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Abstract. Let M be a smooth manifold and X a closed subset of M . In
this paper, we introduce a natural condition of moderate growth along X
for a distribution t in D′(M \X) and prove that this condition is equiva-
lent to the existence of an extension of t in D′(M) generalizing previous
results of Meyer and Brunetti–Fredenhagen. When X is a closed sub-
manifold of M , we show that our notion of moderate growth coincides
with the weakly homogeneous distributions of Meyer defined in terms
of scaling. Then using the whole analytical machinery developed, we
give a simple existence proof of perturbative quantum field theories on
Riemannian manifolds.
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1. Introduction

Let us start with a simple example which is discussed in [29, Example 9 p. 140]
and actually goes back to Hadamard. We denote by Θ the Heaviside function
(the indicator function of R≥0), consider the function x−1Θ(x) viewed as a
distribution in D′(R \ {0}). Obviously, the linear map

ϕ 7−→
∫ ∞

0

dx
ϕ(x)

x
(1.1)

is ill-defined if ϕ(0) 6= 0 since the integral
∫∞

0
dx
x diverges.

However, the integral
∫∞

0
dxx−1ϕ(x) converges if ϕ(0) = 0 and an ele-

mentary estimate shows that x−1Θ(x) defines a linear functional on the ideal
of functions xD(R) vanishing at 0. A test function ϕ ∈ D(R) being given,
note that the following expression

lim
ε→0

∫ 1

ε

dx
(ϕ(x)− ϕ(0))

x
+

∫ ∞
1

dx
ϕ(x)

x
(1.2)
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converges.
We thus define a renormalized distribution:

x−1
+ = lim

ε→0

∫ ∞
ε

dxx−1 + log(ε)δ (1.3)

where we subtracted the distribution log(ε)δ supported at 0, which becomes
singular when ε → 0, called local counterterm. The renormalized distribu-
tion x−1

+ ∈ D′(R), called finite part of Hadamard, extends the linear func-

tional x−1Θ(x) ∈ (xD(R))
′
. Our example shows the most elementary situa-

tion where we can extend a distribution by an additive renormalization.
In what follows, M will always denote a smooth, paracompact mani-

fold. In our paper, motivated by the renormalization of quantum fields on
Riemannian manifolds, we investigate the following problem which has sim-
ple formulation: we are given a manifold M and a closed subset X ⊂ M .
We define a natural growth condition on t ∈ D′(M \X) which measures the
singular behaviour near X and we address the following problems:

1. can we find a distribution t ∈ D′(M) s.t. the restriction of t on M \X
coincides with t,

2. can we construct a linear extension operator R, eventually give explicit
formulas for R,

3. can we classify the different extension operators.

In general, the extension problem has no positive answer for a generic
distribution t in D′(M \X) unless t has moderate growth when we approach
the singular subset X.
Distributions having moderate growth along a closed subset X ⊂ M . If P
is a differential operator with smooth coefficients on M , and K ⊂ U a com-
pact subset, we denote by ‖ϕ‖KP (resp ‖ϕ‖P ) the seminorm supx∈K |Pϕ(x)|
(resp supx∈U |Pϕ(x)|). We also denote by d some arbitrary distance function
induced by some choice of smooth metric on M . For every open set V ⊂M ,
we denote by TM\X(V ) the set of distributions in D′(V \X) with moderate
growth along X defined as follows:

Definition 1.1. A distribution t ∈ D′(V \X) has moderate growth along X if
for all open relatively compact U ⊂ V , there is a seminorm ‖.‖P and a pair
of constant (C, s) ∈ R2

≥0 such that

|t(ϕ)| ≤ C(1 + d(supp ϕ,X)−s)‖ϕ‖P . (1.4)

for all ϕ ∈ D(U \X).

Remark: If t were in D′(M), we would have the same estimate without
the divergent factor (1 + d(supp ϕ,X)−s).

It should be emphasized that the property of having moderate growth
is not local and that the space TM\X is intrinsically defined since all metrics
on M are locally equivalent. The first part of our paper is devoted to give a
detailed proof of the following:

Theorem 1.2. Let M be a smooth manifold and X a closed subset of M . Then
the three following claims are equivalent:
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1. t has moderate growth along X,
2. t ∈ D′(M \X) is extendible,
3. there is a family of functions (βλ)λ∈(0,1] ⊂ C∞(M \ X), βλ = 0 in a

neighborhood of X, βλ →
λ→0

1 and a family of distributions (cλ)λ∈(0,1]

supported on X such that

lim
λ→0

tβλ − cλ (1.5)

exists and defines an extension of t in D′(M).

Our moderate growth condition is weaker than the hypothesis of [16,
Lemma 3.3] and Theorem 1.2 can also be viewed as generalizations of [25,
Theorem 2.1 p. 48] and [3, Theorem 5.2 p. 645] which only treat the extension
problem in the case of a point. The third condition in the above Theorem is
a generalization of Hadamard’s definition of finite parts of distributions. This
is beautifully explained in Yves Meyer’s book [25] p.45 and also explains the
appearance of local counterterms in the renormalization of Feynman ampli-
tudes in QFT.

In the second part of the paper, we will study the easy case where X
is a vector subspace of M = Rn and we compare the notion of moderate
growth with conditions on distributions in terms of scalings, called Steinman
scaling degree in the physics litterature, which is the relevant notion used to
renormalize quantum fields on curved space times [3, 5.1 p. 644]. We prove
in Theorem 3.1 that weakly homogeneous distributions in the sense of Meyer
have moderate growth and are therefore extendible. In [9, Chapter 1], we
proved that weakly homogeneous distributions along some vector subspace
X are invariant by diffeomorphisms preserving X which implies that weakly
homogeneous distributions along a submanifold X ⊂ M can be intrinsically
defined.

In the third part of our paper, we apply our extension techniques to
establish in Theorem 4.2 that the product of distributions in D′(M) with
functions which are tempered along X (see definition 4.1 for the algebra
M(X,M) of tempered functions) is renormalizable which means that the
space of extendible distributions or equivalently of distributions in TM\X is
a left M(X,M)-module (Theorem 4.4).

Finally we apply our analytic machinery to the study of perturbative
QFT on Riemannian manifolds. In QFT, one is interested in making sense
of correlation functions denoted by

〈
: φi1 : (x1) · · · : φin : (xn)

〉
which are ob-

jects living on the configuration space Mn that can be expressed formally,
using the Feynman rules, in terms of products of the form

∏
1≤i<j≤n

G(xi, xj)
nij

where G is the Green function of ∆g + m2,m > 0 where ∆g is the Laplace
Beltrami operator. A product

∏
1≤i<j≤n

G(xi, xj)
nij is called Feynman ampli-

tude and is depicted pictorially by a graph with n labelled vertices {1, . . . , n}
where the vertices i and j are connected by nij lines. In the main Theorem
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(Thm 5.5) of our paper, we prove that all Feynman amplitudes are renormal-
izable by a collection of extension maps (RMn)n∈N where every map RMn

extends Feynman amplitudes living on the configuration space Mn minus
all diagonals to distributions on Mn and the maps (RMn)n∈N satisfy some
axioms given in definition 5.3 which are due to N. Nikolov [26]. This gives
a different approach to Costello’s existence Theorem [7] (see also [8]) for
perturbative QFT on Riemannian manifolds.

Related works. To our knowledge, one of the first rigorous result on the
renormalization of the φ4 theory on curved Riemannian manifolds was given
by Kopper–Müller [20] and is based on some perturbative implementation of
the Wilson–Polchinsky equations to derive the renormalization group flow
of the coupling constants. In his book [7], Costello gives a different ap-
proach to the first problem, first from any action functional of the form
S(φ) =

∫
M
φ∆gφ + Iint(φ) where ∆g is the Laplace–Beltrami operator and

the interaction part Iint is at least cubic in φ, he defines a notion of effective
field theory via the effective action:

Γε(χ) = ~ log

(∫
dµGε(φ)e

iS(φ+χ)
~

)
where dµGε is the Gaussian measure whose covariance is a regularized prop-
agator Gε, where Gε → G when ε → 0. He then proves that starting from
any local action functional S, there is a local action functional SCTε so that
the limit

lim
ε→0

Γε(χ) = ~ log

(∫
dµGε(φ)e

i(S(φ+χ)+SCTε (φ+χ))

~

)
exists for every power of ~ [7, Theorems 9.3.1 and 10.1.1]. The important point
being that SCTε might contain infinitely many counterterms and that the limit
theory can always be defined even for theories which are not renormalizable
in the classical sense.

For quantum fields on curved Lorentzian spacetimes, a proof of renor-
malizability was first achieved by Brunetti–Fredenhagen [3], Hollands–Wald [13,
14] and relies on the Epstein–Glaser approach which is based on the idea that
renormalization consists in an operation of extension of distributions which
satisfies the physical constraint of causality. Recently this method was re-
visited in the very elegant work of Nikolov–Stora–Todorov which discusses
Epstein–Glaser renormalization in the flat Minkowski space. Costello’s ap-
proach is similar to the above methods because they both deal with Feynman
amplitudes in position space and make sense of all quantum field theories,
even nonrenormalizable in the classical sense.

Our goal in this paper is to give a simple existence proof of quantum field
theories on arbitrary Riemannian manifolds following the Epstein–Glaser phi-
losophy thus giving an alternative approach to the one by Costello. To reach
our goal, we need to revisit some methods in analysis originally developped
by H. Whitney [38] which were then improved by Malgrange and Lojasiewicz,
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to compare these techniques with the approach by scaling of Meyer [9, 25]
and finally show their relevance in solving our renormalization problem.

In the mathematical litterature, the idea to consider extendible distri-
butions really goes back to Lojasiewicz [21] and tempered functions already
appear in the work of B. Malgrange [22, 23]. However, the first general defi-
nition of a tempered distribution on any open set U in some manifold M is
due to M. Kashiwara, a distribution is tempered if it is extendible on U [16,
Lemma 3.2 p. 332] (see also [5]) which implies by our Theorem 1.2 that these
distributions are in TM\∂U i.e. have moderate growth along ∂U . His work was
then extended in [12, 18, 19]. Tempered functions and distributions were also
recently studied in the context of real algebraic geometry [1, 5] with applica-
tions in representation theory. A different approach to the extension problem
in terms of scaling was developped by Meyer in his book [25], his purpose was
to study the singular behaviour at given points of irregular functions with
applications in multifractal analysis [17].
Acknowledgements. I would like to thank Christian Brouder, Frédéric Hélein,
Stefan De Bièvre, Laura Desideri, Camille Laurent Gengoux, Mathieu Stiénon
for useful discussions and the Labex CEMPI for excellent working conditions.

2. The extension of distributions.

2.1. Proof of Theorem 1.2

Localization on open charts by a partition of unity. We shall reduce the
proof of (1) ⇔ (2) in Theorem 1.2 to the case where M = Rn, X is a
compact set contained in a larger compact K and t ∈ D′(Rn \ X) vanishes
outsideK, this condition reads t ∈ D′K(Rn\X). The first step is to localize the
problem by a partition of unity. Choose a locally finite cover ofM by relatively
compact open charts (Ui)i and a subordinated partition of unity (ϕi)i s.t.∑
ϕi = 1. Denote by ti the restriction t|Ui and Ki = supp ϕi ⊂ Ui. For all

ϕ ∈ D(U), t ∈ D′(U \X) has moderate growth implies the same property for
tϕ ∈ D′(U \X), therefore each tϕi|Ui\X is in D′Ki(Ui \(X∩Ki)), tϕi vanishes
outside Ki and has moderate growth along X. Hence it suffices to extend
tϕi|Ui\X in each Ui in such a way that the extension is supported by Ki. Call

tiϕi such extension in E ′(Ui) then the locally finite sum t =
∑
i tiϕi ∈ D′(M)

is a well defined extension of t.
Working on Rn. The second step is to use local charts to work on Rn. On
every open set (Ui), let ψi : Ui 7−→ V ⊂ Rn denote the corresponding chart
then the pushforward ψi∗(tϕi) is in D′ψi(Ki)(V \ ψi(X ∩ Ki)). Actually the

compact set ψi(X ∩Ki) is in the interior of V , since (Ki ∩X) ⊂ int(Ui) and
ψi is a diffeomorphism. Therefore the distribution ψi∗(tϕi) is an element of
D′Ki(R

n\ψi(X∩Ki)) and we may reduce the proof of our theorem to the case
where we have a distribution t ∈ D′K(Rn \X) with moderate growth along X
where X ⊂ K are compact subsets of Rn. In the sequel, we use the seminorms
‖ϕ‖m = supx∈Rn,|α|≤m |∂αxϕ(x)| and ‖ϕ‖Km = supx∈K,|α|≤m |∂αxϕ(x)| where K

runs over the compact subsets of Rn. Let I(X,Rn) = {ϕ s.t. supp ϕ ∩X =
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∅} ⊂ C∞(Rn), since t vanishes outside some compact set K, the moderate
growth condition now reads

∃(C, s) ∈ R2
≥0 and ‖.‖Km s.t. ∀ϕ ∈ I(X,Rn),

|t(ϕ)| ≤ C(1 + d(supp ϕ,X)−s)‖ϕ‖Km. (2.1)

Lemma 2.1. Let X ⊂ K be compact subsets of Rn, then t ∈ D′K(Rn \X) is
extendible in D′K(Rn) if and only if t has moderate growth along X.

Proof. We first prove a weaker equivalence: t is extendible iff the estimate
(2.1) holds for some m ∈ N with s = 0.

Assume the problem is solved and that we could find an extension t ∈
D′K(Rn) of t. Observe that ∀ϕ ∈ V, t(ϕ) = t(ϕ) then by definition t is a linear
continuous functional on C∞(Rn) equipped with the Fréchet topology, thus it
induces a linear continuous map on the vector subspace I(X,Rn) ⊂ C∞(Rn):

∃C ∈ R≥0, ‖.‖Km s.t. ∀ϕ ∈ I(X,Rn), |t(ϕ)| = |t(ϕ)| ≤ C‖ϕ‖Km.

Therefore, if t is extendible then estimate (2.1) is satisfied with s = 0 and t
has moderate growth along X.

Conversely, if ∃C ∈ R≥0, ‖.‖Km s.t. ∀ϕ ∈ I(X,Rn), |t(ϕ)| ≤ C‖ϕ‖Km, then
by the Hahn–Banach theorem [24, Thm 6.4 p. 46], we can extend t as a linear
continuous mapping t on C∞(Rn) which satisfies the above estimate hence
t ∈ D′K(Rn). Therefore to prove that t has moderate growth implies that t is
extendible in D′K(Rn), it suffices to show that

∃C ∈ R≥0, ‖.‖Km s.t. ∀ϕ ∈ I(X,Rn), |t(ϕ)| ≤ C(1 + d(supp ϕ,X)−s)‖ϕ‖Km
=⇒ ∃C ′ ∈ R≥0, ‖.‖Km′ s.t. ∀ϕ ∈ I(X,Rn), |t(ϕ)| ≤ C ′‖ϕ‖Km′ .

Let us admit the following central technical Lemma whose proof will be
given later:

Lemma 2.2. For every integers (d,m) ∈ N2, let Im+d(X,Rn) denote the
closed ideal of functions of regularity Cm+d which vanish at order m+ d on
X. Then there is a function χλ ∈ C∞(Rn) parametrized by λ ∈ (0, 1] s.t.
χλ = 1 (resp χλ = 0) when d(x,X) ≤ λ

8 (resp d(x,X) ≥ λ) and the following
estimate holds true:

∃C̃,∀λ ∈ (0, 1],∀ϕ ∈ Im+d(X,Rn), ‖χλϕ‖Km ≤ C̃λd‖ϕ‖
K∩{d(x,X)≤λ}
m+d (2.2)

where the constant C̃ does not depend on ϕ, λ.

If s = 0, then we know that there is an extension by Hahn Banach
therefore we shall treat the case where s > 0. Our idea is to absorb the
divergence by a dyadic decomposition:

∀ϕ ∈ I(X,Rn),∃N s.t. χ2−Nϕ = 0

=⇒ t(ϕ) = t((1− χ2−N )ϕ)

=⇒ t(ϕ) =

N−1∑
j=0

t((χ2−j − χ2−j−1)ϕ) + t((1− χ1)ϕ)
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We easily estimate t((1 − χ1)ϕ): ∀ϕ ∈ C∞(Rn), |t((1 − χ1)ϕ)| ≤ C‖ϕ‖Km for
some constant C since the support of 1−χ1 does not meet X. Choose d ∈ N∗
such that d− s > 0, then:

|t(χ1ϕ)| ≤
N−1∑
j=0

|t((χ2−j − χ2−j−1)ϕ)|

≤ C

N∑
j=1

(1 + d(supp ϕ(χ2−j − χ2−j−1), X)−s)‖(χ2−j − χ2−j−1)ϕ‖Km,

by moderate growth

≤ C

N∑
j=1

(1 + 2s(j+4))(2−jd + 2−(j+1)d)C̃‖ϕ‖Km+d, by Lemma 2.2

≤ C ′‖ϕ‖Km+d

for C ′ = C̃C(1 + 2−d)

∞∑
j=1

2−jd(1 + 2(j+4)s)︸ ︷︷ ︸
convergent series since d−s>0

< +∞ which is independent

of N and ϕ. �

We now prove Lemma 2.2:

Proof. Choose φ ≥ 0 s.t.
∫
φ = 1, φ = 0 if |x| ≥ 3

8 then set φλ = λ−nφ(λ−1.)

and αλ to be the characteristic function of the set {x s.t. d(x,X) ≤ λ
2 } then

the convolution product φλ ∗ αλ(x) = 1 if d(x,X) ≤ λ
8 and equals 0 if

d(x,X) ≥ λ. Since by Leibniz rule one has

∂α(χλϕ)(x) =
∑
|k|≤|α|

(
α
k

)
∂kχλ∂

α−kϕ(x),

it suffices to estimate each term ∂kχλ∂
α−kϕ(x) of the above sum.

For all multi-index k, there is some constant Ck such that ∀x ∈ Rn \
X, |∂kxχλ| ≤ Ck

λ|k|
and supp ∂kxχλ ⊂ {d(x,X) ≤ λ}. Therefore for all ϕ ∈

Im+d(X,Rn), for all x ∈ supp ∂kxχλ∂
α−kϕ, for y ∈ X such that d(x,X) =

|x− y|, we find that ∂α−kϕ vanishes at y at order |k|+ d therefore:

∂α−kx ϕ(x) =
∑

|β|=|k|+d

(x− y)βRβ(x)

where the right hand side is just the integral remainder in Taylor’s expansion
of ∂α−kϕ around y. Hence:

|∂kχλ∂α−kϕ(x)| ≤ Ck
λ|k|

∑
|β|=|k|+d

|(x− y)βRβ(x)|.
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It is easy to see that Rβ only depends on the Jets of ϕ of order ≤ m + d.
Hence

|∂kχλ∂α−kϕ(x)| ≤ Ckλd sup
x∈K,d(x,X)≤λ

∑
|β|=|k|+d

|Rβ(x)|

and the conclusion follows easily. �

Our partition of unity argument together with the result of Theorem
2.1 imply that (1)⇔ (2) in Theorem 1.2.

2.2. Renormalizations and the Whitney extension Theorem

The goal of this subsection is to replace the use of Hahn Banach theorem by
a more constructive argument. First, we discuss a particular case of extension
where there is some canonical choice for t.

Remark on the extension of positive measures with locally finite mass. The
following proposition is inspired by some results of Skoda [35]. Let µ be a
positive measure in M \X, then we say that µ has locally finite mass if:

∀K ⊂M compact ,∃CK ,∀ϕ ∈ DK(M \X), ϕ ≥ 0, 0 ≤ µ(ϕ) ≤ CK‖ϕ‖0.

Proposition 2.3. Let µ be a positive measure in M \X. If µ has locally finite
mass then µ has a canonical extension in the space of positive measures.

Proof. By an obvious regularization argument, we can extend µ to the space
C0
c (M \ X) of compactly supported functions of regularity C0. Choose a

family χλ as in the main technical Lemma 2.2 which satisfies χλ ≥ 0, χλ = 1
if d(x,X) ≤ λ

8 and χλ = 0 when d(x,X) ≥ λ. Then for all ϕ ∈ C0
c (M), ϕ ≥ 0,

the sequence µ((1 − χ2−n)ϕ)n is increasing and bounded by CK‖ϕ‖0 where
K is any compact set which contains the support of ϕ. Therefore for each
ϕ ≥ 0, limn→+∞ µ((1 − χ2−n)ϕ) exists. It is easy to conclude using the fact
that C0

c (M) is spanned by non negative functions. �

Constructive extension operator instead of Hahn Banach. Recall we denote
by I(X,Rn) the smooth functions vanishing in some neighborhood of X. In
the proof of Theorem 2.1, we showed that if t were extendible equivalently if
t satisfies the moderate growth condition then:

∃(C,m),∀ϕ ∈ I(X,Rn), |t(ϕ)| ≤ C‖ϕ‖Km. (2.3)

Therefore t defines a linear functional on I(X,Rn) for the induced topology of
C∞(Rn) and can be extended by Hahn Banach which is a non constructive
argument and does not imply the existence of a linear extension operator
t ∈ D′K(Rn \X) 7−→ t ∈ D′K(Rn).

Denote by Im(X,Rn) the space of Cm functions which vanish on X
together with all their derivatives of order less than m, Im(X,Rn) is a closed
ideal in Cm(Rn). To construct a linear extension operator, we have to prove
first that t extends by continuity to some element tm in the topological dual
Im(X,Rn)′ of Im(X,Rn) ⊂ Cm(Rn).
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Lemma 2.4. A distribution t satisfies the estimate (2.3) if and only if t
uniquely extends by continuity to an element tm in Im(X,Rn)′:

∀ϕ ∈ Im(X,Rn), tm(ϕ) = lim
λ→0

lim
ε→0

t((1− χλ)φε ∗ ϕ) (2.4)

for the family of cut–off functions (χλ)λ defined in Lemma 2.2 and a mollifier
φε.

Proof. It suffices to prove that the space of C∞ functions whose support does
not meet X is dense in Im(X,Rn) in the Cm topology. In fact, we prove more,
let φε be a smooth mollifier, then by a classical regularization argument, we
have limε→0(1 − χλ)φε ∗ ϕ = (1 − χλ)ϕ in Cm(Rn) for all ϕ ∈ Cm(Rn) and
limλ→0(1 − χλ)ϕ → ϕ in Im(X,Rn). By the technical Lemma 2.2 (see [23]
p. 11), we have

∀ϕ ∈ Im(X,Rn), ‖χλϕ‖Km ≤ C̃‖ϕ‖K∩{d(x,X)≤λ}
m → 0

when λ → 0 therefore ϕ = limλ→0(1 − χλ)ϕ in the Cm topology. Finally
this proves Im(X,Rn) is the closure in Cm(Rn) of the space of C∞ functions
whose support does not meet X. �

Set βλ = 1 − χλ, from the above Theorem we can make a notation
abuse and say that lim

λ→0
tβλ ∈ Im(X,Rn)′ if t satisfies the estimate (2.3)

(we just forget about the mollifier). The idea is to compose lim
λ→0

tβλ with

a continuous projection Im : Cm(Rn) 7−→ Im(X,Rn) so that lim
λ→0

tβλ ◦ Im
defines an extension of t. Dually, every compactly supported distribution of
order m induces by restriction a linear functional on Im(X,Rn) , in other
words we have a surjective linear map p : E ′m(Rn) 7→ Im(X,Rn)′. We want to
construct a linear extension operatorR from Im(X,Rn)′ to E ′m(Rn) such that
p◦R : Im(X,Rn)′ 7→ Im(X,Rn)′ is the identity map. Then it is immediate to
note that the transpose of R is the projection Im. The following Proposition
aims at classifying the extension operators R. Denote by Em(X) the space
of differentiable functions of order m in the sense of Whitney [23, Definition
2.3 p. 3],[2, p. 146].

Proposition 2.5. The three following sets are in bijection:

• the set of linear extension operators R from Im(X,Rn)′ to E ′m(Rn) such
that p ◦ R : Im(X,Rn)′ 7→ Im(X,Rn)′ is the identity map,

• the set of closed subspaces B of Cm(Rn) such that Cm(Rn) = Im(X,Rn)⊕
B which we call renormalization scheme

• the set of continuous linear splittings of the exact sequence

0 7−→ Im(X,Rn) 7−→ Cm(Rn)
q→ Em(X) 7−→ 0. (2.5)

Proof. The exactness of (2.5) and the existence of linear continuous splittings
of (2.5) is a consequence of the Whitney extension theorem (see [23, p. 10],
[2, Thm 2.3 p. 146]). Since (2.5) is a continuous exact sequence of Fréchet
spaces, the dual sequence:

0 7−→ E ′m,X(Rn) 7−→ E ′m(Rn)
p→ Im(X,Rn)′ 7−→ 0 (2.6)
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is exact [24, Prop 26.4 p. 308].
T is a linear splitting of (2.5)

• ⇔ T ◦ q is a continuous projector on the closed subspace B = ran(T )
• ⇔ Cm(Rn) = B ⊕ Im(X,Rn) where the projection Id − T ◦ q on
Im(X,Rn) is denoted by Im
• ⇔ R =t Im splits the dual exact sequence (2.6).

�

The above Proposition classifies the extension ambiguities in E ′m(Rn)
and the following summarizes all results of the above paragraph:

Proposition 2.6. Let E be the vector space of all distributions t ∈ E ′(Rn \X)
which satisfies the estimate 2.3,

F = {P ∈ Hom(E, E ′m(Rn)) s.t. P(t)|Rn\X = t}
then F is in bijection with all three sets defined in Proposition 2.5.

The Whitney extension Theorem, formal neighborhoods and extendible dis-
tributions. Let us give several interpretations of the result of Proposition
2.5. First, the reader can think of the direct sum decomposition as a way
to decompose a Cm function as a sum of a “Taylor remainder” which van-
ishes at order m on X and a “Taylor polynomial” in B. If X were a point,
Em(X) is isomorphic to the space Rm[X1, ..., Xn] of polynomials of degree
m in n variables, we can choose B = Rm[x1, ..., xn] and the decomposition
B + Im is given by Taylor’s formula. For ϕ ∈ Cm(Rn), one can think of
q(ϕ) ∈ Em(X) ' Cm(Rn)/Im(X,Rn) as the restriction of ϕ to the infini-
tesimal neighborhood of X of order m. More generally, let I∞(X,Rn) be the
closed ideal of functions in C∞(Rn) which vanish at infinite order on X, this
is a nuclear Fréchet space since it is a closed subspace of the nuclear Fréchet
space C∞(Rn). We can think of the space E(X) of C∞ functions in the sense
of Whitney as some sort of ∞-jets in “the transverse directions” to X since
by the Whitney extension theorem, we have a continuous exact sequence of
nuclear Fréchet spaces:

0 7−→ I∞(X,Rn) 7−→ C∞(Rn) 7−→ E(X) 7−→ 0 (2.7)

which implies that E(X) is the quotient space C∞(Rn)/I∞(X,Rn). When X
is a submanifold of Rn, it is interesting to think of E(X) as smooth functions
restricted to the formal neighborhood of X. And the formal neighborhood of
X is then defined as the topological dual of E(X) which is nothing but the
space of distributions E ′X(Rn) with compact support contained in X and fits
in the continuous dual exact sequence of DNF spaces [5, appendix A]:

0 7−→ E ′X(Rn) 7−→ E ′(Rn) 7−→ E ′(X)/E ′X(Rn) 7−→ 0 (2.8)

where the quotient space E ′(X)/E ′X(Rn) should be interpreted as the space of
distributions in D′(Rn\X) which are extendible in E ′(X) and the continuous
map E ′(Rn) 7−→ E ′(X)/E ′X(Rn) is in fact the transpose of the inclusion map
Rn \ X ↪→ Rn. Another nice consequence of the theory of nuclear Fréchet
spaces is that the space of extendible distributions is a DNF space.
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The renormalization group. We also define the renormalization group G as
the collection of linear, continuous, bijective maps from Cm(Rn) to itself pre-
serving Im(X,Rn). Note that g ∈ G =⇒ g−1 is continuous by the open
mapping theorem hence G is well defined as a group. Let R be a renormaliza-
tion map corresponding to a projection Im. For any element g ∈ G, we define
the action of g on R as follows: ∀t ∈ Im(X,Rn)′, g.Rt(ϕ) = Rt(g(ϕ)) =
t(Im ◦ g(ϕ)) where Rt(g.) ∈ E ′(Rn) is an extension of t ∈ Im(X,Rn)′ since g
preserves Im(X,Rn).

Renormalization as subtraction of counterterms. Assume we choose a renor-
malization scheme. We denote by Pm = Id− Im the projection from Cm to
the closed subspace B ⊂ Cm which plays the role of the Taylor polynomials.
From the above theorem and recall βλ = 1− χλ where χλ is the function of
Lemma 2.2

Proposition 2.7. If t satisfies the estimate 2.3 then:

∀ϕ ∈ C∞(Rn), t(ϕ) = lim
λ→0

t(βλImϕ)
finite part

= lim
λ→0

t(βλϕ)− t(βλPmϕ)
singular part

(2.9)

is a well defined extension of t.

We call such extension a renormalization. The divergences of t(βλϕ)
come from the fact that ϕ /∈ Im(X,Rn), however these divergences are local
in the sense they can be subtracted by the counterterm t(βλPmϕ) which
becomes singular when λ → 0 and only depends on the restriction to X of
the m-jets of ϕ (since ϕ vanishes near X implies that ϕ ∈ Im =⇒ Pmϕ =
0). By construction, the renormalization group G acts on the space of all
renormalizations of t.

2.3. Going back to the manifold case

Difference between two extensions. Following the notations of 2.1, recall that
(Ui)i was our locally finite open cover of M by relatively compact sets. On
each open set Ui, we defined a chart ψi : Ui 7→ V ⊂ Rn and we considered
a partition of unity (ϕi)i subordinated to (Ui)i. Let t ∈ D′(M \ X) be a
distribution with moderate growth, then by Theorem 2.1 we may assume
that:

∀Ui,∃mi ∈ N,∃Ci > 0,∀ϕ ∈ C∞(Rn\X∩supp ϕi), |ψi∗(tϕi)(ϕ)| ≤ Ci‖ϕ‖mi .
(2.10)

By Theorem 2.1, we may find an extension t =
∑
i tϕi ∈ D′(M) in such a

way that for every i, tϕi|Ui has order mi. If we prescribe the order of the
extensions on every Ui to be equal to mi ∈ N, then two extensions t1, t2 will
differ on each Ui by a distribution t1− t2|Ui of order mi supported on X ∩Ui.
Renormalization in the manifold case. On each chart ψi : Ui 7→ V ⊂ Rn,
we can extend ψi∗(tϕi) ∈ D′(V \ ψi(X ∩ supp ϕi)) by renormalization.
In other words, by Proposition 2.7, there is a family of functions βλ(i) ∈
C∞(Rn), βλ(i) → 1 and counterterms cλ(i) ∈ E ′ψi(X∩ supp ϕi)

(Rn) such that
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limλ→0 ψi∗(tϕi)βλ(i)− cλ(i) is an extension of ψi∗(tϕi) in E ′(Rn). Then set-
ting

βλ =
∑
i

ϕiψ
∗
i βλ(i) and cλ =

∑
i

ψ∗i cλ(i), (2.11)

we find that:

tβλ − cλ =
∑
i

tϕiψ
∗
i βλ(i)− ψ∗i cλ(i) (2.12)

converges to some extension of t when λ → 0. This proves (1) ⇔ (3) in
Theorem (1.2).

3. Moderate growth and scaling.

In this section, we compare two approaches that were developped to measure
the singular behaviour of a distribution along a closed subset X: the moderate
growth condition and the one used in [9, 25, 3] in terms of scaling. We show
that both approach are equivalent when X is a submanifold of M .

3.1. Weakly homogeneous distributions have moderate growth

In this subsection, we work on Rn viewed as a product Rn1×Rn2 , n = n1 +n2

and we adopt the following splitting of variables x ∈ Rn = (x1, x2) ∈
Rn1×Rn2 . Here we establish the relationship between our definition of moder-
ate growth and the one used by Yves Meyer [25] and the author [9] in terms
of scaling. First we scale in the transverse directions to a vector subspace
X = Rn1×{x2 = 0} of Rn with the maps Φλ : (x1, x2) 7−→ (x1, λx2). By def-

inition, the scalings acts on D′(Rn) by duality
(
Φλ∗t

)
(ϕ) = λ−n2t(Φλ

−1∗ϕ).
A distribution t ∈ D′(Rn\X) is said to be weakly homogeneous in D′(Rn\X)
of degree s if the family of distributions λ−sΦλ∗t, λ ∈ (0,+∞] is bounded in
D′(Rn \X).

Theorem 3.1. If t is weakly homogeneous of degree s in D′(Rn \X) then t has
moderate growth along X = Rn1 × {x2 = 0}. More precisely, for all compact
subset K ⊂ Rn there is (m,C) ∈ N × R and a compact subset B ⊂ Rn
containing K s.t.

∀ϕ ∈ DK(Rn \X), |t(ϕ)| ≤ C(1 + d(supp ϕ,X)s+n2)‖ϕ‖Bm. (3.1)

It follows by Theorem 1.2 that such t has an extension in D′(Rn). Note
that when s+ n2 > 0, we are in a trivial situation of moderate growth since
the r.h.s. does not diverge.

Proof. The proof relies on the existence of a continuous partition of unity,∫ ∞
0

dλ

λ
ψ(λ−1x2) =

∫ ∞
0

dλ

λ
Φλ
−1∗ψ = 1

where ψ(λ−1x2) is supported on the corona λ
2 ≤ |x2| ≤ 2λ. Indeed, let

χ ∈ C∞(Rn2) be a function s.t. χ = 1 (resp χ = 0) when |x| ≤ 1
2 (resp

|x| ≥ 2) then set ψ = −xdχdx .
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Fix a compact set B = {supi=1,2 |xi| ≤ L}, then for all test function ϕ ∈
DB(Rn \X) we obviously have

ϕ =

∫ 2L

ε

dλ

λ

(
Φλ
−1∗ψ

)
ϕ for ε ≤ d(supp ϕ,X)

2
,

since λ /∈ [d(supp ϕ,X)
2 , 2L] =⇒ supp

(
Φλ
−1∗ψ

)
∩ supp (ϕ) = ∅. Now it is

obvious that

t(ϕ) =

∫ 2L

d(supp ϕ,X)
2

dλ

λ
t
((

Φλ
−1∗ψ

)
ϕ
)

=

∫ 2L

d(supp ϕ,X)
2

dλ

λ
λs+n2

(
λ−sΦλ∗t

) (
ψΦλ∗ϕ

)
=⇒ |t(ϕ)| ≤ ((2L)s+n2 +

(
d(supp ϕ,X)

2

)s+n2

) sup
λ≤2L

|
(
λ−sΦλ∗t

) (
ψΦλ∗ϕ

)
|

A simple calculation proves that
(
ψΦλ∗ϕ

)
λ≤2L

⊂ DK̃(Rn \ X) for K̃ =

{(x1, x2)||x1| ≤ L, 1
2 ≤ |x2| ≤ 2}, K̃ ∩X = ∅ and that:

∀m ∈ N,∃Cm > 0,∀λ, ‖ψΦλ∗ϕ‖K̃m ≤ Cm‖ϕ‖Bm
therefore the family

(
ψΦλ∗ϕ

)
λ

is bounded in the Fréchet space DK̃(Rn \X).

The family
(
λ−sΦλ∗t

)
is weakly bounded in (DK̃(Rn\X))′ thus strongly

bounded by the uniform boundedness principle since DK̃(Rn \X) is Fréchet
([31, Thm 2.5 p. 44]):

∃C ′ > 0,m ∈ N,∀λ,∀ϕ ∈ DK̃(Rn \X), |
(
λ−sΦλ∗t

)
(ϕ)| ≤ C ′‖ϕ‖K̃m. (3.2)

Therefore

sup
λ≤2L

|
(
λ−sΦλ∗t

) (
ψΦλ∗ϕ

)
| ≤ C ′‖ψΦλ∗ϕ‖K̃m

≤ C ′Cm‖ϕ‖Bm
=⇒ |t(ϕ)| ≤ C(1 + d(supp ϕ,X)s+n2)‖ϕ‖Bm

for some C > 0 independent of ϕ ∈ DB(Rn \X). �

It was proved in [9] that the space of weakly homogeneous distributions
of degree s along a closed embedded submanifold X ⊂ M is invariant by
the action of diffeomorphisms preserving X, therefore the above Theorem
generalizes to the manifold case.

4. Renormalized products.

Let X ⊂ Rn be some closed subset. In this section, we first define the class
M(X,Rn) of tempered functions along X:
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Definition 4.1. A function f ∈ C∞(Rn \ X) is tempered along X if for all
compact K ⊂ Rn,

∀m ∈ N,∃(Cm, s) ∈ R2
≥0, sup
|α|≤m

|∂αf(x)| ≤ C(1 + d(x,X)−s). (4.1)

Tempered functions form an algebra by Leibniz rule. It is immedi-
ate that the definition 4.1 can be generalized to some closed subset X in
a manifold M : we follow the notations of the partition of unity argument
in 2.1, f is tempered along X i.e. f ∈ M(X,M) if in any local chart
ψi : Ui ⊂M 7→ V ⊂ Rn, ψi∗ (ϕif) ∈M(ψi(X),Rn).

Then we establish a theorem about renormalized products:

Theorem 4.2. Let M be a manifold and X ⊂ M a closed subset. For all
f ∈M(X,M) and all t ∈ D′(M), there exists a distribution R(ft) ∈ D′(M)
which coincides with the regular product ft outside X.

Thanks to the partition of unity argument of 2.1, we may reduce to
the case where X is some closed subset of M = Rn hence f ∈ M(X,Rn)
and t ∈ E ′(Rn). By Theorem 2.1, distributions with moderate growth are
extendible, therefore it suffices to prove that ft has moderate growth along
X which is the content of the following proposition:

Proposition 4.3. Let t ∈ D′K(Rn \X) and f ∈ C∞(Rn \X) such that (t, f)
satisfy the estimates:

∃(C, s1) ∈ R2
≥0,∀ϕ ∈ I(X,Rn), |t(ϕ)| ≤ C(1 + d(supp ϕ,X)−s1)‖ϕ‖Km (4.2)

∃(Cm, s2) ∈ R2
≥0,∀x ∈ K \X, sup

|α|≤m
|∂αf(x)| ≤ Cm(1 + d(x,X)−s2). (4.3)

Then ft satisfies the estimate:

∃C ′,∀ϕ ∈ I(X,Rn), |ft(ϕ)| ≤ C ′(1 + d(supp ϕ,X)−(s1+s2))‖ϕ‖Km. (4.4)

Proof. The claim follows from the estimate:

∀ϕ ∈ I(X,Rn), |ft(ϕ)| ≤ C(1 + d(supp ϕ,X)−s1)‖fϕ‖Km
≤ CCm2mn(1 + d(supp ϕ,X)−s1)(1 + d(supp ϕ,X)−s2)‖ϕ‖Km
≤ 4CCm2mn︸ ︷︷ ︸

C′

(1 + d(supp ϕ,X)−(s1+s2))‖ϕ‖Km.

�

Example. Our result shares some similarities with [25, Theorem 4.3 p. 85]
where Meyer renormalizes the product of distributions Sγt at a point x0 ∈ Rn
where Sγ(x) = fp|x−x0|γ (Hadamard’s finite part), t is a distribution which
is weakly homogeneous of degree s at x0 and s+ γ /∈ −N. He shows that the
renormalized product Sγt is weakly homogeneous of degree s+ γ at x0.

Let us recall that by Theorem 2.1, the space TRn\X(Rn) of distributions
with moderate growth alongX corresponds to the quotient spaceD′(Rn)/D′X(Rn)
of distributions on Rn \X extendible on Rn. Therefore, we can reformulate
Theorem 4.2 as follows:
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Theorem 4.4. TM\X(M) is a left M(X,M) module.

This was also proved by Malgrange [22, Proposition 1 p. 4].
Let us consider a function g ∈ C∞(Rn), X = {g = 0} and gC∞(Rn)

is a closed ideal of C∞(Rn), then a result of Malgrange [23, inequality (2.1)
p. 88] yields that g satisfies the Lojasiewicz inequality:

∀K compact ,∃(C, s) ∈ R2
≥0,∀x ∈ K, |g(x)| ≥ Cd(x,X)s. (4.5)

It follows by Leibniz rule that f = g−1 must be tempered along X. We
state and prove a specific case of ”renormalized product” which is due to
Malgrange [23, Thm 2.1 p. 100]:

Theorem 4.5. Let M be a smooth paracompact manifold, let f = g−1, g ∈
C∞(M) such that the ideal gC∞(M) is closed. Then

∀T ∈ D′(M),∃S ∈ D′(M) s.t. gS = T (4.6)

in particular, S = fT outside X.

Beware that the renormalized product S = fT is not uniquely defined,
however it satisfies the equation gS = T whereas without the closedness
assumption on gC∞(M), we would only have gS = T modulo distributions
supported by X.

Proof. By partition of unity, it suffices to prove that the linear map mg :
t ∈ E ′(M) 7−→ gt ∈ E ′(M) is onto if gC∞(M) is closed in C∞(M). We will
establish that mg has closed range and that ran(mg) is dense in E ′(M).

gC∞(M) is closed in C∞(M) implies that the transposed map: m∗g :
C∞(M) 7−→ C∞(M) has closed range therefore mg has closed range since
C∞(M) is Fréchet and E ′(M) = C∞(M)′ (see [24, Thm 26.3 p. 307]).

gC∞(M) is closed in C∞(M) hence it is Fréchet. By the open mapping
Theorem [24, Thm 8.5 p. 60],mg : C∞(M) 7→ gC∞(M) is a linear continuous,
surjective map of Fréchet spaces hence mg is open. In terms of estimates,
this implies that for any continuous seminorm ‖.‖Km of C∞(M), there is a

continuous seminorm ‖.‖K′m′ such that ‖ϕ‖Km ≤ ‖(gϕ)‖K′m′ (see [23, inequality
(2.2) p. 88]), hence gϕ = 0 =⇒ ϕ = 0. Then we conclude by the observation
that ran(mg)

⊥ = {ϕ ∈ C∞(M) s.t. ∀t ∈ E ′(M), gt(ϕ) = 0} = {ϕ s.t. gϕ =
0} = {0} =⇒ ran(mg) is everywhere dense in E ′(Rn). �

5. Renormalization of Feynman amplitudes in Euclidean
quantum field theories.

5.1. Feynman amplitudes are extendible

We give the main application of our extension techniques. Our approach
to renormalization follows the philosophy of Brunetti–Fredenhagen [3, 4, ?],
Nikolov–Stora–Todorov [26] which goes back to [10, 11], and is based on
the concept of extension of distributions. However, we will use the beautiful
formalism of renormalization maps of N. Nikolov [26, 27] which is closest



16 Nguyen Viet Dang

in spirit to the present paper. In what follows, we will always assume that
(M, g) is a smooth d-dimensional Riemannian manifold with Riemannian
metric g. We denote by ∆g the Laplace Beltrami operator corresponding to
g, and we consider the Green function G ∈ D′(M ×M) of the operator ∆g +
m2,m ∈ R≥0. G is the Schwartz kernel of the operator inverse of ∆g+m2 ([34,
Appendix 1]) which always exists when M is compact and m2 /∈ Spec(∆g).
In the noncompact case, the general existence and uniqueness result for the
Green function usually depends on the global properties of ∆g and (M, g).
If (M, g) has bounded geometry in the sense of [6, p. 33] and [30] (see also
[34, Definition 1.1 Appendix 1],[33, Def 1.1 p. 3]), then one can find in [34,
Appendix 1] conditions of spectral theoretic nature on ∆g,m

2 that imply

the existence of an operator inverse
(
∆g +m2

)−1
: Lp(M) 7→ Lp(M), p ∈

(1,+∞) whose Schwartz kernel is G.
However if G exists, then we recall a fundamental result about the

asymptotics of G near the diagonal:

Lemma 5.1. Let (M, g) be a smooth Riemannian manifold and ∆g the corre-
sponding Laplace operator. If G ∈ D′(M ×M) is the fundamental solution of
∆g +m2, then G is tempered along D2 ⊂M2.

Proof. This follows from the estimate [37, (2.5) in Proposition 2.2] applied to
the Green function G which is the Schwartz kernel of an elliptic pseudodiffer-
ential operator of degree −2 since G is a parametrix of the Laplace–Beltrami
operator ∆g +m2. �

Configuration spaces. For every finite subset I ⊂ N and open subset U ⊂M ,
we define the configuration space U I = Maps (I 7→ U) = {(xi)i∈I s.t. xi ∈
U,∀i ∈ I} of |I| particles in U labelled by the subset I ⊂ N. In the sequel,
we will distinguish two types of diagonals in U I , the big diagonal DI =
{(xi)i∈I s.t. ∃(i 6= j) ∈ I2, xi = xj} which represents configurations where at
least two particles collide, and the small diagonal dI = {(xi)i∈I s.t. ∀(i, j) ∈
I2, xi = xj} where all particles in U I collapse over the same element. The

configuration space M{1,...,n} and the corresponding big and small diagonals
D{1,...,n}, d{1,...,n} will be denoted by Mn, Dn, dn for simplicity. We also use
the notation d{i,j} for the subset {xi = xj} of the configuration space Mn.

Proposition 5.2. Let (M, g) be a smooth Riemannian manifold, ∆g the cor-
responding Laplace operator and G the Green function of ∆g +m2. For any
finite subset I ⊂ N, we shall call Feynman amplitude all elements of the
form

∏
(i<j)∈I2 G

nij (xi, xj) ∈ C∞(M I \ DI), nij ∈ N. Then all Feynman

amplitudes are extendible in D′(M I).

Proof. We assume w.l.o.g that I = {1, . . . , n}. For all s ≥ 0, the inequality
d(x, d{i,j})

−s ≤ d(x,Dn)−s follows from the inclusion d{i,j} ⊂ Dn. The Green
function G(xi, xj) is tempered along d{i,j} and the above inequality imply
that G(xi, xj) ∈M(Dn,M

n). Since M(Dn,M
n) is an algebra, the element∏

1≤i<j≤n

Gnij (xi, xj)
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is also tempered along Dn and is therefore extendible on Mn by Theorem
4.2. �

5.2. Renormalization maps, locality and the factorization property

The vector subspace O(DI , .) generated by Feynman amplitudes. In QFT,
renormalization is not only extension of Feynman amplitudes in configuration
space but our extension procedure should satisfy some consistency conditions
in order to be compatible with the fundamental requirement of locality.

Recall that for any open subset Ω ⊂ M I , we denote by M(DI ,Ω)
the algebra of tempered functions along DI . We introduce the vector space
O(DI ,Ω) ⊂M(DI ,Ω) generated by the Feynman amplitudes

O(DI ,Ω) =

〈 ∏
i<j∈I2

Gnij (xi, xj)


nij

〉
C

. (5.1)

Axioms for renormalization maps: factorization property as a consequence of
locality. We define a collection of renormalization maps (RΩ⊂MI )Ω,I where I

runs over the finite subsets of N and Ω runs over the open subsets of M I which
satisfy the following axioms which are simplified versions of those figuring in
[27, 2.3 p. 12–14] [26, Section 5 p. 33–35]:

Definition 5.3. 1. For every I ⊂ N, |I| < +∞, Ω ⊂M I , RΩ⊂MI is a linear
extension operator:

RΩ⊂MI : O(DI ,Ω) 7−→ D′(Ω). (5.2)

2. For all inclusion of open subsets Ω1 ⊂ Ω2 ⊂M I , we require that:

∀f ∈ O(DI ,Ω2),∀ϕ ∈ D(Ω1)

〈RΩ2⊂MI (f), ϕ〉 = 〈RΩ1⊂MI (f), ϕ〉 .
3. The renormalization maps satisfy the factorization property. If (U, V )

are disjoint open subsets of M , and (I, J) are disjoint finite subsets of
N, ∀(f, g) ∈ O(DI , U

I)×O(DJ , V
J) :

R(UI×V J )⊂MI∪J (f � g) = RUI⊂MI (f)︸ ︷︷ ︸
∈D′(UI )

�RV J⊂MJ (g)︸ ︷︷ ︸
∈D′(V J )

∈ D′(UI × V J)

The most important property is the factorization property (3) which is
imposed in [26, equation (2.2) p. 5].
Remarks on the axioms of the Renormalization maps. To define R on M I ,
it suffices to define RΩi⊂MI for an open cover (Ωi)i of M I (they do not
necessarily coincide on the overlaps Ωi ∩Ωj) and glue the determinations by
a partition of unity.
Uniqueness property of renormalization maps. The following Lemma is proved
in [26, Lemmas 2.2, 2.3 p. 6] and tells us that if a collection of renormaliza-
tion maps (RΩ⊂MI )Ω,I exists and satisfies the list of axioms of definition
5.3, then outside the small diagonal dn, the restriction RMn\dn⊂Mn would
be uniquely determined by the renormalizations RMI for all |I| < n because
of the factorization axiom.
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Lemma 5.4. Let (RΩ⊂MI )Ω,I be a collection of renormalization maps satisfy-
ing the axioms of definition 5.3. Then the renormalization map RMn\dn⊂Mn

is uniquely determined by the renormalizations maps RMI for all |I| < n.

Proof. See [26, p. 6-7] for the detailed proof. �

Beware that the above Lemma does not imply the existence of renormal-
ization maps but only that they must satisfy certain consistency conditions
if they exist.

5.3. The existence Theorem for renormalization maps

Now we give a short proof of the existence of renormalization maps on general
Riemannian manifolds.

Theorem 5.5. Let (M, g) be a smooth Riemannian manifold, ∆g the corre-
sponding Laplace operator, G the Green function of ∆g +m2,m > 0 and for
any configuration space M I where I is a finite subset of N, any open subset
Ω ⊂ M I , recall O(DI ,Ω) ⊂ M(DI ,Ω) is the vector space generated by the
Feynman amplitudes of the form

∏
(i<j)∈I2 G

nij (xi, xj), nij ∈ N.

Then there exists a collection of renormalization maps (RΩ⊂MI )Ω,I

where I runs over the finite subsets of N and Ω runs over the open subsets
of M I which satisfies the three axioms of definition 5.3.

Our proof relies on Lemmas (5.6) and (5.7) whose proof will be given
later.

Proof. We proceed by induction on the number n of elements of the configura-
tion space. For n = 2, the renormalization mapRM2 : O

(
D2,M

2
)
7→ D′(M2)

exists by Theorem 5.2.

Now assume that all renormalization maps (RΩ⊂MI )Ω,I for |I| 6 n− 1
are constructed and satisfy the list of axioms of definition 5.3. The first

step is to construct RMn\dn

(∏
1≤i<j≤nG

nij (xi, xj)
)

for generic Feynman

amplitudes
∏

1≤i<j≤nG
nij (xi, xj) ∈ O(Dn,M

n). But by Lemma 5.6 below,

Mn \ dn is covered by the open sets CI = Mn \
(
∪

i∈I,j /∈I
d{i,j}

)
where I (

{1, . . . , n}. Therefore it suffices to construct RCI⊂Mn for all I ( {1, . . . , n}
then glue them together with a partition of unity subordinated to the cover
(CI)I . For every open subset CI ⊂ Mn \ dn, set Ic = {1, . . . , n} \ I, by the
factorization property, the renormalization map RCI writes as a product:

RCI

 ∏
1≤i<j≤n

Gnij (xi, xj)

 = RMI (GI)︸ ︷︷ ︸
∈D′(MI)

RMIc (GIc)︸ ︷︷ ︸
∈D′(MIc )

∏
(i,j)∈I×Ic

Gnij (xi, xj)︸ ︷︷ ︸
∈M(∂CI ,Mn)

GI =
∏

(i<j)∈I2
Gnij (xi, xj), GIc =

∏
(i<j)∈Ic2

Gnij (xi, xj)
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Therefore the renormalization map RMn\dn is uniquely determined by the
renormalization maps RMI for |I| ≤ n− 1 according to Lemma 5.4. Lemma
5.7 below yields a partition of unity (χI)I of Mn \ dn subordinated to the
open cover (CI)I i.e. supp χI ⊂ CI ,

∑
I χI = 1 such that each χI is tempered

along dn.
The product RMI (GI)RMIc (GIc) belongs to D′(Mn) and the product∏

(i,j)∈I×Ic G
nij (xi, xj) is tempered along ∂CI . It follows by corollary 4.2

that the distribution

RCI (
∏

1≤i<j≤n

Gnij (xi, xj)) =
∏

(i,j)∈I×Ic
Gnij (xi, xj)︸ ︷︷ ︸

∈M(∂CI ,Mn)

RMI (GI)RMIc (GIc)︸ ︷︷ ︸
∈D′(Mn)

∈ D′(CI)

has an extension in D′(Mn) denoted by RCI (
∏

1≤i<j≤n
Gnij (xi, xj)). By con-

struction, χI vanishes in some neighborhood of ∂CI \ dn in Mn \ dn which

implies that χIRCI (
∏

1≤i<j≤n
Gnij (xi, xj)) = χIRCI (

∏
1≤i<j≤n

Gnij (xi, xj)) in

D′(Mn \ dn). It follows that

RMn\dn

 ∏
1≤i<j≤n

Gnij (xi, xj)

 =
∑
I

χIRCI (
∏

1≤i<j≤n

Gnij (xi, xj)).

Again by Theorem 4.2, χI is tempered along dn implies that the prod-
uct χIRCI (

∏
1≤i<j≤n

Gnij (xi, xj)) is extendible in D′(Mn) and

RMn\dn

( ∏
1≤i<j≤n

Gnij (xi, xj)

)
is therefore extendible in D′(Mn). Then we

defineRMn(
∏

1≤i<j≤n
Gnij (xi, xj)) to be any extension ofRMn\dn

( ∏
1≤i<j≤n

Gnij (xi, xj)

)
in D′(Mn). �

An important remark is that the sequence of renormalization maps con-
structed in the above proof is not unique and has infinitely many degrees of
freedom at each step of the induction since we can choose many possible

extensions for the distribution RMn\dn

( ∏
1≤i<j≤n

Gnij (xi, xj)

)
and these are

related to renormalization ambiguities which are often encountered in renor-
malization of QFT on curved space–times.
Covering lemma. The following simple Lemma is due to Popineau and Stora
[26, Lemma 2.2 p. 6] [36, 28] and states that Mn \ dn can be partitioned as
a union of open sets on which the renormalization map Rn can factorize.

Lemma 5.6. Let M be a smooth manifold. For all subset I ( {1, . . . , n}, let
CI = {(x1, . . . , xn) s.t. ∀i ∈ I, j /∈ I, xi 6= xj} ⊂Mn. Then⋃

I

CI = Mn \ dn (5.3)



20 Nguyen Viet Dang

where I runs over strict subsets of {1, . . . , n}.

Proof. The key observation is the following, if (x1, . . . , xn) /∈ dn, then at
least two points (xi, xj) differ for (i, j) ∈ {1, . . . , n}2 and it follows that
(x1, . . . , xn) ∈ CI , I = {j ∈ {1, . . . , n} : xj = xi}. �

Tempered partition of unity associated to the cover (CI)I .

Lemma 5.7. Let M be a smooth manifold and let (CI)I be the cover of Mn\dn
defined in Lemma 5.6, then there exists a partition of unity (χI)I subordinated
to (CI)I such that every function χI is tempered along dn.

Proof. For every subset I ( {1, . . . , n}, let Ic denote its complement in
{1, . . . , n}, then by definition of CI the set BI = ∪(i,j)∈I×Icd{i,j} is the
boundary of CI in the configuration space Mn. For every I, [15, Corollary
1.4.11] yields the existence of a function ψI ∈ C∞(Mn \ dn) such that:

• ψI = 0 in some neighborhood of BI \ dn ⊂Mn \ dn
• ψI = 1 in some neighborhood of the closed set ((dI∪dIc)\dn) ⊂Mn\dn
• ψI has moderate growth along dn i.e. ψI ∈M(dn,M

n).

It follows that the family of functions
(
ϕ1,I =

ψ2
I∑

J({1,...,n} ψ
2
J

)
I

which is only

defined on the open set U = ∪J({1,...,n}{ψJ > 0}, forms a partition of
unity subordinated to the cover (CI ∩ U)I where every ϕ1,I ∈ M(dn, U).
By definition, U is a neighborhood of dn and let (χ, 1 − χ) be a partition
of unity subordinated to the cover (U,U c) of Mn \ dn and (ϕ2,I)I a parti-
tion of unity subordinated to the cover (CI ∩ U c)I of U c, we conclude that
(χI = χϕ1,I + (1 − χ)ϕ2,I)I is subordinated to (CI)I and every χI belongs
to M(dn,M

n). �
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