
Appendices of the paper entitled

Testing for a Global Maximum of the Likelihood

APPENDIX A: PROOFS OF BOTH THEOREMS

A.1 Proof of Theorem 1

This proof is strongly inspired from Theorem 1 of GJ99's paper.

Suppose that θ̂n
P−→ θ0. By condition (a), we have P (θ̂n ∈ Θ) → 1. Then, using condition (c),

Taylor expansion gives:

φ2(θ̂n) = φ2(θ0) +∇φ2(θ0)′(θ̂n − θ0) + oP (|θ̂n − θ0|). (A.1)

When condition (d) is veri�ed, the strong law of large number (SLLN) allows to obtain φ2(θ0)
a.s.−→

d2(θ0) and ∇φ2(θ0)
a.s.−→ ∇d2(θ0). We deduce that ∇φ2(θ0)′(θ̂n − θ0) = oP (1), therefore (5) holds.

Now consider that both P (θ̂n ∈ Θ) → 1 and (5) hold. We suppose that θ̂n
P−→ θ0 is false. So,

there are δ0 > 0 and ε0 > 0 such that, for all n,

P (|θ̂n − θ0)| ≥ δ0) ≥ ε0. (A.2)

We de�ne Θ1 = {θ ∈ Θ : |θ − θ0| ≥ δ0}. Since d(·) = Etφ(·) is continuous (Proposition 2

in Appendix C) and θ0 /∈ Θ1, we have by (4) that ρ = infθ∈Θ1 |d(θ) − d(θ0)| > 0. Let η =

ρ/[4(B1 ∨ B2)]. Then, there are an integer m and points θ1, θ2, . . . , θm ∈ Θ1 such that for any

θ ∈ Θ1 there is 1 ≤ l ≤ m such that |θl − θ| < η. Suppose that θ̂n ∈ Θ and |θ̂n − θ0| ≥ δ0. Then

θ̂n ∈ Θ1 and hence there is θ̃ ∈ {θl, 1 ≤ l ≤ m} such that |θ̃− θ̂n| < η. Now, we seek a lower bound

of |φ2(θ̂n)− d2(θ0)|:

|φ2(θ̂n)− d2(θ0)| = |φ(θ̂n)− d(θ0)| (since φ1(θ̂n) = 0 and d1(θ0) = 0) (A.3)

≥ |φ(θ̃)− d(θ0)| − |φ(θ̃)− φ(θ̂n)| (A.4)

≥ min
1≤l≤m

|φ(θl)− d(θ0)| − |φ1(θ̃)− φ1(θ̂n)| − |φ2(θ̃)− φ2(θ̂n)|. (A.5)

In addition, we have

min
1≤l≤m

|φ(θl)− d(θ0)| ≥ min
1≤l≤m

|d(θl)− d(θ0)| − max
1≤l≤m

|φ(θl)− d(θl)|, (A.6)
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where

min
1≤l≤m

|d(θl)− d(θ0)| =
1
2

min
1≤l≤m

|d(θl)− d(θ0)|+ 1
2

min
1≤l≤m

|d(θl)− d(θ0)| (A.7)

≥ ρ

2
+

ρ

2
(A.8)

≥ ρ

2
+

ρ

2
B1 + B2

2(B1 ∨B2)
(A.9)

=
ρ

2
+ η(B1 + B2). (A.10)

Moreover, Taylor inequality and the fact that |θ̃ − θ̂n| < η give (with j = 1, 2)

|φj(θ̃)− φj(θ̂n)| ≤ |θ̃ − θ̂n|
( 1

n

n∑

i=1

sup
θ∈Θ

|∇ϕj(X; θ)|
)

(A.11)

≤ η
( 1

n

n∑

i=1

sup
θ∈Θ

|∇ϕj(X; θ)|
)
. (A.12)

Combining Equations (A.5), (A.6), (A.10) and (A.12), we obtain:

|φ2(θ̂n)− d2(θ0)| ≥ ρ

2
− max

1≤l≤m
|φ(θl)− d(θl)| − η

2∑

j=1

( 1
n

n∑

i=1

sup
θ∈Θ

|∇ϕj(X; θ)| −Bj

)
. (A.13)

Then, condition (d) and the SLLN give (recall also that d(·) = Etφ(·)):

|φ2(θ̂n)− d2(θ0)| ≥ ρ

2
− oP (1). (A.14)

Therefore, with the same oP (1), we have

P (|φ2(θ̂n)− d2(θ0)| ≥ ρ/4) ≥ P (|φ2(θ̂n)− d2(θ0)| ≥ ρ/2− oP (1), |oP (1)| ≤ ρ/4) (A.15)

≥ P (|φ2(θ̂n)− d2(θ0)| ≥ ρ/2− oP (1))− P (|oP (1)| > ρ/4),(A.16)

since for any events A and B, we know that P (A,B) ≥ P (A)−P (Bc), Bc being the complementary

event of B. Moreover, Inequality (A.14) being the consequence of both θ̂n ∈ Θ and |θ̂n − θ0| ≥ δ0,

and for all events A ⊂ B ⇒ P (A) ≤ P (B), we deduce that

P (|φ2(θ̂n)− d2(θ0)| ≥ ρ/4) ≥ P (θ̂n ∈ Θ, |θ̂n − θ0| ≥ δ0)− P (|oP (1)| > ρ/4) (A.17)

≥ P (|θ̂n − θ0| ≥ δ0)− P (θ̂n /∈ Θ)− P (|oP (1)| > ρ/4) (A.18)

≥ ε0 − o(1) → ε0 (A.19)

as n →∞, which contradicts (5). Therefore, we must have θ̂n
P−→ θ0.
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A.2 Proof of Theorem 2

Using conditions (d) and (e), the central limit theorem leads to

φ2(θ0)
D−→ N

(
d2(θ0),

V art ln f(X; θ0)
n

)
. (A.20)

Suppose now that θ̂n
P−→ θ0. Since we proved in Theorem 1 that ∇φ2(θ0)′(θ̂n − θ0) = oP (1), then

Taylor expansion (A.1) and Slutsky's theorem allow to conclude that (6) holds.

APPENDIX B: SELECTING AN ESTIMATOR OF THE VARIANCE

The problem is to study, in the case of a correct model, behaviour of two possible estimators

of the variance v(θ0) = V arθ0 ln f(X; θ0) which are v(θ̂n) = V arθ̂n
ln f(X; θ̂n) and Vn(θ̂n) =

∑n
i=1(ln f(Xi; θ̂n) − `(θ̂n)/n)2/n. First, we show consistency of both. Then, we compare them

through the mean squared error criterion and also performance of the test in the context of the

simple mixture case (Section 3.1).

B.1 Consistency of both estimators

Proposition 1. Suppose that conditions (a), (b), (c), (e) and (f) are satis�ed.

If θ̂n
P−→ θ0, then v(θ̂n) P−→ v(θ0) and Vn(θ̂n) P−→ Vn(θ0).

Proof First, using condition (c), Taylor expansion of v(θ̂n) gives

v(θ̂n) = v(θ0) +∇v(θ0)′(θ̂n − θ0) + oP (|θ̂n − θ0|). (A.21)

Then, condition (f) and convergence θ̂n
P−→ θ0 involve that v(θ̂n) P−→ v(θ0).

In the same manner, Taylor expansion of Vn(θ̂n) is

Vn(θ̂n) = Vn(θ0) +∇Vn(θ0)′(θ̂n − θ0) + oP (|θ̂n − θ0|). (A.22)

By SLLN, conditions (e) and (f) been veri�ed, we have Vn(θ0)
a.s.−→ v(θ0) and ∇Vn(θ0)

a.s.−→ ∇v(θ0).

Consequently, Vn(θ̂n) P−→ v(θ0).

B.2 Empirical comparison of both estimators

We propose to compare by simulation the two candidates with (i) the mean squared criterion

(mse) and (ii) their performance on the test. Remember that mse of an estimator H for a real
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value h is de�ned by

mseh[H] = V arh[H] + (Eh[H]− h)2. (A.23)

We consider the simple mixture case (Section 3.1) with the same experimental conditions . Figure 1

of the appendices displays both mse (in the case where θ̂n is the global maximizer) and the power

of the test at signi�cance level α = 0.05. Clearly, mse is lower for v(θ̂n) and it leads also to a better

power for small sample sizes.

[Figure 1 about here.]

APPENDIX C: OTHER PROPOSITIONS AND PROOFS

Proposition 2. If conditions (a)-(d) are satis�ed, then Etφ(·) is continuous.

Proof For any sequence of parameters (θn) in Θ such that θn → θ as n → ∞ with θ ∈

Θ, consider the corresponding sequence of functions (ϕ(x; θn)). From condition (c), ϕ(x; ·) is

continuous and, so, ϕ(x; θn) → ϕ(x; θ) pointwise. Moreover, condition (d) gives

Et sup
n
|ϕ(X; θn)| ≤ Et sup

n
|ϕ1(X; θn)|+ Et sup

n
|ϕ2(X; θn)| < ∞. (A.24)

The dominated convergence theorem implies that Etϕ(X; θn) → Etϕ(X; θ). Recall that Etϕ(X; ·) =

Etφ(·) to conclude that Etφ(·) is continuous for any θ ∈ Θ.

Proposition 3. If X has normal density ψ(x; µ, σ2) with mean µ and variance σ2 then

Eµ,σ2 ln ψ(X; µ, σ2) = −1
2

ln σ2 − 1
2
− 1

2
ln(2π) (A.25)

and

V arµ,σ2 ln ψ(X; µ, σ2) =
1
2
. (A.26)

Proof From ln ψ(X; µ, σ2) = − ln(σ2)/2− (X − µ)2/(2σ2)− ln(2π)/2, (A.25) is obvious and

(A.26) is proven in the following way:

V arµ,σ2 ln ψ(X; µ, σ2) =
V arµ,σ2(X − µ)2

4σ4
(A.27)

=
Eµ,σ2(X − µ)4 − E2

µ,σ2(X − µ)2

4σ4
(A.28)

=
3σ4 − σ4

4σ4
=

1
2
. (A.29)
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Proposition 4. Let X1, . . . , Xn
i.i.d.∼ ψ(x; θ0, θ

2
0), X̄ =

∑n
i=1 Xi/n and with χ̄ =

∑n
i=1 X2

i /n. If

θ̂n is the consistent solution of the likelihood equation, then

V arθ0φ2(θ̂n) = V arθ0





[
−1 +

√
1 + 4

χ̄

X̄2

]−1


 . (A.30)

Proof Direct calculus shows that

`(θ)
n

= −1
2

ln θ2 +
X̄

θ
− χ̄

2θ2
− 1

2
− 1

2
ln(2π) (A.31)

and so, using (A.25) in Proposition 3, we obtain

φ2(θ̂n) =
X̄

θ̂n

− χ̄

2θ̂2
n

. (A.32)

Maximizing `(θ) leads to two roots

θ̂(1)
n =

1
2

(
−X̄ +

√
X̄2 + 4χ̄

)
and θ̂(2)

n =
1
2

(
−X̄ −

√
X̄2 + 4χ̄

)
, (A.33)

but only θ̂
(1)
n is consistent since it is easy to see that θ̂

(1)
n

P−→ θ0 whereas θ̂
(2)
n

P−→ −2θ0. Then,

after some algebra, conclusion follows.

Proposition 5. Consider the normal density f(x; θ) = ψ(x; µ, σ2) where θ = (µ, σ2). Denoting

by θ̂n the (unique) solution of the likelihood equation, we have φ2(θ̂n) = 0.

Proof Since θ̂n = (µ̂n, σ̂2
n) with µ̂n =

∑n
i=1 Xi/n and σ̂2

n =
∑n

i=1(Xi − µ̂n)2/n, we obtain

`(θ̂n)
n

= −1
2

ln σ̂2
n −

1
2n

n∑

i=1

(Xi − µ̂n)2

σ2
n

− 1
2

ln(2π) (A.34)

= −1
2

ln σ̂2
n −

1
2
− 1

2
ln(2π). (A.35)

Then, if Y ∼ f(x; θ̂n), Equation (A.25) in Proposition 3 allows to write

Eθ̂n
ln f(Y ; θ̂n) = −1

2
ln σ̂2

n −
1
2
− 1

2
ln(2π). (A.36)

We conclude by noting that, by de�nition, φ2(θ̂n) = `(θ̂n)/n− Eθ̂n
ln f(Y ; θ̂n).
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Example 1 from Gan & Jiang − Significance level : α = 0.05
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Figure 1. Comparison of estimators v(θ̂n) and Vn(θ̂n) in the simple mixture case respectively with:
(a) mse criterion and (b) power of the test.
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