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When several roots to the likelihood equation exist, the root corresponding to the global max-

imizer of the likelihood is generally retained but this procedure supposes that all possible

roots are identi�ed. Since, in many cases, the global maximizer is the only consistent root, we

propose a test to detect if a given solution is consistent. This test relies on some necessary and

su�cient conditions for consistency of a root and simply consists of comparing the di�erence

between two expected log-likelihood expressions. Monte-Carlo studies and a real life exam-

ple show that the proposed procedure leads to encouraging results. In particular, it clearly

outperforms another available test of this kind, especially for relatively small sample sizes.
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1. INTRODUCTION

In many applications where the maximum likelihood principle is involved, statisticians know

that there may be multiple roots to the likelihood equation. Under standard regularity conditions,

theory tells us that there is a unique consistent root to the likelihood equation (see Cramér 1946

and its multidimensional generalization in Tarone and Gruenhage 1975), but generally gives poor

indication on which root is consistent in case of several roots. The review paper of Small et al.

(2000) discusses various approaches for selecting among the roots (see also a discussion in Lehmann

1983, chap. 6), including for instance iterating from consistent estimators, employing a bootstrap

method or examining the asymptotics when explicit formulas for roots are available. Another
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possibility is to simply select the root leading to the maximum likelihood value since Wald (1949)

established consistency of the global maximizer of the likelihood under some conditions (typically

the global maximizer is a root although it is not always true, in particular for some Gaussian

mixtures as noticed �rst by Kiefer and Wolfowitz 1956). Note also that Wald's properties of the

maximum likelihood estimator (MLE) are generalized by White (1982) in the more realistic case

where the probability model is misspeci�ed. So, except in the rare cases where the MLE may be

inconsistent (see examples in Neyman and Scott 1948 or more recently in Ferguson 1982 or also

in Stefanski and Carroll 1987 among others), the strategy which consists of selecting the global

maximizer seems to be a straightforward procedure to retain an adequate root. However, some

practical di�culties occur and we aim to address them in the present paper.

Indeed, in practice, a search for all roots corresponding to local maximizers may take consid-

erable time and no guarantee is given that all local maximizers will have been found in a �nite

time, even if the number of roots is bounded (see Barnett 1966 for an example of an unbounded

number of roots). Beyond this basic strategy of searching, few previous studies are available. For

instance, De Haan (1981) proposed a p-con�dence interval of the maximum likelihood value based

on extreme-value asymptotic theory. As pointed out by Veall (1991) in an econometric context,

this approach becomes impractical because of the number of computations when the support of the

parameter space is large and/or the parameter space is multidimensional. In contrast, Markatou et

al. (1998) propose a random starting point method based on bootstrap to construct automatically

a reasonable search region. Another approach may consist in constructing a test for consistency of

a given root to the likelihood equation. In other words, such a method allows to decide if a given

root should be adopted as a global maximizer of the likelihood function. Thus, it is possible to

look for a new root and to test it until the current root is not rejected. Heyde (1997) and Heyde

and Morton (1998) have proposed either to employ a goodness-of-�t criterion to select the best

root or to pick the root for which the Hessian of the log-likelihood behaves asymptotically like its

expectation evaluated at the root at hand. In the same spirit, Gan and Jiang (1999) (GJ99 in short

below) chose a statistic of decision which is based on the di�erence between the product form of

the Fisher expected information matrix about the parameter and its Hessian form. Unfortunately,

the Monte-Carlo experiments in the restricted case of a unidimensional parameter highlight a very
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low power with relatively small sample sizes. As a consequence, it is di�cult to recommend the

use of this test, especially in the usual situation of multidimensional parameter estimation.

In this paper, we present a procedure similar to GJ99's test in order to decide if a root to the

likelihood equation is consistent. The di�erence primarily lies in the employed statistic, which is

now simply based on the di�erence between two expected log-likelihood expressions. Denoting by

`(θ) the log-likelihood of a parameter θ whose true value (unknown) is θ0, it may exist some values

θ, di�erent from θ0, which satisfy also

Eθ0∇`(θ) = 0. (1)

Thus, the problem is that there may be multiple roots to the likelihood equation (global maximizer,

local maximizer, stationary point and so on), it means multiple roots θ̂n such that

[∇`(θ)
]
θ=θ̂n

= 0. (2)

In order to detect the root θ̂n corresponding to a global maximizer of `(θ), the idea of this paper

is very simple: A global maximizer would satisfy not only (2), but also

[
`(θ)

]
θ=θ̂n

− [
Eθ`(θ)

]
θ=θ̂n

≈ 0, (3)

whereas an inconsistent root (a local maximizer or something else) would not. Indeed, it seems

natural that both terms in the left hand side of (3) are two di�erent consistent estimators of the

same term
[
Eθ`(θ)

]
θ=θ0

if θ̂n is consistent. So, intuitively, the test retains as a �good" root a

parameter which veri�es both Equations (2) and (3). Implementing the new method is partic-

ularly easy and applicability to multidimensional parameter cases is straightforward. Through

experiments, it appears that the power of the proposed test highly outperforms this one of GJ99's

method. As a consequence, to consider multidimensional parameters situations may be now far

from meaningless.

The study is organized as follow. Data, assumptions and theoretical tools to built the test

are presented in Section 2 where a short presentation of GJ99's test is also available. Simulation

experiments and a real data set are then provided in Section 3 to evaluate the performance of the

new test. In particular, comparisons with results of GJ99's test are given. In the last section, we

conclude this paper with a discussion.
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2. CONSTRUCTION OF THE TEST

2.1 Two theorems

Let X1, X2, . . . , Xn be n independent random vectors with the same distribution as a variable

X having density function ft(x). Consider also an identi�able parametric density family f(x; θ)

where θ is possibly a multidimensional parameter. De�ne θ0 the value of θ where the expected

log-likelihood Et ln f(X; θ) =
∫

ln f(x; θ)ft(x)dx is maximized. In the sequel, we assume that θ0 is

unique and that the following regularity conditions hold:

(a) The parameter space Θ is a compact space of which the parameter value θ0 is an interior

point.

(b) f(x; θ) 6= 0 a.e. for all θ ∈ Θ.

(c) f(x; θ) is twice di�erentiable with respect to θ and the integral
∫

f(x; θ)dη is twice di�eren-

tiable under the integral sign.

First, let us de�ne ϕ1(x; θ) = ∇ ln f(x; θ) and ϕ2(x; θ) = ln f(x; θ) − Eθ ln f(X; θ). Set also

φj(θ) =
∑n

i=1 ϕj(Xi; θ)/n, dj(θ) = Etϕj(X; θ) = Etφj(θ) (j = 1, 2), ϕ(x; θ) = (ϕ1(x; θ), ϕ2(x; θ)),

φ(θ) = (φ1(θ), φ2(θ)) and d(θ) = (d1(θ), d2(θ)). Let `(θ) =
∑n

i=1 ln f(Xi; θ) be the log-likelihood

function of θ based on observations X1, . . . , Xn and let θ̂n be a root of ∇`(θ), so equivalently a

root of φ1(θ). Finally, de�ning the variance v(θ) = V arθ ln f(X; θ) and denoting by | · | the L1

norm, we assume the following conditions:

(d) maxj=1,2 Et supθ∈Θ |ϕj(X; θ)| < ∞ and maxj=1,2 Bj < ∞ with Bj = Et supθ∈Θ |∇ϕj(X; θ)|.

(e) 0 < V art ln f(X; θ0) < ∞.

(f) |∇v(θ0)| < ∞.

We present now two theorems on which our test relies in an essential way. The �rst one gives

necessary and su�cient conditions for convergence of θ̂n towards θ0. The second one gives the

asymptotic distribution of φ2(θ̂n) under this hypothesis of convergence. Proofs of both theorems

are given in Appendix A.
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Theorem 1. Suppose that conditions (a)-(d) are satis�ed. In addition, suppose that

d(θ) = (0, d2(θ0)) ⇒ θ = θ0. (4)

Then θ̂n
P−→ θ0 i� P (θ̂n ∈ Θ) → 1 and

φ2(θ̂n) P−→ d2(θ0). (5)

Theorem 2. Suppose that conditions (a)-(e) are satis�ed. If θ̂n
P−→ θ0, then

φ2(θ̂n) D−→ N

(
d2(θ0),

V art ln f(X; θ0)
n

)
. (6)

2.2 A test for convergence

We have now everything to build a procedure for testing convergence of θ̂n towards θ0. We

consider the situation where ft(x) belongs to the family f(x; θ) and, consequently, ft(x) = f(x; θ0).

In this situation, it is immediate that d2(θ0) = 0 and, so, testing for consistency of θ̂n as null

hypothesis is equivalent, from Theorem 1, to test for φ2(θ̂n) P−→ 0. Then Theorem 2 provides the

asymptotic distribution of φ2(θ̂n) under the null hypothesis. At this point, an estimator of the

variance v(θ0) = V arθ0 ln f(X; θ0) is required to perform the test. The two following estimators

are natural: a parametric one v(θ̂n) = V arθ̂n
ln f(X; θ̂n) where θ0 is simply replaced by θ̂n, and a

semi-parametric one Vn(θ̂n) =
∑n

i=1(ln f(Xi; θ̂n)− `(θ̂n)/n)2/n where expectations are estimated

in an empirical way. Appendix B discusses properties of these two estimators: both are consistent

but some empirical observations show that the �rst one, v(θ̂n), has a lower mean squared error

value and leads also to a better performance of the test. It is reasonable to conjecture that v(θ̂n)

uses more e�ciently the information about the model than Vn(θ̂n) does but it seems di�cult to

derive some general properties to compare more accurately v(θ̂n) and Vn(θ̂n). Thus, we choose

v(θ̂n) as an estimator of v(θ0) in our test and, under the null hypothesis, we have

√
n

φ2(θ̂n)√
v(θ̂n)

D−→ N(0, 1). (7)

Note that, in practice, both terms Eθ̂n
ln f(X; θ̂n) (used in the φ2(θ̂n) function) and v(θ̂n) may be

easily estimated by a Monte-Carlo method if closed forms are not available. Thus, in this work, a

i.i.d. sample Y1,. . . , Ym is generated from f(x; θ̂n) and both terms are respectively estimated by

Am =
∑m

i=1 ln f(Yi; θ̂n)/m and Bm =
∑m

i=1(ln f(Yi; θ̂n)−Am)2/m.
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Here are some comments on this test:

1. Note that d2(θ) can be as well positive or negative, so a two-sided test is required. For

instance, taking (12) given by a particular family f(x; θ) considered later in experiments, it

can be shown that, when θ0 > 0, if θ > θ0 then d2(θ) > 0 but if θ < θ0 then d2(θ) < 0.

2. Clearly, Equation (4) is a weak point of this test since it seems di�cult to establish some gen-

eral conditions about its validity. However, condition (4) may be expected to hold for many

usual classes of density functions ft(x) and f(x; θ) that appear in most practical situations.

For instance, it will be veri�ed for examples we will use in experiments. Note that GJ99 ex-

hibited a counterexample of a similar conjecture needed for their test. This counterexample

is rather arti�cial and, consequently, it does not necessarily imply limitation on the applica-

bility of the test. We can hope for similar properties in our context. In addition, it is worth

noting that condition (4) is only required to prove convergence of θ̂n in Theorem 1. Thus,

the test could be also applied if (4) was not veri�ed since the convergence of θ̂n remains a

su�cient condition. Consequences on the test will be the following: If the null hypothesis is

rejected then convergence of θ̂n is rejected too, but if the null hypothesis is preserved nothing

could be concluded on convergence of θ̂n.

3. One of the advantages of MLE is that it is invariant both under reparameterization of the

model and under a monotone transformation of the sample space. Thus, the procedure

which selects the global maximum of the likelihood is fully invariant. While the MLE is

invariant (or equivariant) under transformations of the sample space, the log-likelihood is

not, even after standardization. Consequently, the proposed test could have the property

that a root may pass for one coordinate system and the test may fail for another coordinate

system. Nevertheless, given a signi�cance level, the test will asymptotically provide the same

decision independently of the coordinate system.

4. If the model is misspeci�ed, it means that densities ft(x) and f(x; θ0) are di�erent, testing

convergence of θ̂n towards θ0 as the null hypothesis is still equivalent to test φ2(θ̂n) P−→ d2(θ0),

but now d2(θ0) may be di�erent from zero. Since value d2(θ0) is generally unknown, the test
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is not valid anymore. Nevertheless, we will carry out later some experiments to study the

behaviour of our test in such a situation.

2.3 Relationship with GJ99's test

Di�erence between GJ99's test and our proposal is essentially in the formulation of the term

d2(θ). Considering that the model is correct, d2(θ) is now a matrix de�ned by

dGJ
2 (θ) = Eθ0 [∇ ln f(X; θ)∇ ln f(X; θ)′] + Eθ0 [∇2 ln f(X; θ)]. (8)

So, it is the di�erence between the outer product form of the Fisher expected information matrix

about θ and its Hessian form. Condition (8) in GJ99's paper corresponds to our condition (4).

The null hypothesis consists in testing φGJ
2 (θ̂n) P−→ 0 with

φGJ
2 (θ̂n) =

1
n

n∑

i=1

∇ ln f(Xi; θ̂n)∇ ln f(Xi; θ̂n)′ +
1
n

n∑

i=1

∇2 ln f(Xi; θ̂n). (9)

Considering only the unidimensional case, distribution of φGJ
2 (θ̂n) under the null hypothesis is

φGJ
2 (θ̂n)√

V arθ0φ
GJ
2 (θ̂n)

D−→ N(0, 1), (10)

and the variance in the denominator is approximated by a Monte-Carlo method.

3. EXPERIMENTS

3.1 A simple mixture case

We consider the normal mixture distribution of Example 1 in GJ99, that is

f(x; θ) = pψ(x;µ1, σ
2
1) + (1− p)ψ(x; µ2, σ

2
2), (11)

where θ = µ1 and ψ(x; µ, σ2) is the univariate normal density of mean µ and variance σ2, and p

(0 < p < 1) is the mixing proportion of the �rst component. The likelihood equation for θ has

typically two roots if the two normal means are �well-separated� (e.g. Titterington et al. 1985):

one corresponds to a local maximizer and the other to a global maximizer. Values are the following:

σ2
1 = 1, µ2 = 8, σ2

2 = 16 and p = 0.4 and the true value of θ = −3. Because there is no analytic

expression, the values Eθ0 ln f(X; θ) and d2(θ) are computed by a Monte-Carlo method. Figure 1
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shows that the global maximizer of the expected log-likelihood is θ0 = −3 and the local maximizer

is somewhere between 5 and 10. It appears that only the global maximizer leads to d2(θ) = 0 and,

consequently, condition (4) is veri�ed. We consider di�erent sample sizes n: 5, 10, 50, 100, 250,

500, 1000. For each sample size, we simulated 500 datasets from f(x; θ0) and, for each dataset, we

applied the test to both the global and the local maximizer of `(θ). Figure 2 reports the observed

signi�cance level and the observed power at the alternative (i.e. the local maximizer) at signi�cance

levels α = 0.05 and 0.10. GJ99's results are also displayed for the available values of n in their

article (n = 250, 500, 1000) and we note a high improvement of the power with the new test.

[Figure 1 about here.]

[Figure 2 about here.]

3.2 A particular normal distribution

We consider now Example 4 of GJ99 that was employed before in econometrics by Amemiya

(1994). It corresponds to the normal distribution N(θ, θ2). Direct calculation shows that

d1(θ) = −1
θ
− θ0

θ2
+

2θ2
0

θ3
and d2(θ) = −θ0

θ2
(θ0 − θ). (12)

It is easy to show that d1(θ) has two roots: θ0 and −2θ0. However, d2(−2θ0) = − 3
4 < 0 and so

condition (4) is veri�ed for this example too.

[Figure 3 about here.]

Figure 3 of the appendixes displays the level and the power with 500 replications in the

case θ0 = 1. Note that other experimental conditions are the same than in the previous ex-

ample. We notice that the power is higher with the new test again. But, surprisingly, the

empirical level is very low in comparison with the theoretical signi�cance level. We can ex-

plain this result by noting that, under the null hypothesis, the variance of φ2(θ̂n) is equal to

V arθ0

{[
−1 +

√
1 + 4n

∑n
i=1 X2

i /(
∑n

i=1 Xi)2
]−1

}
(see Proposition 4 in Appendix C) and that

this value is less than its asymptotic variance v(θ̂n)/n that is equal to 1/(2n) (see Proposition 3

in Appendix C). Figure 4 illustrates this fact.

[Figure 4 about here.]
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Remark In the normal case N(µ, σ2) with θ = (µ, σ2), Proposition 5 (Appendix C) shows

that φ2(θ̂n) = 0. So, V arθ0φ2(θ̂n) is null and obviously less than the asymptotic variance 1/(2n).

Of course applying the test in this case has no interest since only one root to the likelihood equation

exists, but we note that it would lead to a test with an empirical signi�cance level equal to zero.

3.3 Some multi parameter examples

3.3.1 A two parameter case

Consider the normal mixture of Section 3.1 where centers µ1 and µ2 are unknown, so θ =

(µ1, µ2), and the true parameter is θ0 = (−3, 8). In Figure 5, Eθ0 ln f(X; θ) and d2(θ) are displayed

and we note that two maximizers exist (a local and a global one) and, moreover, condition (4) is

veri�ed since only the global maximizer leads to d2(θ) = 0. With di�erent sample sizes (n = 10,

25, 50, 100), and the same other experimental conditions as in Section 3.1, Figure 6 reports the

observed signi�cance level and power at signi�cance levels α = 0.05 and 0.10. The power is still

reasonably good but, not surprisingly, is lower that in the one parameter case.

[Figure 5 about here.]

[Figure 6 about here.]

3.3.2 A ten parameter case

We choose to study a bivariate normal mixture with �ve components and same mixing propor-

tions. The �rst four components have centers on the nodes of a square with side 6 and variances

matrices equal to identity. The center of the �fth component corresponds to the center of the

square, which is �xed to (0, 0), and its variance matrix is four times the identity matrix. Fig-

ure 7 (a) provides a sample from this model with n = 500. Since only centers have to be estimated,

only ten parameters are unknown. Because of the symmetry, two di�erent maxima of the expected

log-likelihood exist: a global one and a local one which corresponds to the situation where the �fth

component is exchanged with one of the four others. Note that it is di�cult to verify condition

(4) because of the high dimension and so we do not. Figure 7 (b) displays the level and the power

with 500 replications, di�erent sample sizes (n = 50, 100, 500, 1000) and two di�erent signi�cance
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levels (α = 0.05, 0.10). In these experiments, the global maximizer is obtained by starting the EM

algorithm (Dempster et al. 1977) with the true centers whereas a local maximizer is obtained by

starting EM after exchanging centers of components 1 and 5. Moreover, EM is stopped after 1000

iterations. Clearly, we note that the power is now low for these sample sizes.

[Figure 7 about here.]

3.4 Case of a misspeci�ed model

We consider now a situation where the true density ft(x) does not belong to the family f(x; θ).

We choose ft(x) as being the following Gaussian mixture with three components:

ft(x) = 0.4ψ(x;−3, 1) + 0.3ψ(x; 5; 9) + 0.3ψ(x; 11, 9), (13)

whereas the model f(x; θ) is the same as (11), i.e. a mixture of two Gaussian components with

only one free center (θ = µ1). It is usual to have a bad number of components speci�cation in

many model-based mixture contexts (see for instance McLachlan and Peel 2000, chap. 6). Figure 8

exhibits di�erence between the two densities ft(x) and f(x; θ0), θ0 being the value of θ maximizing

the expected log-likelihood Et ln f(X; θ). Values of this likelihood and also d2(θ) are displayed in

Figure 9. We note that the global maximizer is close to θ0 = −3 and that two local maximizers

exist: one somewhere between 3 and 6 (local solution 1) and the other somewhere between 10 and

13 (local solution 2). It appears that the global maximizer does not lead to d2(θ0) = 0 but, clearly,

d2(θ0) is �not too far� from zero in comparison to the values of d2 obtained with the two local

maximizers. Note also that (4) is veri�ed again since d2(θ0) 6= d2(θ) for any value θ 6= θ0.

[Figure 8 about here.]

[Figure 9 about here.]

Figure 10 displays the observed level and power for both local maximizers with 500 replications

of ft(x) for di�erent sample sizes (n= 5, 10, 25, 50, 100, 250, 500, 1000) and signi�cance level

α = 0.05. Results are similar for both local maxima. The observed power is quickly close to one

and, as expected, the observed level monotically increases with n. When n is relatively small (e.g.,

between 10 and 100), the power is high and the level is su�ciently low to justify the test.
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[Figure 10 about here.]

3.5 A real data set

We consider now the Old Faithful data (the version from Venables and Ripley 1994) which

consists of data on 272 eruptions of the Old Faithful geyser in Yellowstone National Park. Each

observation is composed by two measurements: the duration (in minutes) of the eruption and the

waiting time (in minutes) before the next eruption. We retain a bivariate normal mixture model

with three components but with equal proportions and equal variance matrices for components.

Estimation of the 9 free parameters of the model is performed with the EM algorithm, and imple-

mentation of this particular model at the E step of EM is given, among other models, in Celeux

and Govaert (1995). The algorithm is run 100 times for 1000 iterations from a random starting

mixture parameter where proportions are equal, centers are randomly drawn without replication in

the dataset and the common variance matrix is equal to λI, λ being uniformly drawn in [0, 10] (see

McLachlan and Peel 2000, chap. 2, for a review of some strategies for choosing starting values).

Finally, we obtain only two di�erent solutions presented in Figure 11. Next, the test of convergence

is applied to both solutions of the likelihood and the two corresponding P-values are displayed in

Table 1. We note a strong evidence for choosing the maximum likelihood solution whereas the

local maximum is clearly rejected at any classical signi�cance levels.

We consider now a model where the three variance matrices are free, so, this model has 15

unknown parameters. Figure 12 displays the three found solutions of the log-likelihood (other

experimental conditions are unchanged except that now the starting variance matrix of the kth

component is equal to λkI where λk is uniformly drawn in [0, 10]) and Table 2 provides correspond-

ing P-values. The lowest local maximum is clearly rejected but the two other solutions (included

the MLE) show strong evidence. So, we con�rm a fact already noted in some previous experiments:

the power may be low when the number of free parameters is high compared to the sample size.

[Figure 11 about here.]

[Table 1 about here.]

[Figure 12 about here.]
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[Table 2 about here.]

4. DISCUSSION

In case of multiple roots to the likelihood equation, a standard procedure is to select the root

corresponding to the global maximizer of the likelihood. Nevertheless, one is seldom certain to have

enumerated all possible roots. Since, in many situations, the MLE is the only consistent root to the

likelihood equation, we proposed a test for consistency of any root to the likelihood equation. This

test seems quite simple and rather natural. A previous test for a global maximum of the likelihood

was already suggested by GJ99 but this test was presented in the restricted univariate parameter

case and also led to very low power for moderate sample sizes. As a consequence, investigation

towards multivariate parameters situation was not considered by these authors.

Results provided through experiments of the new test introduced in this work seem to show that

these di�culties are partially overcome: The power of the test is highly improved in univariate

parameter cases and a bivariate parameter case is successfully treated. In addition, the test is

particularly straightforward to implement in any dimensions. Nevertheless, its power could become

quite low when the dimension of the parameter space signi�cantly increases in comparison to the

sample size. That was highlighted by a ten parameter case and on a real life data set.

It is worth noting that the test is theoretically impracticable in the case of a misspeci�ed

model although an experiment explores the possibility of employing it in a situation where the

true distribution and the model are di�erent but the value |d2(θ0)| is �relatively small�. Strictly

speaking, rejection in the test has the two following meanings without possibility to decide between

both as it was noted before by GJ99 in their context: Either the consistent root is not reached, or

the model is not correct. Such a property is problematic in practice since many criteria proposed

to select a model such as BIC (Schwarz 1978) among others (see McLachlan and Peel 2000 for a

review of some other criteria) rely on the knowledge of the maximum likelihood estimator.

Finally, a theoretical aspect of the test relies on condition (4). This one seems often veri�ed

as illustrated by experimental situations, but no guarantee is given for other, albeit usual, density

families. Although, as discussed before in the paper, the test could be still applied if, unfortunately,
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condition (4) were not true, there is a need to explore more widely its overall validity.
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Figure 1. Plots of (a) Eθ0 [ln f(X; θ)] and (b) d2(θ) for the simple mixture case.
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Example 1 from Gan & Jiang − Significance level : α = 0.05
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Example 1 from Gan & Jiang − Significance level : α = 0.10
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Figure 2. Level and power for the simple mixture case when (a) α = 0.05 and (b) α = 0.10.
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Example 4 from Gan & Jiang − Significance level : α = 0.05
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Example 4 from Gan & Jiang − Significance level : α = 0.10
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Figure 3. Level and power for the particular normal distribution when (a) α = 0.05 and (b)
α = 0.10.
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Figure 4. True variance and asymptotic variance of φ2(θ̂n) in the particular normal situation.
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Figure 5. Plots of (a) Eθ0 ln f(X; θ) and (b) d2(θ) for the two parameter case.
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Example 1 from Gan & Jiang with 2 free centers
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Figure 6. Level and power for the two parameter case with α = 0.05 and α = 0.10.
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A ten parameters case
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Figure 7. The ten parameter case: (a) a sample with isodensity curves and (b) level and power for
α = 0.05 and α = 0.10.
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Figure 8. True density ft(x) and the optimal density f(x; θ0) of the model in a misspeci�ed model
case.
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Figure 9. Plots of (a) Et ln f(X; θ) and (b) d2(θ) for the misspeci�ed model case.
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Figure 10. Level and power for the misspeci�ed model case with α = 0.05.
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Figure 11. Component ellipses obtained with the Old Faithful geyser for each maxima (equal
variance matrices model): (a) `(θ̂n)/n = −4.1584 and (b) `(θ̂n)/n = −4.3868.
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Figure 12. Component ellipses obtained with the Old Faithful geyser for each maxima (free variance
matrices model): (a) `(θ̂n)/n = −4.1215, (b) `(θ̂n)/n = −4.1439 and (c) `(θ̂n)/n = −4.2991.
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`(θ̂n)/n -4.1584 -4.3868
φ2(θ̂n) -0.0062 -0.1937
P-value 0.9153 0.0022

Table 1. P-values for both likelihood solutions of the Old Faithful geyser (equal variance matrices
model).

27



`(θ̂n)/n -4.1215 -4.1439 -4.2991
φ2(θ̂n) 0.0133 -0.0021 -0.3942
P-value 0.8358 0.9713 0.0000

Table 2. P-values for each likelihood solution of the Old Faithful geyser (free variance matrices
model).
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