on this argument, the most reasonable candidate for such
a fixed point is associated with the first intersection ofΓ+ andΓ− encountered when moving outward alongΓ+,
starting from the origin. This intersection is readily computed numerically. For values ofE,L, andα appropriate to
our figures in which a Void II occurs, the results of such a calculation are tabulated inTable 1, and are indicated as
horizontal dashed lines in the associated figures. To numerical accuracy the tabulated values agree with the actual
locations of the centers of the type II Voids in those figures, supporting the basic picture developed above.

Let us now show how to predict in advance whether any particular intersection ofΓ+ andΓ− gives rise to a
stable or unstable fixed point. To this end, it is clearly sufficient to consider the stability of the evolution in the
neighborhood of the upper lozenge tip. Let�x1 and�x2 be the vectors, respectively, from the origin to the upper tipX1,
and to the lower tipX2, of some lozenge, and let�x′

i = �xi − �d be the corresponding vectors locating those points from
the center ofD−. By definition,�x2 = T+�x1, and�x1 = T−�x2, whereT+ andT− are the mappings associated with the
evolution of the system during one traversal of the corresponding region by the particle. Note thatT−T+�x1 = �x1. It
will therefore be sufficient to compute the Jacobian matrix ofT−T+ atX1. Because the pointsX1 andX2 are obtained

Table 1
Location and stability of some lozenge type fixed pointsX0 = (ζ0, η0) = (ζ0,0) appearing in the figures indicated

Figures ζ0 − d Tr[J−J+]

1(c) −0.546 −1.995
1(d) −0.389 −0.849
1(e) −0.306 −0.078
2(a) −0.346 −1.976
2(b) −0.053 −1.995
2(b) +0.878 −0.948
2(b) −0.864 +5.812
2(c) −0.017 −1.995
3(b) −0.575 −2.026
3
4
4

(c) −0.392 −0.363
(b) −0.514 −1.704
(c) −0.224 +0.384
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from one another by moving along arcs of constant radius from the centers ofD±, it follows thatr±(�x1) = r±(�x2),
ϕ+(�x1) = ϕ+(�x2) = φ, andϕ−(�x1) = ϕ−(�x2) = ψ. Specifically, this means that

�x1 = �d + R(ψ)(�x2 − �d) = T− �x2 �x2 = R(φ) �x1 = T+�x1

where the rotation matrix

R(θ) =
(

cosθ sin θ

− sin θ cosθ

)

induces a rotation in the clockwise sense through an angleθ. We compute first the Jacobian matrixJ+ of T+ atX1

J+ =
(

cosφ sin φ

− sin φ cosφ

)
+ φ′

r+

(
− sin φ cosφ

− cosφ − sin φ

)(
x1x1 x1y1

x1y1 y1y1

)

=
(

cosφ sin φ

− sin φ cosφ

)
− φ′

r+

(
cos (φ − π/2) sin (φ − π/2)

− sin (φ − π/2) cos (φ − π/2)

)(
x1x1 x1y1

x1y1 y1y1

)

= R(φ) − r+φ′R(φ − π/2) x̂1x̂1

wherex̂x̂ denotes the second rank tensor product of the unit vector ˆx with itself. Similarly, we consider the Jacobian
J− of T− atX2

J−

(
cosψ sin ψ

− sin ψ cosψ

)
+ ψ′

r−(�x2)

(
− sin ψ cosψ

− cosψ − sin ψ

)(
x′

2x
′
2 x′

2y2

x′
2y2 y′

2y
′
2

)

=
(

cosψ sin ψ

− sin ψ cosψ

)
− ψ′

r−(�x2)

(
cos (ψ − π/2) sin(ψ − π/2)

− sin (ψ − π/2) cos(ψ − π/2)

)(
x′

2x
′
2 x′

2y2

x′
2y2 y′

2y
′
2

)

′ ′ ′

T

o d
w e
o

S duct
= R(ψ) − r−ψ R(ψ − π/2)x̂2x̂2.

he trace of the product

J−J+ = (R(ψ) − r−ψ′R(ψ − π/2)x̂′
2x̂

′
2)(R(φ) − r+φ′R(φ − π/2) x̂1x̂1)

= R(φ + ψ) − r−ψ′R(ψ − π/2)x̂′
2x̂

′
2R(φ) − r+φ′R(ψ + φ − π/2) x̂1x̂1

+ r−r+ψ′φ′R(ψ − π/2)x̂′
2x̂

′
2R(φ − π/2) x̂x̂

f these two matrices determines the stability of the evolution in the neighborhood of the lozenge tipX1 associate
ith the orbit. The trace of the first term is obvious. To evaluate the second, use Tr[�x�y] = �x · �y, and the invarianc
f the trace of a product of operators under their cyclic permutation:

TrR(ψ − π/2)x̂′
2x̂

′
2R(φ) = TrR(φ)R(ψ − π/2)x̂′

2x̂
′
2 = Tr(R (φ + ψ − π/2) x̂′

2) · x̂′
2 = cos(φ + ψ − π/2).

imilarly, Tr[R(ψ + φ − π/2) x̂1x̂1] = cos(φ + ψ − π/2). The trace of the last term similarly reduces to the pro

Tr[R(ψ − π/2)x̂′
2x̂

′
2R(φ − π/2)x̂1x̂1] = (x̂′

2 · R(φ − π/2)x̂1)Tr[R(ψ − π/2)x̂′
2x̂1]

= (x̂′
2 · [R(φ − π/2)x̂1])(x̂1 · [R(ψ − π/2)x̂′

2]).
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To evaluate this we need to consider more carefully the geometry of the situation. Letθ− = ψ/2 andθ+ = φ/2 be
the interior angles adjacent to the base of the triangle connecting the centers ofD− andD+ to the pointX1. Note
that the sumθ+ + θ− ≤ π. The angleχ = π − θ+ − θ− opposite this base is the angle between the vectors�x1 and
�x1 − �d = �x′

1. So

x̂1 = R(π − θ+ − θ−)x̂′
1.

But a vector along ˆx′
2 is rotated into a vector along ˆx′

1 by a rotation throughφ = 2θ−, i.e., x̂′
1 = R(2θ−)x̂′

2, so

x̂1 = R(π − θ+ − θ−)R(2θ−)x̂′
2 = R(π − θ+ + θ−)x̂′

2.

This leads to

x̂1 · [R(ψ − π/2)x̂′
2] = x̂1 ·

[
R(

ψ

2
+ φ

2
− 3π/2)x̂1

]
= cos

(
ψ

2
+ φ

2
− 3π/2

)
= − sin

(
ψ + φ

2

)

and

x̂′
2 · [R(φ − π/2)x̂1] = x̂′

2 · [R(φ − π/2)R(π − θ+ + θ−)x̂′
2] = x̂′

2 ·
[
R

(
ψ

2
+ φ

2
+ π/2

)
x̂′

2

]

= cos

(
ψ

2
+ φ

2
+ π/2

)
= − sin

(
ψ + φ

2

)
.

Thus, for the lozenge evolution,

Tr[J−J+] = 2 cos(ψ + φ) − (r−ψ′ + r+φ′) sin(φ + ψ) + r−r+ψ′φ′ sin2
(
ψ + φ

2

)
(19)

or

Tr[J−J+] = 2 + (r−r+ψ′φ′ − 4) sin2
(
ψ + φ

2

)
− 2(r−ψ′ + r+φ′) sin

(
ψ + φ

2

)
cos

(
ψ + φ

2

)
. (20)
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rom this form it is first of all possible to prove, confirming our previous arguments, that fixed points ass
ith lozenge tips close to the edge of either disk (whereψ′ andφ′ diverge) are unstable. This is easily shown
< 1/

√
2. In that case, a little trigonometry shows that the angleχ associated with any lozenge tip near the boun

f S is acute, so thatπ ≥ (ψ + φ)/2 > π/2. Consequently, Tr[J−J+] ≥ 2, with equality only if sin(ψ + φ)/2 = 0,
o that the fixed point is hyperbolic or, at worst, parabolic. For this last case to occur the anglesψ/2 andφ/2 must add
p toπ, which can only happen ifΓ+ andΓ− intersect on the horizontal axis. In that case,φ/2 = π andψ/2 = 0,
r vice versa. It is not hard to convince oneself that, for any fixed value ofd, there exist arbitrarily large valu
f a− anda+ where such fixed points will appear. All other fixed point of this type withd < 1/

√
2 are, howeve

yperbolic.
Using the algorithm described above we have calculated numerically the location and stability, as indi

he value of Tr[J−J+], for the first intersection ofΓ+ andΓ− for the system parameters of a certain number o
gures. The results appear inTable 1. Comparison with the relevant figures shows that whenever|Tr[J−J+]| < 2
he associated fixed point is indeed the center of a Void II. ForFig. 3(b), this fixed point, computed to lie
− d = −0.575, has a trace with magnitude just greater than 2. It appears as the hyperbolic structure loca
oid I in that figure. InFig. 2(b), we have, in addition, computed the second and third intersection ofΓ+ andΓ−.
ne leads to a fixed point atζ − d = 0.878, which is stable, and appears at the center of a crescent shaped
t the top of that figure. The other occurs atζ − d = −0.864, but is unstable. It does not, therefore, give rise t
lliptic island, but lies right at the edge of Void II.
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Finally, although in general the location of the fixed point at the center of Void II must be determined numerically,
its behavior for large energy can be obtained from the limiting behavior of the dynamics asd, a+, anda− go
to zero. In this limit, denoting the location of the fixed point asX0 = (ηd,0), we note that the curvesΓ± are
well represented by straight lines in the neighborhood of the origin. The corresponding triangle bounded by the
segment [0, d] and Γ± then has a heighth = ηd tan a+ ∼ ηda+ = ηLd2/α as measured from the origin, and
h = (1 − η)d tan a− ∼ (1 − η)da− = (1 − η)d2/α as measured from (d,0), so that

ηd = 2d

2 + L
(21)

locates the corresponding fixed point on the segment [0, d]. This has a simple physical interpretation. At high
energies, when the particle is moving very fast, the fractional change in its speed as it enters and exits the interaction
region is small. In such a motion, the reduced oscillator coordinate oscillates about equilibrium positiond during
that fraction 2/(2 + L) of the time the particle is in the interaction region, and oscillates about the origin during that
fractionL/(2 + L) of the time that the particle is outside the interaction region. A time average of these two values
of the equilibrium position results in the location(21)of the fixed point in this high energy limit.

Having thus made our point that the most prominent features that appear in our phase plots can be explained
in terms of the simplest periodic orbits of the system, we point out that many other periodic orbits occur in which
the particle traverses the two sections of the ring more than once per period. Such orbits will then give rise to
the more complicated structures appearing, e.g. inFig. 5. We conjecture that a more complete analysis of those
orbits along lines similar to those developed in this paper, would allow a complete explanation of some of the more
anthropomorphic structures appearing in that figure.

7. Discussion and summary

The model we have introduced and studied in this paper clearly has certain similarities to a number of previously
studied dynamical systems, such as the kicked rotor, the Fermi accelerator, billiards, and the spring-pendulum.
Indeed, the study of the dynamics reduces in all these cases to the study of a return map on a suitably chosen
Poincaŕe section. The model presented here nevertheless differs in important ways from each of these previously
studied systems.
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Indeed, the kicked rotor and the Fermi accelerator describe externally perturbed nonconservative sys
ne degree of freedom, while the current model is closed, energy-conserving, and has two degrees of fr
ur model, although the particle gets “kicked” each time it reachesq = ±1, the kicks are neither periodic in tim
s in the rotor, nor are they imposed by an external agent, as is the case for both the rotor and the Fermi a

Billiards, of course, are closed conservative systems with two degrees of freedom as well, but trajec
illiards have the unusual property of being independent of particle energy, so that changing the energy
hange the statistical features of the dynamics. This is in sharp contrast to the behavior of the present
hich many of the interesting features that arise, do so as a result of changes in the energy of the sys
onditions in which the underlying potential is kept fixed. Moreover, the present system can be interpreted
f the Hamiltonian interaction between two otherwise separate mechanical systems. It should, therefore, b
se in understanding many problems for which that is an essential feature.

Another closed Hamiltonian system of that type is the spring-pendulum[8,9]. Like the current model, the sprin
endulum is a Hamiltonian system with two degrees of freedom, each of which has a simple descripti

reated on its own. Unlike the spring-pendulum, however, the present model has the advantage that the
etween the two sub-systems can be smoothly turned off in a way that allows the unperturbed dynamic

o be recovered, and thus may be more useful for understanding fundamental properties of interacting ind
ystems of this type. We note that a bifurcation analysis for the spring-pendulum was given in[9]. A similar analysis
pplied to our model would yield predictions on the motion and the shape of the elliptic islands that appe
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model as the parameters are changed, and could be an interesting direction for future study. Our emphasis here has
instead been on some unusual features of our model, that we now briefly recall.

We have argued that for suitable system parameters the system exhibits either a fully chaotic phase space, or a
mixed phase space in which only two regions occur. In one the motion is chaotic, and in the other it is completely
integrable with no secondary KAM structures (SeeFig. 1(b) and (c)). While we have explained the presence of
chaos in the model in terms of alternating shears similar to the kind that arise in linked twist maps, our conjecture
regarding the absence of secondary structures of finite measure in the chaotic sea for small energies is based largely
on numerical calculations over very small regions of phase space that have heretofore failed to detect any structure
in the chaotic region. We have not, however, given a rigorous proof that such structures do not emerge at small
enough length scales in phase space.

We note also that the sharp boundary that exists in this model between the chaotic and the completely integrable
parts of phase space should make it an interesting system on which to test current conjectures of quantum chaos
theory, in particular those pertaining to systems with a mixed phase space, and to the localization properties of
eigenfunctions on chaotic and completely integrable parts of phase space. While the clear-cut boundary of the
present model should facilitate such an analysis,[6,10] it does have the complication of an underlying potential that
has finite discontinuities in configuration space, and the matching problems that occur, in contrast, e.g., to billiard
systems, for which a number of efficient numerical techniques have been developed for solving the corresponding
Schr̈odinger equation[11].

Our own interest in the present system arose originally from a fundamental interest in Hamiltonian models
of transport and dissipation in deformable media. In many such systems, the medium through which a partic-
ular transport species moves can be modeled as an appropriate collection of harmonic oscillators. Among the
many questions that arise in such extended systems is, e.g., to what extent the presence of microscopic chaos,
or its absence, in the interaction of a particle with a single oscillator, manifests itself in the transport proper-
ties that emerge at long times after repeated interactions with many independent or mutually-coupled oscillators.
We view the present analysis as a step towards answering this and other questions related to systems of this
kind.
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