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UFR de Mathématiques et Laboratoire Painlevé
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Abstract

These notes contain crash courses on classical and quantum mechanics
and on semi-classical analysis as well as a short introduction to one issue
in quantum chaos: the semi-classical eigenfunction behaviour for quantum
systems having an ergodic classical limit. The emphasis is on explaining
the conceptual and structural similarities between the ways in which this
question arises in the study of arithmetic surfaces and ergodic toral au-
tomorphisms. The text is aimed at an audience of graduate students and
post-docs in number theory.
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1 Introduction

These notes are loosely based on four lectures I gave during the first week of
the Nato Summer School on Equidistribution in Number Theory, held at the
Université de Montréal in july 2005. My task was to provide the necessary
mathematics and physics background for the students to understand in which
sense the topics of the second week lectures by Z. Rudnick [10] on “The arith-
metic theory of quantum maps” as well as those by A. Venkatesh [11] on the
spectral analysis of the Laplace-Beltrami operator and by E. Lindenstrauss [7]
on quantum unique ergodicity for arithmetic surfaces can be seen as examples
of a more general set of problems, referred to as “quantum chaos.” In other
words, I had to explain that both deal with the links between a spectral prob-
lem (the quantum side) and a Hamiltonian dynamical system (the classical side)
naturally related to each other through an appropriate asymptotic analysis. For
that purpose, I provided a crash course in classical mechanics and one in quan-
tum mechanics, then gave a short introduction to semi-classical analysis, to end
with an introduction to quantum maps and a proof in that context of the main
equidistribution theorem in the field of quantum chaos, namely the Schnirelman
theorem for quantized ergodic toral automorphisms.
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Since an extensive introduction to these topics, at the beginning graduate
level, can already be found in [4], I will only briefly recall the material devel-
oped there. I will concentrate instead on developing some illustrative material
(concerning symmetries in particular) that I did not have the time to develop in
the actual lectures and that help to bring out the link between the two subjects
alluded to above. Omitted proofs can be obtained either by a combination of
matrix analysis, multivariable calculus and a little imagination, or are to be
found in [4] (or both). A recent update on what is known on equidistribution
for quantum map eigenstates is available in [5] and in the contribution of Z.
Rudnick in this volume [10]. Similarly, for the asymptotic behaviour of the
eigenfunctions of the Laplace-Beltrami operator, the interested reader can turn
to [12] and to the contribution of E. Lindenstrauss [7] in this volume.

2 A crash course in classical mechanics

2.1 Newtonian mechanics

According to Newton’s second law, that you may remember from high school,
“mass times acceleration equals force.” In other words:

mq̈(t) = F (q(t)), q(0) = q, q̇(0) = v. (1)

Here, the force F : Rn → Rn is given, as well as the mass m and the initial data
q, v ∈ Rn. The unknown in this equation is the motion of the system, namely
the curve t ∈ R 7→ q(t) ∈ Rn. In short, classical mechanics is about solving
coupled non-linear second order ordinary differential equations. In most cases
of interest, they are of a special type: the force is often conservative, meaning
that F (q) = −∇V (q) for a function V : Rn → R, called the potential. The use
of the term “conservative” is justified by the following simple result:

Proposition 2.1 Energy conservation Let

E : (q, v) ∈ Rn × Rn → 1
2
mv2 + V (q) ∈ R.

Let t ∈ R 7→ q(t) ∈ Rn be a solution to (1), then, for all t ∈ R,

E(q(t), q̇(t)) = E(q(0), q̇(0)).

The function E is called the energy of the system (it is the sum of the kinetic
and the potential energy) and the proposition states that the energy does not
vary in time for a solution of (1).

It is good to keep a few examples in mind. The first one is of great historic
importance and continues to attract considerable attention: it is the Kepler
problem. Here d = 3, V (q) = −GmM

‖q‖ , where M is the mass of the sun, and m

the one of the earth, and G is the gravitational constant. Solving (1) explicitly
can be done (while not trivial, it is standard . . . ) and leads to elliptic, parabolic
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or hyperbolic trajectories, depending on whether the energy is strictly negative,
identically zero, or strictly positive. This is a special case of a central potential:
V (q) = W (‖ q ‖). A second class of examples is provided by harmonic systems,
where V (q) = 1

2mq
T Ω2q, with Ω2 a positive definite n by n matrix. Now

Newton’s equation reads q̈ = −Ω2q. It is linear, and hence this time it is trivial
to solve immediately:

q(t) = cos Ωt q +
sinΩt

Ω
v.

In general, it is of course impossible to obtain explicit solutions, and one is
interested in characterizing the behaviour of the solutions, and in particular in
their asymptotic properties at large times t. This will obviously depend on the
type of potential one considers. For example, if V (q) → +∞ when |q| → +∞,
the motion is bounded, meaning that

sup
t∈R

|q(t)| ≤ C < +∞.

This is an easy application of energy conservation: indeed, for all t

V (q(t)) ≤ 1
2m

q̇(t)2 + V (q(t)) = E(q(0), q̇(0)). (2)

Now, since V tends to infinity with ‖ q ‖, this clearly implies (2). Such potentials
are said to be confining.

2.2 Hamiltonian mechanics and beyond

There exists an important reformulation of Newton’s mechanics, referred to as
Hamiltonian mechanics. Introduce the Hamiltonian

H : x = (q, p) ∈ Rn × Rn 7→ p2

2m
+ V (q) ∈ R, (3)

and observe that Newton’s equation (1) is equivalent to the first order system
of differential equations called Hamilton’s equations

q̇(t) =
p(t)
m

=
∂H

∂p
(x(t)), ṗ = −∇V (q(t)) = −∂H

∂q
(x(t)), (4)

with initial conditions x(0) = (q,mv). The variable p is referred to as the
momentum in the physics literature and the space of positions and momenta
is called phase space. Note that the Hamiltonian is nothing but the energy
expressed in terms of the position and the momentum, rather than the position
and the velocity. One defines the corresponding flow ΦH

t : R2n 7→ R2n by
ΦH

t (x) = (q(t), p(t)), where q(0) = q, p(0) = p. An obvious question that comes
to mind here is: “What is the big deal?” After all, it is hard to imagine that
this way of rewriting Newton’s equation will shed any light on how to actually
solve it. There exist at least three answers to this question. The first one is:
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“It’s pretty! Look!” Let me compute the time rate of change of an arbitrary
smooth function f : R2n → R (or to C) along a solution curve. This yields

d

dt
f(q(t), p(t)) = ∂qf(x(t))q̇(t) + ∂pf(x(t))ṗ(t)

= ∂qf(x(t))∂pH(x(t))− ∂pf(x(t))∂qH(x(t))
=: {f,H}(x(t)),

where I introduced the Poisson bracket

{·, ·} : (f, g) ∈ C∞(R2n)× C∞(R2n) 7→ {f, g} ∈ C∞(R2n),

with
{f, g}(x) = ∂qf(x)∂pg(x)− ∂pf(x)∂qg(x).

The reason I claim this is pretty is the following: thanks to (5)-(6) below,
C∞(R2n) now has the structure of a Lie-algebra:

{f, g} = −{g, f} (Anti-symmetry) (5)
{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 (Jacobi identity) (6)

{f, gh} = {f, g}h+ g{f, h} (Derivation) (7)

If nothing else, this is certainly intriguing, and, if you are a trained mathemati-
cian of any kind, you are likely to find this pretty. But if you are nevertheless
somewhat practically minded, you will be happy to know that this rewriting is
also useful. To give at least one indication why (there are many others), let’s
have a look at constants of the motion. A constant of the motion is a func-
tion f ∈ C∞(R2n) which is constant along the solutions of (4), meaning that
f ◦ ΦH

t = f for all t ∈ R. Clearly f is a constant of the motion iff {f,H} = 0.
Consequently H itself is always a constant of the motion, as we already saw.
Constants of the motion are a Good Thing: the more, the merrier! Indeed, if
f1, f2, . . . fk are constants of the motion, and c ∈ Rk, then the flow ΦH

t leaves
their common level surface

Σ(c) = {x ∈ R2n|fj(x) = cj , j = 1 . . . k}

invariant. So, if they are functionally independent (meaning the Jacobian matrix
∂ifj has rank k), the flow takes place on a (2n− k)-dimensional surface in R2n.
This constitutes an a priori simplification of the dynamical problem, which can
in this situation be thought of as a system of first order equations in 2n − k
variables, rather than in the original 2n variables. Now observe that it follows
immediately from the Jacobi identity that, if f and g are constants of the
motion, then so is {f, g}. So, the constants of the motion make up a Lie-
subalgebra of C∞

0 (R2n) and the Poisson bracket can even be thought of as a
machine for producing constants of the motion. As an example, let’s look at
central potentials: V (q) = W (‖ q ‖), q ∈ R3. Then the three components
`i(x) = (q∧p)i, i = 1 . . . 3 of the angular momentum vector are constants of the
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motion as is readily checked through a direct computation. Note furthermore
that they satisfy {`1, `2} = `3, plus cyclic permutation. This means that the
three components of the angular momentum vector form a representation of the
Lie algebra so(3) of the rotation group SO(3). This is directly related to the
fact that the Hamiltonian itself is invariant under the rotation group because
the potential is central, as I will further discuss below.

The third answer to the question above is that the Hamiltonian formulation
of classical mechanics has a number of very nice generalizations in various direc-
tions. First, any function f ∈ C∞(R2n) (not just the Hamiltonian) generates a
flow Φf

t : R2n → R2n as follows: Φf
t (x) = x(t) where t ∈ R 7→ x(t) ∈ R2n solves

q̇(t) =
∂f

∂p
(x(t)), ṗ = −∂f

∂q
(x(t)), x(0) = x = (q, p). (8)

I will refer to the function f as the generator of the flow Φf
t . It is clear that

Φf
t+t′ = Φf

t ◦ Φf
t′ so that the Φf

t define an R-action on R2n (meaning a group
homomorphism from the additive group of reals to the diffeomorphisms of R2n),
or a Hamiltonian dynamical system. Note that, for any g ∈ C∞(R2n), one has

d
dt
g ◦ Φf

t (x) = {g, f}(Φf
t (x)). (9)

For further reference, let me also mention that the maps Φf
t are symplectic:

Definition 2.2 A diffeomorphism Φ of R2n is symplectic if, for all f, g ∈
C∞(R2n),

{f ◦ Φ, g ◦ Φ} = {f, g} ◦ Φ.

The group of symplectic diffeomorphisms of R2n is denoted by Diffsympl(R2n).

For example, on R6, let f(x) = q1p2 − q2p1 = `3(x). Then

q̇1(t) = −q2(t), q̇2(t) = q1(t), ṗ1(t) = −p2(t), ṗ2(t) = p1(t), q̇3 = 0 = ṗ3.

Integrating this yields Φf
t (x) = (Rtq,Rtp), where Rt =

 cos t − sin t 0
sin t cos t 0
0 0 1


In other words, the third component of angular momentum generates rotations
about the third axis (and analogously for the two other components). Using
g = H and f = `i in (9), it is now clear why the rotational invariance of H in
the case the potential is central implies that each `i is a conserved quantity.

This is a general phenomenon of which we will see another example when
discussing the the Poincaré half plane below. A symmetry of a Hamiltonian H is
a symplectic diffeomorphism Φ so that H ◦Φ = H. If H admits a one-parameter
group of symmetries of the type Φf

t , for some f , then, as a result of (9), f is
a constant of the motion for H. In other words, if a Hamiltonian has many
symmetries, it also admits many constants of the motion.
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As another very simple example of a Hamiltonian flow, that will be useful in
what follows, consider on R2 the function f(q, p) = q2/2. Then q̇ = 0, ṗ = −q,
so q(t) = q, p(t) = p− tq and

Φq2/2
t (q, p) = (q, p− tq) =

(
1 0
−t 1

) (
q
p

)
.

More generally, any function f that is a homogeneous quadratic polynomial in
the variables qi, pi yields a linear flow.

A further and more sweeping generalization that finds its origin in Hamil-
tonian mechanics is symplectic geometry. Roughly, a symplectic manifold is a
manifold N so that the vector space C∞(N) is equipped with a composition law
{·, ·}, called a Poisson bracket, satisfying (5)-(7), as well as a non-degeneracy
condition: {f, g} = 0,∀g ∈ C∞(N) implies that f is a constant. It is a non-
trivial fact that, locally, there always exist coordinates (called Darboux coor-
dinates) on N so that the Poisson bracket takes on the form it has on R2n

(implying that symplectic manifolds are always even dimensional). A simple
example is the torus T2 = R2/Z2. Write x = (q, p) ∈ [0, 1[2 and define the
Poisson bracket as on R2. For example,

{cos q sin p, sin q cos p} = sin2 q sin2 p− cos2 q cos2 p.

For n = 1, the group SL(2,Z) (two by two matrices with determinant 1 and
integer entries) acts on T2 by symplectic automorphisms. These maps can have
rich behaviour, despite their apparent simplicity as I will discuss in more de-
tail below. In fact, we will be picking a fixed A ∈SL(2,Z) and iterate it, to
obtain a Z-action on T2 by symplectic transformations, or a discrete Hamilto-
nian dynamical system. This observation is the starting point for the interest in
quantum maps, that I will introduce in Section 5 and that are also the subject
of the contribution of Z. Rudnick in this volume [10].

A second class of important examples, in particular in connection with the
lectures of E. Lindenstrauss and A. Venkatesh is provided by the cotangent
bundles of arbitrary manifolds. Those carry a natural symplectic structure.
Moreover, the geodesic flow on a Riemannian manifold can be viewed as a
Hamiltonian flow on the cotangent bundle of this manifold. Rather than de-
veloping the general theory needed to understand the words appearing in the
preceding sentences, an endeavour for which I have neither the space nor the
inclination, I will work out the special case of the Poincaré half plane below,
which is the one of relevance in the present volume.

For extensive introductions to classical mechanics, including Hamiltonian
dynamics and symplectic geometry, I refer to [1] [2].

2.3 Classical mechanics on the Poincaré half plane

The Poincaré half plane is a Riemannian manifold, which is a manifold M
such that at each q ∈ M , the tangent space at q is equipped with a Euclidean
structure g(q). The function q → g(q) is called the Riemannian structure of M .
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This allows one to define notions such as the length of a curve, and of a geodesic,
which is a path of shortest distance between two points of the manifold. But
there is no need to know Riemannian geometry to understand the basic facts
about the Poincaré half plane. A few elementary and intuitive ideas from the
theory of two-dimensional surfaces in R3 suffice largely. In fact, the Poincaré
half plane can (locally) be identified with a surface of revolution, as I will explain
below.

First, to understand how geodesic motion shows up in mechanics problems,
let’s have a look at a particle of mass m constrained to move on a sphere of
radius a. One can think of the particle as being attached with a rigid rod of
length a to a fixed point, taken to be the origin O. I will assume no other
forces act on the particle than the pull of the rod, which is there to keep it
from flying off the sphere and which acts radially. I will in particular ignore the
gravitational pull on the particle, which is a reasonable thing to do when the
particle moves fast (or if the rod’s other end is attached to a spaceship drifting
through intergalactic space). The total force acting on the particle being radial,
Newton’s second law implies angular momentum ` = mq∧ v (Here the ∧ stands
for the vector product, not the GCD...) is conserved, as is readily seen, and
consequently, the particle motion takes place in a plane through the origin:
indeed, q(t) is now for all times t perpendicular to the fixed vector `. But the
intersection of a plane through O with a sphere is, by definition, a great circle.
Since moreover the force has no tangential components along the sphere, the
particle’s speed is constant. The particle therefore moves with constant angular
speed along a great circle. Now, what is special about great circles? Well, they
are precisely the geodesics or paths of shortest distance on the sphere: given
two points P and B on a sphere, the path of shortest distance from P to B
is the segment of the great circle obtained by intersecting the plane containing
OB and OC with the sphere. This is why a flight from Paris (latitude 48.50N,
longitude 2.20E) to Beijing (latitude 39.55N, longitude 116.20E) takes you over
Novosibirsk (55.04N, 82.54E).

This situation generalizes to arbitrary surfaces in R3: if a particle is con-
strained to move on a surface, and the only forces that act on it are perpendicular
to the surface, then one can show that Newton’s second law implies it moves with
constant speed along a geodesic of the surface (This takes some work to show).
An interesting special case is the one of a surface of revolution r = f(x3), where
(r, θ) are the polar coordinates in the x1x2-plane and f :]α,+∞[⊂ R+ → R+ is
a nice smooth function (0 ≤ α ≤ 1). Using (θ, x3) ∈ [0, 2π[×]α,+∞[ as coordi-
nates on the surface, and designating by vθ, v3 the corresponding components of
a general tangent vector (check your multivariable calculus), the kinetic energy
of a particle can now be written

E(x3, θ, v3, vθ) =
1
2
m

(
f(x3)2v2

θ + (1 + f ′(x3)2)v2
3

)
.

Let me introduce the new variable

s(x3) =
∫ x3

1

√
1 + f ′(ζ)2dζ
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which is the distance along the surface from the point (x3 = 1, θ) to the point
(x3, θ) provided x3 ≥ 1 and minus that distance otherwise. It is convenient to
use s as a coordinate instead of x3. Note that s is a strictly growing function
of x3. In terms of the new coordinates (s, θ), the energy becomes

E(θ, s, vθ, vs) =
1
2
m

(
g̃(s)2v2

θ + v2
s

)
,

where I introduced the function g̃ through the relation g̃(s(x3)) = f(x3).
In general, given a smooth surface in R3, one can always introduce local

coordinates q = (q1, q2) on it that run through an open set of R2. Correspond-
ingly, any tangent vector v to the surface at the point q has two components
v1, v2 ∈ R. In terms of these components, the Euclidean inner product between
two tangent vectors v, w at q can be expressed in the form

vT g(q)w

where g(q) is a positive definite symmetric matrix and the T stands for trans-
pose. For the surfaces of revolution above, with q1 = θ, q2 = s, this matrix
is

g(q) =
(
g̃(q2) 0

0 1

)
.

With this notation, the energy function can be rewritten E(q, v) = 1
2mv

T g(q)v.
A special case of particular relevance for us is the situation where g̃(s) = e−s.
The corresponding f(x3) is easily seen to be defined only for x3 ≥ 1, corre-
sponding to s ≥ 0 (So α ≥ 1). Now, changing coordinates one last time to
x = θ, y = es, one has, with z = (x, y), v = (vx, vy)

E(z, v) =
1
2
m(

v2
x + v2

y

y2
) =

1
2
mvT g(z)v, g(z) =

(
y−2 0
0 y−2

)
.

Now there is nothing to prevent me from extending the matrix valued function
g and hence E to a function on H × R2, where H = R × R+, equipped with
the Riemannian structure g(z) above is now, by definition, the Poincaré half
plane. The surface of revolution with f(x3) = e−s(x3), x3 ≥ 1 is obtained by
quotienting the region y ≥ 1 of the half plane by the action of n ∈ Z given by
(x, y) → (x+ 2πn, y).

Armed with these preliminaries, let me now show that the geodesic flow on
H, described in A. Venkatesh’s lectures, can be viewed as a Hamiltonian flow.
For that purpose, consider the following Hamiltonian function H on phase space
H× R2:

H : (z, p) ∈ H× R2 7→ 1
2
y2(p2

x + p2
y) =

1
2
pT g(z)−1p. (10)

The corresponding Hamilton equations of motion read

ẋ = y2px, ẏ = y2py, ṗx = 0, ṗy = −y(p2
x + p2

y).
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For further reference, remark that, taking second derivatives leads to

ẍ = 2ẏy−1ẋ = ẏy−1ẋ+ ẋy−1ẏ, ÿ = −y−1ẋ2 + ẏy−1ẏ. (11)

In view of the first two Hamilton equations above, the Hamiltonian is again
nothing but the energy expressed in terms of the momentum p rather than the
velocity (I put m = 1): p = g(z)ż. Remark also that the relation between the
momentum p and the velocity is now position dependent, unlike what happened
in (4). I claim that, given any solution (z(t), p(t)) of these equations, the curve
t→ z(t) is a geodesic on the Poincaré half plane. Since the latter are (Euclidean)
half circles centered on the x axis, proving this is equivalent to showing there
exists c ∈ R and a > 0 so that, for all t, (x(t)− c)2 + y(t)2 = a2 or, equivalently,
that (x(t) − c)ẋ(t) + y(t)ẏ(t) = 0. Solving for c, and expressing the result in
terms of px(t), py(t) yields:

c = x(t) + y(t)
py(t)
px(t)

.

So the curve t 7→ z(t) is a geodesic if and only if the function

C : (z, p) ∈ H× R2 7→ x+ y
py

px
∈ R

is a constant of the motion. But this is clearly the case since, as is readily
checked, {C,H} = 0, so that the result follows.

Note that we found two constants of the motion, C and px. Since their
Poisson bracket {C, px} = 1 is a constant, we don’t find a third functionally
independent constant of the motion this way. On the other hand, since we know
for example from A. Venkatesh’s lecture that the Poincaré half plane admits
the three dimensional PSL(2,R) as group of isometries, and since isometries
map geodesics into geodesics, we strongly suspect that the Hamiltonian ought
to admit three one-parameter groups of symmetries and therefore have three
functionally independent constants of the motion. To complete the Hamiltonian
description of the geodesic flow, this is what I will now prove.

I first need some preliminaries. Any diffeomorphism ϕ of H maps a curve
γ : I ⊂ R → H to a curve ϕ ◦ γ and hence the tangent vector γ̇(t) at γ(t) to the
tangent vector Dϕ(γ(t)) · γ̇(t). Consequently, it induces a map

ϕ∗ : (z, v) ∈ H× R2 7→ (ϕ(z), Dϕ(z) · v) ∈ H× R2.

The diffeomorphism ϕ is said to be an isometry of the Poincaré half plane if
it preserves angles between vectors and lengths of vectors, meaning that the
map Dϕ(z), which maps the tangent space at z to the one at ϕ(z), maps the
Euclidean structure g(z) at z to g(ϕ(z)) at ϕ(z):

Dϕ(z)T g(ϕ(z)) Dϕ(z) = g(z). (12)

Consequently, if ϕ is an isometry, then E ◦ ϕ∗ = E. Now, since Hamilton’s
equations identify a tangent vector v with a momentum vector p via p = g(z)v,
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ϕ also induces a map on phase space given by

ϕ∗ : (z, p) ∈ H× R2 7→ (ϕ(z), g(ϕ(z))Dϕ(z)g(z)−1p) ∈ H× R2. (13)

If ϕ is an isometry, it follows from (12) that

ϕ∗ : (z, p) ∈ H× R2 7→ (ϕ(z), (Dϕ(z))−T
p) ∈ H× R2. (14)

In that case clearly H ◦ϕ∗ = H, proving what I promised: an isometry induces
a symmetry for H. Also, as you can prove through a direct computation, ϕ∗ is
symplectic. Let me now show that to every one-parameter group of isometries
ϕt corresponds a constant of the motion. Explicitly, if X(z) := dϕt

dt |t=0
(z), then

ϕ∗t = Φf
t with f(z, p) := pTX(z) so that f is a constant of the motion since

H ◦Φf
t = H. To see this, simply compute, using (14) and multivariable calculus

d
dt
ϕ∗t (z, p)|t=0 = (X(z),

d
dt

(Dϕ−t(ϕt(z)))
T
p)|t=0

= (X(z),−∂zX(z)T p)
= (∂pf(z, p),−∂zf(z, p)).

We are now ready to apply this to the three one-parameter groups that generate
PSL(2,R):

g1(t) =
(

1 t
0 1

)
= etξ1 , g2(t) =

(
1 0
t 1

)
= etξ2 , g3(t) =

(
et 0
0 e−t

)
= etξ3

with

ξ1 =
(

0 1
0 0

)
, ξ2 =

(
0 0
1 0

)
, ξ3 =

(
1 0
0 −1

)
so that

[ξ1, ξ2] = ξ3, [ξ2, ξ3] = 2ξ2, [ξ3, ξ1] = 2ξ1. (15)

Now, any g =
(
a b
c d

)
acts on z = x+ iy via ϕgz = az+b

cz+d . Defining Xi(z) =

d
dtϕit|t=0(z), it is then easily checked that these vector fields are

X1(z) = (1, 0), X2 = (−(x2 − y2),−2xy), X3(z) = (2x, 2y).

Consequently, by what precedes, ϕ∗it = Φfi

t , where

f1(z, p) = px, f2(z, p) = −(x2−y2)px−2xypy, f3(z, p) = 2xpx +2ypy (16)

are now three functionally independent constants of the motion forH, a fact that
can also be checked by a simple direct computation revealing that {fi,H} = 0.
Note that C = f3

2f1
. Further simple computations reveal that

{f1, f2} = f3, {f2, f3} = 2f2, {f3, f1} = 2f1.
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so that the linear vector space spanned by the fi is a Lie-subalgebra of C∞(H×
R2) which is isomorphic to sl(2,R), the Lie-algebra of PSL(2,R), as is clear from
(15).

None of what precedes is an accident, of course, and if you suspect there must
be some general theory underlying all this, you are quite right. Very briefly,
the general setting is the following. Let (N, {·, ·}) be a symplectic manifold
and G a group. A symplectic action of G on N is a group homomorphism
φ : g ∈ G 7→ φg ∈ Diffsympl(N) (i.e. φg1 ◦ φg2 = φg1g2). Such actions are
particularly interesting when they provide symmetries of a given Hamiltonian
dynamical system ΦH

t : H ◦ φg = H, for all g ∈ G. An example is given by the
action of G = PSL(2,R) on N = H×R2 described above, with H as in (10). The
action φ is said to be transitive if there are no non-trivial G-invariant subsets
of N . In the previous example the action is NOT transitive since each surface
H(z, p) = E is PSL(2,R)-invariant; the action is transitive on each such surface,
though. Another example is the action of SO(3) on R6 that we encountered
previously. In that case the action is not transitive on the 5-dimensional energy
surfaces H(x) = E, for a given central potential V , since the orbits of the
action are given by the three dimensional surfaces q2 = R2, p2 = B2, qp = C,
for some R,B,C ∈ R. The presence of symmetries in a system is always a
source of simplifications: in particular, the added group theoretical structures
that it provides yield tools for understanding the dynamics. This is abundantly
clear from the lectures of A. Venkatesh, in particular.

2.4 Two extremes: complete integrability and ergodicity

As I pointed out from the start, we are generally interested in understanding
the behaviour of the solutions of Hamilton’s equations: their global proper-
ties and possibly their asymptotic behaviour in time. Two important classes
of systems are the completely integrable and the ergodic ones. Let ΦH

t be a
Hamiltonian flow on R2n. It is said to be completely integrable if there exist n
functionally independent constants of the motion f1 . . . fn, with {fi, fj} = 0.
Supposing they are compact, it can be proven that the level surfaces Σ(c) =
{x ∈ R2n|fj(x) = cj} are then n-dimensional tori on which the Hamiltonian flow
acts as a translation flow (Liouville-Arnold) [1] [2]. The motion in such systems
is very stable, in the sense that trajectories with nearby initial conditions only
drift apart very slowly (linearly in time). An example are the Hamiltonians
with a confining central potential: H(x) = p2

2m +W (‖ q ‖), q, p ∈ R3. One can
then take f1 = H, f2 = `2, f3 = `3, for example.

A Hamiltonian flow is said to be ergodic if a typical trajectory explores the
entire 2n− 1-dimensional energy surface ΣE . More precisely, given a typical
trajectory on the energy surface ΣE , the time it spends in any subset B of ΣE

is asymptotically equal to the relative size of that set in the full energy surface:

lim
T→∞

|{0 ≤ t ≤ T |x(t) ∈ B}|
T

=
|B|
|ΣE |

.
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The motion in this case can be (but need not be) very unstable: nearby trajec-
tories may drift apart exponentially fast. This is the case for the geodesic flow
on the hyperbolic surfaces as explained by A. Venkatesh. I will give another
example below.

These two situations are of course very different: the present notes will be
exclusively concerned with the second case.

The geodesic flow on the Poincaré half plane, viewed as a Hamiltonian flow
on the corresponding phase space, is completely integrable, as I showed above.
Note however that the surfaces H = E,C = c are not tori since they are not
compact: they are made up of all semi-circular orbits centered at the same point
c on the x-axis, and with the same energy. In fact, the dynamics is in that case
highly unstable. Now, suppose Γ is some lattice in PSL(2,R): you can then
quotient H × R2 by the ϕ∗g, g ∈ Γ. Since H ◦ ϕ∗g = H, the Hamiltonian passes
to the quotient, and since functions on the quotient can be seen as Γ-periodic
functions on H×R2, so does the Poisson bracket. As a result, the geodesic flow
on Γ\H is still a Hamiltonian flow, but it is no longer completely integrable!
Indeed, the functions fi are not Γ invariant and do not pass to the quotient. In
fact, the flow now becomes mixing, and hence ergodic as proven in one of A.
Venkatesh’s lectures. This proof requires a fair amount of advanced material and
preparation (in particular the representation theory of PSL(2,R)), and can not
be called trivial. In contrast, the simplest unstable, mixing and hence ergodic
Hamiltonian dynamical systems are discrete ones, to which I now turn.

2.5 Classical mechanics on the torus

Consider A ∈ SL(2,Z), | TrA |> 2. Then A has two real eigenvalues and
eigenvectors: Av± = e±γ0v±. As I already pointed out, A acts as a symplectic
map on T2 = R2/Z2, meaning

{f ◦A, g ◦A} = {f, g} ◦A.

It therefore defines a discrete Hamiltonian dynamical system by iteration. This
system is hyperbolic, meaning that for a.e. x, x′ ∈ T2, t ∈ N (not too large),

d(x, x′) ∼ ε⇒ d(Atx,Atx′) ∼ εeγ0t.

So nearby initial conditions are exponentially quickly separated from each other
by the dynamics. Note that this is also a feature of the geodesic flow on the
Poincaré half plane (and on its quotients by discrete subgroups Γ). This is
sometimes referred to as the “butterfly effect” and is considered a crucial feature
of any chaotic system. As a result of this, the maps are exponentially mixing :
∀f, g ∈ C∞(T2),

|
∫

T2
(f ◦At)(x)g(x)dx−

∫
T2
f(x)dx

∫
T2
g(x)dx |≤ CA,f ‖ ∇g ‖1 e−γ0t.

Contrary to what happens with the geodesic flow on the modular surface, this
is straightforward to show with a little Fourier analysis (see [4], for example).
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As a result, the map is also ergodic: for all f ∈ C∞(T2), for almost all x0 ∈ T2

lim
T→∞

1
T

T∑
t=1

f(Atx0) =
∫

T2
f(x)dx.

Here are some typical examples: the first is the so-called Arnold Cat Map,

A =
(

2 1
1 1

)
which belongs to the following family. For a, b ∈ N∗

Aa,b =
(

1 a
0 1

) (
1 0
b 1

)
= Φp2/2

a ◦ Φq2/2
−b =

(
1 + ab a
b 1

)
. (17)

Another family of examples is given by g ∈ N∗,

Ag =
(

2g 1
4g2 − 1 2g

)
.

Note that all these A act linearly on R2 and pass through the quotient by Z2

since they have integer entries. As dynamical systems on R2 they are already
unstable, but not ergodic. The analogy with the geodesic flow on the modu-
lar surface is therefore quite clear. In both cases one starts from an unstable
Hamiltonian dynamical system on a non-compact (infinite volume) space, and
then considers a compact (or at least finite volume) quotient of this space on
which the dynamics still acts symplectically, but is now exponentially mixing.

2.6 Summing up

From a rather abstract point of view, doing classical mechanics means studying
certain (discrete or continuous) symplectic dynamical system on a symplectic
manifold N , equipped with a Poisson bracket {·, ·}. Such a system is said to
be chaotic if it is exponentially unstable in a suitable sense. The geodesic flow
on the modular surface and the iteration of a hyperbolic SL(2,Z) matrix on
the torus are two examples of such systems. Models arising in real physical
problems tend to have a rather more involved behaviour, with parts of their
phase space where the motion is stable, and other parts where it is unstable (to
varying degrees). So, to conclude, let me say this. As a first ingredient towards
understanding the interest in and the link between equidistribution for quantum
maps on the torus and for the eigenfunctions of the Laplace Beltrami operator
on congruence surfaces, it is helpful to keep the following line of thinking in
mind. Suitably adapted, it applies in many other scientific endeavours as well,
and can be most helpful when writing introductions to scientific papers or grant
applications. It goes as follows. The dynamics of many physical systems is given
by a Hamiltonian flow ΦH

t on R2n. Since physics is obviously important, it is
therefore of great value to study Hamiltonian flows Φf

t on arbitrary symplectic
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manifolds. Since in such generality, only rather soft general statements can be
made, it is of interest to understand relevant and tractable examples, such as
geodesic flows on Riemannian manifolds, which already display a rich variety
of behaviour, even if their physical pertinence is perhaps not totally clear. But
since even this is often still very hard, one can hope to get insight in various issues
by studying particular such manifolds, or, simpler yet, discrete Hamiltonian
dynamical systems, meaning iterations of a fixed map Φ, for example an element
of SL(2,Z) on T2.

3 A crash course in quantum mechanics

3.1 Schrödinger’s quantum mechanics

Quantum mechanics is a physical theory that was developed in the first three
decades of the twentieth century to deal with a number of issues in atomic
physics that could not be dealt with using classical mechanics. I will present
the theory here in a nutshell, glossing over both mathematical and physical
subtleties. For some more detail, you may consult [4] where you will find further
references if you want to get serious.

According to quantum mechanics, if one wants to study the motion of a
particle in a potential V : R3 → R, one should not solve Newton’s equation nor
Hamilton’s equation, but the Schrödinger equation:

i~
∂ψt

∂t
(y) = − ~2

2m
∆ψt(y) + V (y)ψt(y), ψ0 = φ, ‖ φ ‖= 1.

Here ~ is a physical constant called Planck’s constant (10−34kgm2/s) and the
unknown is the function t ∈ R 7→ ψt ∈ L2(R3,C; dy). One calls ψt the wavefunc-
tion of the particle at time t and refers to L2(R3) as the quantum state space or
the Hilbert space of states. It contains all information about the particle’s state.
It therefore “replaces” (q(t), p(t)), which played this role in classical mechanics.
Now this seems like a crazy idea: how can a complex valued function be used to
describe the motion of a particle? According to quantum mechanics, to extract
information about the particle from the wavefunction, one needs to proceed as
follows. First, the probability to find the particle at time t inside a set B ⊂ R3

is
∫

B
| ψt |2 (y)dy and the probability that its momentum falls inside some set

C ⊂ R3 is
∫

C
| ψ̃t |2 (p)dp, where ψ̃t is the Fourier Transform of ψt:

ψ̃t(p) =
1

(2π~)3/2

∫
R3

e−i px
~ ψt(y)dy.

In particular, the mean position and momentum of the particle are∫
R3
yj | ψt |2 (y)dy,

∫
R3
pj | ψ̃t |2 (p)dp.

Note that this makes sense since it is readily checked that the Schrödinger
equation preserves the L2-norm, so that |ψt(y)|2 does indeed define a probability
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density. By the Plancherel identity, the same is then true for |ψ̂t(p)|2. Since you
may still find this strange, and be sceptical as to why this would have anything
to do with the motion of a particle in a potential, let’s try to demystify this.
Introduce the following operators on (a suitable dense subspaces of) L2(R3,dy):

Pjψt(y) =
~
i
∂ψt

∂yj
(y), Qjψt(y) = yjψt(y).

Then
〈Qj〉t := 〈Qjψt, ψt〉 = 〈ψt, Qjψt〉 =

∫
R3
yj | ψt |2 (y)dy

and
〈Pj〉t := 〈Pjψt, ψt〉 = 〈ψt, Pjψt〉 =

∫
R3
pj | ψ̃t |2 (p)dp

are the mean position and momentum. So the mean position and momentum
can be written as matrix elements of certain self adjoint operators. Here

〈φ, ψ〉 :=
∫

R3
φ(y)ψ(y)dy.

Moreover, the “Canonical Commutation Relations” hold, namely

[Qj , Pk] = i~δjk.

Now, if one defines Ĥ = P 2

2m + V (Q) one can rewrite the Schrödinger equation
as

i~∂tψt = Ĥψt, ψ0 = φ.

Since, for all φ, ψ ∈ L2(R3,dy), 〈ψ, Ĥφ〉 = 〈Ĥψ, φ〉, you can solve it through
ψt = e−

i
~ tĤφ. Consequently

d

dt
〈ψt, Qjψt〉 = 〈∂tψt, Qjψt〉+ 〈ψt, Qj∂tψt〉

=
1
i~
〈ψt, [Qj , Ĥ]ψt〉 =

1
m
〈ψt, Pjψt〉,

and
d

dt
〈ψt, Pjψt〉 =

1
i~
〈ψt, [Pj , Ĥ]ψt〉 = −〈ψt,∇jV (Q)ψt〉.

Those equations are called the Ehrenfest equations. They should remind you
of Hamilton’s formulation of Newton’s equation q̇ = p/m, ṗ = −∇V (q). They
can be paraphrased as saying that the mean momentum equals the time change
of the mean position and that the time change of the mean momentum equals
the mean force. Beware however: whereas Hamilton’s equations are a system of
ordinary differential equations for the unknown t 7→ (q(t), p(t)), the Ehrenfest
equations

d

dt
〈ψt, Qjψt〉 =

1
m
〈ψt, Pjψt〉,

d

dt
〈ψt, Pjψt〉 = −〈ψt,∇jV (Q)ψt〉.

15



are not in general a system for t 7→ (〈Q〉t, 〈P 〉t)! Indeed, in general

〈ψt,∇jV (Q)ψt〉 =
∫

R3
∇jV (y)|ψt(y)|2dy 6=∇jV (〈ψt, Qjψt〉).

The mean force is not equal to the value of the force at the mean position, a
fact we are used to from probability theory. A notable exception is the case of
a harmonic potential V (q) = 1

2q
T Ω2q. Then

d

dt
〈ψt, Qjψt〉 =

1
m
〈ψt, Pjψt〉,

d

dt
〈ψt, Pjψt〉 = −Ω2

jk〈ψt, Qkψt〉.

The mean position and momentum then follow the classical trajectories of the
system in phase space. In particular

〈Q〉t = cos Ωt〈Q〉0 +
sinΩt

Ω
〈P 〉0.

The moral of this story is that quadratic Hamiltonians, which give rise to a lin-
ear classical dynamics, are particularly simple, even in quantum mechanics! In
general however, to study the time evolution of the quantum system means solv-
ing the Schrödinger equation directly. Since it is a partial differential equation,
this is not an easy task.

How does one go about that task? Since Ĥ = Ĥ(~) is self adjoint, an obvious
guess is to look for an orthonormal basis of eigenfunctions of Ĥ(~):

Ĥ(~)ψ~
n = En(~)ψ~

n, then ψt =
∑

n

e−
i
~ En(~)t〈ψ~

n, φ〉ψ~
n.

Such a basis exists if V (q) → +∞ as q → ∞. If you have enough information
about the ψ~

n and the En(~), you can then hope to obtain information about

ψt =
∞∑

n=0

e−
i
~ En(~)t〈ψ~

n, φ〉ψ~
n.

Of course, unless V is quadratic and in a few other special cases, it is impos-
sible to compute the eigenfunctions and eigenvalues explicitly. Studying the
behaviour of the spectrum En(~) and of the eigenfunctions ψ~

n then leads to a
wealth of interesting and hard problems.

One interesting question is the asymptotic behaviour along sequences En(~)
that converge to a fixed value Ec as ~ goes to zero: this is part of a field
called semi-classical analysis, for which specific techniques have been developed
and to which I turn in the next section. It turns out that the behaviour of
the eigenfunctions and of the eigenvalues is in that limit determined by the
properties of the Hamiltonian flow of H(q, p) = P 2

2m +V (q) on the energy surface
H(q, p) = E.

To sum up, let me say this. In quantum mechanics the time evolution of a
system is no longer given by a Hamiltonian flow ΦH

t on a symplectic manifold
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(the classical phase space), but by a unitary flow Ut = e−
i
~ Ĥt on a complex

Hilbert space H (the quantum state space). Whereas the symplectic flow is gen-
erated by a function H, the unitary flow is generated by a self-adjoint operator
Ĥ. This is one example of a more general analogy between quantum and classi-
cal mechanics. Here is another one. Recall that the rotations Rt about the third
axis are generated by `3 = q1p2 − q2p1. Consider now the self-adjoint operator
L3 = Q1P2 −Q2P1. It is child’s play to check that it generates a unitary group
as follows:

e−itL3ψ(y) = ψ(R−ty).

Similarly
e−ia·Pψ(y) = ψ(y − a),∀a ∈ R3.

So rotations and translations act by unitary operators on H and their generators
are functions of the position and momentum operators in complete analogy with
the situation in classical mechanics.

In the previous example, H = L2(R3), but other situations arise. A typical
example, beyond the ones given, is

H = L2(M,dvolg), Ĥ = −~2∆g .

Here (M, g) is a (compact) Riemannian manifold and ∆g the Laplace-Beltrami
operator on it. In this case also, the asymptotic behaviour of the eigenvalues
and of the eigenfunctions is sensitive to certain statistical properties of the
Hamiltonian flow generated by H(q, p) = 1

2p
T g(q)−1p, i.e. of the geodesic flow.

This is certainly not obvious a priori, but is the subject of the lectures of E.
Lindenstrauss and A. Venkatesh. In the next subsection, I will show briefly, by
developing the example of the half plane somewhat, why one may expect such
a link between the geodesic flow and the properties of the eigenfunctions of the
Laplace-Beltrami operator.

But one can also consider simpler examples, where the quantum Hilbert
space is finite-dimensional and the quantum dynamics is no longer a unitary
flow, but is replaced by the iteration of a fixed unitary map (so you obtain a
Z-action, rather than an R-action). This will be the subject of Section 5 and
the contribution of Z. Rudnick in this volume. In that case, as we shall see,
the semi-classical limit is one in which the dimension of the finite dimensional
Hilbert spaces tends to infinity. As a side remark, let me point out that in
quantum computing, quantum cryptography and quantum information theory,
one almost exclusively deals with finite dimensional Hilbert spaces (the N -fold
tensor product of C2 with itself): a computation is then a certain product of
unitaries.

3.2 Quantum mechanics on the Poincaré half plane

Suppose now that, armed with the insights of the previous sections, you had
to (re)invent the quantum mechanics of a particle moving on the Poincaré half
plane. How would you proceed? First, you would need an appropriate Hilbert
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space. A reasonable choice is to take L2(H, y−2dxdy), since the Riemannian
volume element on H is

√
detg(z)dxdy = y−2dxdy. But how to define the

appropriate quantum mechanical Hamiltonian? Pushing the analogy with the
previous section, one is tempted to introduce operators X and Y , of multipli-
cation by x and y respectively, and Px = ~

i ∂x, Py = ~
i ∂y, and then to define,

inspired by (10):

Ĥ =
1
2
Y 2(P 2

x + P 2
y ) = −1

2
y2(∂2

x + ∂2
y).

With this choice, Ĥ = − 1
2~2∆H, where ∆H is the Laplace-Beltrami operator on

H. Note that, with this choice, Py is not a self-adjoint operator, but Ĥ is, as
is readily checked. The corresponding Schrödinger equation becomes i~∂tψt =
Ĥψt.

Of course, as before, we want to interpret |ψt|2(z) as a probability density
so that

〈X〉t :=
∫

H
x|ψt|2(z)y−2dxdy, 〈Y 〉t :=

∫
H
y|ψt|2(z)y−2dxdy,

are the mean values of the coordinates of the particle. A simple computation,
as in the derivation of the Ehrenfest equations, shows that if ψt solves the above
Schrödinger equation, then, first of all,

〈Vx〉t :=
d
dt
〈X〉t = 〈Y 2Px〉t, 〈Vy〉t :=

d
dt
〈Y 〉t = 〈Y 2Py〉t.

Note that both “velocity operators” Vx = Y 2Px and Vy = Y 2Py are self-adjoint.
Furthermore

d2

dt2
〈X〉t = 〈VxY

−1Vy + VyY
−1Vx〉t = 〈2VyY

−1Vx + i~Vx〉t,

and
d2

dt2
〈Y 〉t = 〈− 1

Y
V 2

x + VyY
−1Vy〉t.

Again, comparing these last equations to (11) it is clear that the mean acceler-
ation of the quantum particle obeys equations that bear a striking resemblance
to the geodesic equations of motion on the Poincaré half plane. This begins
to explain why the properties of the unitary group e−

i
~ Ĥt and therefore of the

eigenfunctions of Ĥ are influenced by properties of the geodesic flow. This influ-
ence is most striking asymptotically for small values of ~, as will become clearer
in the following sections.

Let me end this section by a short discussion of the symmetries of the Hamil-
tonian on the quantum level. Let me first point out that, with the above choice
of Hilbert space, the operators

U(g)ψ(z) = ψ(ϕ−1
g (z)), g ∈ PSL(2,R)
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are unitary, as is readily checked. This means the isometries of the Poincaré
half plane, which are symmetries of the classical dynamical system, are realized
by unitaries in the quantum Hilbert space. This is completely analogous to the
representation of the Euclidean group on L2(R3,dy), briefly mentioned in the
previous subsection. In addition, one readily checks that

U(etξj ) = e−itFj , F1 = Px, F2 = −(X2−Y 2)Px−2XY Py, F3 = 2(XPx+Y Py),

which is to be compared to (16). Moreover, the Fj are constants of the motion
since [Ĥ, Fj ] = 0 as a consequence of U(g)∗ĤU(g) = Ĥ, for all g ∈ SL(2,R).

4 Two words on semi-classical analysis

It was Dirac who pointed out the amazing analogy between {qj , pk} = δjk and
1
i~ [Qj , Pk] = δjk. This suggests that in quantum mechanics the Lie-algebra of
operators on the Hilbert space L2(Rn) (under the usual commutator of oper-
ators) replaces the Lie-algebra of smooth functions on phase space R2n that
appears in Hamiltonian mechanics. In classical mechanics the observables are
represented by functions on phase space, in quantum mechanics by operators on
a Hilbert space, as we saw on some examples. So a natural question is whether
there exists a Lie-algebra homomorphism between a suitable space of functions
Fn(R2n) on R2n, including, say all polynomials, and the operators on L2(Rn).
More precisely, does there exists a linear map

Op : f ∈ Fn(R2n) ⊂ C∞(R2n) → Op(f) : D ⊂ L2(Rn) → D ⊂ L2(Rn),

such that
1
i~

[Op(f),Op(g)] = Op({f, g}),

and such that Op(qj) = Qj ,Op(pj) = Pj , and Opf = (Opf)∗? It turns out
that such a map does not exist, if Fn(R2n) contains the space of all polynomials
(Groenewold-Van Hove) [2] [4]. But a map having almost those properties does
exist. It was proposed by Weyl and is called the Weyl quantization or Weyl
symbol calculus. It is defined as follows. For any f ∈ C∞(R2n) (of at most
polynomial growth), define its Fourier transform f̃ by

f(q, p) =
∫

R2n

f̃(a)e−
i
~ (a1p−a2q) da

(2π~)n
.

Then define the Weyl quantization of f by

OpW(f) =
∫

R2n

f̃(a)e−
i
~ (a1P−a2Q) da

(2π~)n
.

Note that this is an operator since

U(a) := e−
i
~ (a1P−a2Q)
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is. Of course, to give a precise mathematical meaning to the expression for
OpW, one needs to say in which sense the integral converges, but I will only
need this formula when f is Z2-periodic, in which case that is a trivial matter
to which I will come back in the next section. Then

1
i~

[OpW (f),OpW (g)] = OpW ({f, g}) +O(~),

and there is no error term as long as f and g are polynomials of degree at most
two in the qj and the pj . Quite explicitly, one has for example for f(q, p) = h(q),
respectively g(q, p) = k(p)

OpW (f) = h(Q) OpW (g) = k(P ).

and
OpWqjpj =

1
2
(QjPj + PjQj).

A crucial, all important property of the Weyl quantization is the so-called
Egorov theorem, of which I will give the following approximate statement. For
all f, g ∈ C∞(R2n) (of at most polynomial growth), one has, for all t ∈ R

e
i
~ OpW(g)tOpW(f)e−

i
~ OpW(g)t = OpW(f ◦ Φg

t ) +Ot(~)

Moreover, if g is a quadratic function, the error term vanishes.
To see why this is useful, note that OpWH = Ĥ if H(q, p) = p2

2m + V (q).
So, since the solution ψt of the Schrödinger equation i~∂tψt = Ĥψt with initial
condition ψ0 = φ is ψt = e−

i
~ Ĥt φ, we find that

〈ψt,OpW(f)ψt〉 = 〈φ,OpW(f ◦ ΦH
t )φ〉+Ot(~).

This strongly suggests that, if we know enough about the classical evolution
ΦH

t appearing in the right hand side, we can infer from it information about the
quantum evolution in the left hand side, in the limit of small ~. This is indeed
correct and at the core of all semi-classical analysis about which much more can
be learned from [9] [8]. I will illustrate one aspect of this general philosophy in
the remaining section.

5 Quantum mechanics on the torus

Let us now turn to the situation where the classical dynamics is a Z action on
T2, obtained by iterating a fixed element A ∈ SL(2,Z) and address the following
questions: What is the quantum Hilbert space of states? And the quantization
of observables? And the dynamics?

Since the system has a two-dimensional phase space, it is reasonable to
expect to describe the quantum states with wavefunctions ψ(y) of one variable.
But since the phase space is a torus, one expects that the wavefunctions must be
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periodic ψ(y − 1) = ψ(y), as well as their Fourier transforms: ψ̃(p− 1) = ψ̃(p).
This intuition leads to the following definition. With

U(a)ψ(y) = e−
i
~ (a1P−a2Q)ψ(y) = e−

i
2~ a1a2e

i
~ a2yψ(y − a1),

define
H~ = {ψ ∈ S ′(R) | U(1, 0)ψ = ψ = U(0, 1)ψ}.

Now, these spaces are trivial (I mean, zero-dimensional), unless there exists a
positive integer such that 2π~N = 1. So this will be assumed to be the case
from now on. The semi-classical limit ~ → 0 therefore becomes N → +∞. The
elements of H~ are easily described:

ψ ∈ H~ ⇒ ψ(y) =
1√
N

∑
`∈Z

c`δ(y −
`

N
); c`+N = c`.

Introducing the vectors (j ∈ Z)

ej =

√
1
N

∑
n∈Z

δ j
N +n,

this can be written

ψ =
N∑

j=1

cjej

which allows one to identify H~ with CN . This will be exploited in the lectures
of Z. Rudnick.

As for the quantization of observables, one simply uses the Weyl quantization
introduced in the previous section. For f ∈ C∞(T2), x = (q, p) ∈ T2, write

f(x) =
∑
n∈Z2

fne−i2π(n1p−n2q).

The Weyl quantization of f can now be written

OpWf =
∑
n∈Z2

fne−i2π(n1P−n2Q) =
∑
n∈Z2

fnU(
n

N
) : H~ → H~.

The action of the phase space translation operators U( n
N ) on H~ is very simple

on the above basis ej . Again, to make the link with Z. Rudnick’s lectures, let me
write it out in some detail. First of all, one checks that, for n = (n1, n2) ∈ Z2,

U(
n

N
) = (−1)

n1n2
N Tn1

1 Tn2
2 ,

where T1 = U( 1
N , 0), T2 = U(0, 1

N ). Furthermore

T1ej = ej+1, T2ej = ei2π j
N ej .
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Up to a global normalization, the Hilbert space structure on H~ is uniquely
determined by the requirement that T1, T2 act unitarily, which implies that the
ej are mutually orthogonal and all have the same norm. The normalization is
fixed by choosing them to be normalized. Note that any operator commuting
with both T1 and T2, or, equivalently, with all U( n

N ), is easily seen to be a
multiple of the identity.

You will find the same results in Z. Rudnick’s lectures, with (of course!) a
slightly different notation: what he calls Q̂, I have called T2 and what he calls
P̂ , I called T ∗1 .

It remains to define the quantum dynamics, which ought to be a unitary map
on H~, the so-called quantum map. Let’s treat the examples in (17). Defining
(following Schrödinger!)

M(A) = e−
i

2~ aP 2
e

i
2~ bQ2

,

it is easy to check that, provided a and b are even, for all t ∈ Z,

M(A)H~ = H~ and M(A)−t OpWf M(A)t −OpW(f ◦At) = 0.

This is a simple case of the EGOROV theorem, and there is no error term in ~
because the dynamics is linear. A similar construction works for all hyperbolic
elements of SL(2,Z) as explained in [4] [10].

To sum up, M(A) is the quantum map we wish to study. It is naturally
related to the discrete Hamiltonian dynamics on T2 obtained by iterating A
through the above version of the Egorov theorem. It acts on the N dimensional
spaces H~ and we are interested in the behaviour of its eigenfunctions and
eigenvalues in the N →∞ limit:

M(A)ψ(N)
j = eiθ

(N)
j ψ

(N)
j , j = 1 . . . N.

I now finally have all the ingredients needed to state the basic result on the
eigenfunction behaviour of classically ergodic systems, the so-called Schnirelman
theorem, and thereby to link these lectures to the title of the school: equidistri-
bution.

Theorem 5.1 [3] For “almost all” sequences ψN ∈ H~, so that M(A)ψN =
eiθNψN ,

〈ψN ,OpWfψN 〉
N→+∞→

∫
T2
f(x)dx, ∀f ∈ C∞(T2). (18)

For a simple proof of this result, and a precise explanation of what is meant
by the “allmost all” in its statement, I refer to [4] or [10]. Here I just want to
explain in which sense this can be seen as an equidistribution result. For that
purpose, note that, given ψN ∈ H~, one can consider the map

µN : f ∈ C∞(T2) → 〈ψ,OpWfψ〉 ∈ C
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as a distribution on the torus. They are referred to as the Wigner distributions
of the ψN . Formally, one often writes

µN (f) =
∫

T2
dx WN (x)f(x),

but the Wigner distributions are never functions, they are in fact sums of Dirac
delta measures concentrated at the points (m1/2N,m2/2N), 0 ≤ m1,m2 < 2N
on the torus.

The Schnirelman theorem can therefore be paraphrased as saying that (al-
most all) those Wigner distributions µN converge to the Lebesgue measure:
in other words, they equidistribute. This is the precise meaning of the much
used phrase: “the eigenfunctions equidistribute in phase space.” Very formally,
WN (x) → 1, but of course this is not a pointwise limit. Note that this equidis-
tribution is a reflection of the ergodicity of the underlying classical dynamical
system as will be abundantly clear from the proof of the theorem, should you
read it.

An analogous theorem for arithmetic surfaces can be found in the contribu-
tion of E. Lindenstrauss in this volume. The similarities with the above theorem
(which is more recent) should be obvious. If they aren’t, I will have done a bad
job.

The Schnirelman theorem invites an obvious interrogation. Is the “almost
all” in its statement an artifact of the proof or do there exist sequences of eigen-
functions for which the Wigner functions do not converge to Lebesgue measure?
It was shown in [6] that there do exist such sequences. For an overview of the
situation as it is understood today, I refer to [5] as well as to the contribution
of Z. Rudnick in this volume. The analogous question for arithmetic surfaces
will be addressed by E. Lindenstrauss.

Number theory has played no role in my discussion. Nevertheless, it is
present in the problem at hand, and it provides tools that can in particular be
used to analyze the question raised in the previous paragraph as will be made
clear in the lectures of Z. Rudnick .
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