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The morphology of built-up landscapes in Wallonia 
(Belgium): a classification using fractal indices 
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Abstract 
 
The spatial pattern of built-up areas within a NUTS-1 European region (Wallonia in 
Belgium) is analysed using fractal indices. Methodologically, this paper illustrates the 10 
usefulness of fractal indices in measuring built-up morphologies, and also shows that 
clustering techniques have to be adapted for the non-Euclidean nature of the fractal 
measurements. An expectation maximisation algorithm (EM) combined with a Bayesian 
information criterion (BIC) is used . Empirically, we show that fractal indices partition 
the region into sub-areas that do not correspond to “natural landscapes” but result from 15 
the history of urbanisation. Urban sprawl seems to affect most communes, even the 
remotest villages: traditional (compact, ribbon, etc.) villages are transformed into more 
complex and heterogeneous shapes. These indices seem to be useful for characterising 
and understanding the built landscapes, as well as for modelling and planning urban 
realities. 20 
 
 
Keywords: fractal dimension, built-up geometry, pattern analysis peri-urbanisation, 
Belgium.  
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1. Introduction 

Landscapes result from numerous processes that interact spatially and temporally. 
Landscapes are often analysed in terms of natural and land-use components. The 
anthropogenic effect is often discussed in terms of deforestation, ecological and/or land 
use changes, etc. This paper is limited to one often-neglected component: the spatial 5 
arrangement of buildings. By means of fractal indices, we capture the morphology of 
the built environment (built-up surfaces) within one European NUTS-1 region, measure 
their diversity/resemblance and see how much recent residential practices have affected 
the built landscape. In other words, how much urban sprawl has modified the original 
aspect of the built-up regions.  10 

It is well known that urbanisation modifies the traditional landscape, often making the 
distinction between urban and rural areas quite unclear (see  e.g. Champion, 1989). 
Cities correspond to very large patches, and suburban landscapes are characterised by a 
wide variety of land uses, creating complex and diverse landscapes consisting of a 
highly fragmented mosaic of different forms of land cover and a dense transport 15 
infrastructure (see e.g. Antrop, 1997, 2000; Antrop and Van Eetvelde, 2000). In a 
country such as Belgium (small and highly urbanised), urbanisation affects the remotest 
villages.  

Recent explosive urban growth has led to a particular and interdisciplinary scientific 
interest in urban peripheries, that is to say mixed areas where urban and rural spaces 20 
compete (see Johnson, 2001; Longley and Mesev, 2002; Caruso, 2002; Caruso et al., 
2005; Cavailhès et al., 2002, 2004). Indices for defining and measuring sprawl (density, 
continuity, concentration, clustering, centrality, nuclearity, mixed uses, proximity, etc.) 
have been widely discussed. Many of the standard metrics are, however, highly 
correlated and very few take into account the relative location of the buildings (see e.g. 25 
Galster et al., 2001; Wolman et al., 2005).  In this paper, the potentialities of fractals for 
measuring the spatial organisation of built surfaces are explored.  

Fractals have been used for more than four decades for the description of outlines and 
surfaces, and have generated a large number of papers in various scientific disciplines 
(geology, biology, landscape analysis, architecture, physics, remote sensing, etc.) 30 
including landscape analysis (see e.g. Milne, 1991; McGarigal and Marks, 1995). By 
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definition, a fractal is a rough or fragmented geometric shape that can be subdivided 
into parts, each of which is (at least approximately) a smaller copy of the whole. 
Fractals are generally self-similar and independent of scale. The use of fractals in urban 
analysis was mainly developed in the 1990s. Early papers showed that cities can be 
conceptualised as fractals at several interrelated scales. In many papers, each city is 5 
considered individually and studied as a unit; fractality is then measured for that unit at 
one or several periods of time. The fractal dimension is then considered as a global 
measure of surface coverage (see e.g. Arlinghaus, 1985; Batty, 2005; Batty and 
Longley, 1994; Benguigui et al., 2000; Frankhauser, 1994; Goodchild and Mark, 1987; 
Longley and Mesev, 2000, 2002; MacLennan et al., 1991; Schweitzer and Steinbrick, 10 
1998; Shen, 2002; Wentz, 2001; White and Engelen, 1993).   

However, detailed measures of spatial distribution are clearly needed to complement the 
description of the morphology of an urban area (for examples, see Badariotti, 2005; 
Batty and Xie, 1996; Benguigui and Czamanski, 2004; Carvalho and Penn, 2004; 
Frankhauser, 1998; Schweitzer and Steinbrick, 1998; Tannier and Pumain, 2005). 15 
Fractal analyses provide synthetic measures of complexity, and thereby allow a 
numerical characterisation of places. Benguigui and Czamanski (2004) proved that 
fractality implies that a city possesses a similar structure at several different scales. This 
suggests the presence of some hidden process that operates at different urban scales and 
generates similarity. 20 

This paper uses fractals at a local level: it considers the morphology of the built space 
within each commune (administrative entity), the 2D spatial organisation of the 
buildings.  Theoretically, we suspect that villages created in the same “natural 
landscape” by the same (or almost the same) process(es) will show similarities in their 
spatial organisation and thus be fractally similar. The analysis is performed within an 25 
entire NUTS-1 region (Wallonia, Belgium), made up of urban, suburban, peri-urban and 
rural areas. Fractal indices are computed for each commune: the geometry of patches 
created by a common landscape transformation process should be statistically similar, 
i.e. their fractal dimensions and their form factors should be alike. The objectives here 
are to analyse the fractal dimension of all built-up surfaces and their perimeters; to 30 
consider to what extent they are alike within a heterogeneous region (Wallonia); to test 
whether the computed fractal geometry is indicative of a common historical, 
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geographical and/or planning process; and to test whether different types of built-up 
landscapes can be detected using appropriate clustering techniques. In other words, we 
want to propose a map of fractal indices (footprints) defining types of built landscapes 
in Wallonia.  

The paper is organised as follows. Section 2 shows how the concept of fractal 5 
dimension fits the objectives. Section 3 explains the classification method used for the 
fractal dimensions. Section 4 briefly describes the area being studied and the data used; 
and Section 5 discusses the main results. Our conclusions are reported in the last 
section. 

 10 

2. Fractal dimensions of built environments 

Let us here intuitively review some general concepts of fractal dimension and explain 
how they fit our objective. Extensive mathematical formulations can be found in 
Mandelbrot (1982), Batty and Longley (1994), Frankhauser (1994, 1998), Russ (1994), 
Mattila (1995), Farina (1998), Lam and de Cola (2002), Falconer (2002), and more 15 
recently in Batty (2005, pp. 457–514).  

2.1 Fractal hierarchy 

By definition, fractal behaviour is associated with a scaling principle that governs how 
the constituent elements of a structure are distributed in space. The best way to illustrate 
this property is to look at how a theoretical fractal is constructed by iteration (see Figure 20 
1). Here, the initiator is a square of length l �  (see Figure 1a) which is then reduced by a 
factor r = ¼ into N = 8 elements. These elements are smaller replicates of the initiator 
with base length l �  = r l � , and they are organised within the area of the initial figure 
which is now called a generator (Figure 1b). Figure 1c, the first iteration, is obtained by 
repeating the process. A cluster hierarchy emerges, with large free lanes generated in 25 
the first step and smaller lanes separating the elements generated in the next step. The 
hierarchical aspect becomes obvious as smaller and smaller elements lying closer and 
closer together are generated in further steps.  
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Figure 1c shows that the clusters generated in the course of the iteration are distributed 
in a non-uniform way since the spaces separating the clusters are different. Fractal sets, 
such as the Fournier dust in Figure 1, can be characterised by their fractal dimension D, 
which describes the non-uniform distribution of the elements in space: the closer D is to 
2, the more homogeneous the structure is (i.e. the more similar the width of the lanes 5 
separating clusters – see Figure 5b). For constructed fractals, D may directly be linked 
to N and r, the parameters of the generator (Mandelbrot, 1982). We should emphasise 
that D does not depend on the shape of the initial figure, or on the position of the 
elements in the generator. This is illustrated in Figure 2, where different generators are 
compared in which N, r and D are the same.  10 

Another feature of Figure 2 is also important: in all the generators illustrated there, the 
elements are contiguous. Hence, in all the iterations, the fractal consists of one cluster. 
Such fractals are called Sierpinski carpets (see, for example, Batty, 2005, p. 503; 
Frankhauser, 1994; Mandelbrot, 1982). In Figure 2c it is unclear that the fractal really 
consists of one cluster, since the initial figure is a black central square surrounded by 15 
white lanes. However, the difference between the logic of the Sierpinski carpet and that 
of the Fournier dust becomes more obvious when the next iteration is considered 
(Figure 3). In Figure 3a, the Sierpinski carpet, all the lanes separating the black squares 
have the same width. This is not the case in Figure 3b, the Fourier dust, where the lanes 
follow a well-defined hierarchy. Hence the spatial hierarchy is stronger in the Fourier 20 
dust and so the fractal dimension is lower. This is confirmed by looking at the 
parameters of the generator. For both fractals, the number of elements in the generator is 
N = 8, but since the reduction factors, r, are different, the D values are also different: in 
the Sierpinski carpet D = 1.89 (as for the fractals in Figure 2), while for the Fourier dust 
D = 1.50. This example illustrates the obvious link between fractal geometry, 25 
dimensions and spatial hierarchy.  

As expected, the spatial hierarchy of Fournier dusts is closely linked to the size of the 
empty lanes. In Sierpinski carpets, this hierarchy reflects the system of unoccupied sites 
(often called lacunas) as shown in Figure 4. The hierarchy of the lacunas is more 
obvious in Figure 4a; in Figure 4b, the situation is actually the same, as can be seen by 30 
delimiting the empty squares generated at each step. Once again, the dimension 
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describes the extent to which the occupied sites are spatially distributed in a non-
uniform way. 

2.2 Fractality and urban patterns  

Urbanisation is a complex process to which a large number of public and private 
decision-makers contribute. The exact processes that control and produce the 5 
development of built-up landscapes are still not well understood (see e.g. Bartel, 2000; 
Van Eetvelde and Antrop, 2005). Several investigations (see references in the 
introduction) have shown that using fractal measures is a powerful tool for describing 
the morphology of sprawling urban patterns. This must be considered as a hint that the 
complex underlying socio-economic interactions generate built-up forms that can be 10 
described by means of a few morphological parameters, in particular by fractal 
dimension(s).  

Such observations are well-known in theories of self-organisation and complex systems. 
They were first introduced in the context of phase-transition phenomena (Haken, 1977). 
In such systems, parameters that characterise a well defined organisation at a macro-15 
scale are usually called “order parameters”. The use of this concept does not require a 
detailed knowledge of the underlying micro-processes, such as individual decisions. 
Hence, authors such as Weidlich and Haag (1983) and Haken (1977) have focused on 
the possibility of considering macrostructures stemming from socio-economic processes 
without tackling the underlying micro-processes. Frankhauser (1998) referred to such an 20 
approach in showing that the more an urban agglomeration grows, the more the spatial 
organisation of the built-up surfaces accords with a fractal distribution law.  The present 
paper considers the fractal dimension as an order parameter. This does not exclude the 
possibility that this kind of macroscopic order may be more or less present in any given 
pattern.  25 

2.3 Measuring the fractal dimension of urban patterns 

Section 2.1 has shown that there is a direct link between N and r (the parameters of the 
generator) and D (the value of the fractal dimension) in constructed fractals. However, 
empirical structures do not derive from theoretical iterations. Moreover they are less 
symmetric than constructed fractals. We might expect that built-up surfaces are spatially 30 
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distributed according to the same type of law that holds for constructed fractals, in 
which case we can interpret urban patterns as random fractals (Frankhauser, 1994; 
Mandelbrot, 1982). To test this theory, we use cartographic representations of 
settlements. The black pixels represent built-up surfaces (buildings) and are called 
“occupied sites”. In order to compute the fractal dimension, the cartographic 5 
representation is displayed on a computer screen;  a rectangular zone is selected within 
that screen and called the “window”. The fractal dimension describes the spatial 
organisation of the buildings within that window. 

Several methods have been developed to test the extent to which the spatial organisation 
of empirical patterns follows a fractal law and to estimate their fractal dimension(s). 10 
Correlation analysis is one of these methods. Comparative investigations have shown 
that this method is reliable for analysing both surface and boundary dimensions, and for 
making comparisons, even when there are slight variations in the window’s size and 
position (see e.g. Frankhauser, 2004; Badariotti, 2005). An occupied pixel I is chosen as 
the counting centre and the number N � (ε) of occupied pixels lying within a distance ε 15 
from this centre is counted. This number is called the “number of pair correlations”. The 
procedure is repeated for each occupied site i. The mean number N(ε) of all N � (ε) is then 
computed and the procedure is repeated for other values of ε (see e.g. Vicsek, 1989). If 
the occupied pixels of an urban pattern follow a fractal distribution law, the relation  

 N(ε) ∝ ε 
� [1] 20 

between the mean number N(ε) and ε is obtained. The Fractalyse software (developed by 
Vuidel, Frankhauser and Tannier and freely downloadable from http://fractalyse.org) is 
particularly suitable for studying the fractal dimension of built-up patterns and transport 
networks, and we employed it to analyse our data. 

When investigating real world patterns, it is useful to introduce a generalised fractal law 25 
that contains (in addition to D) two other parameters: 

             N = a ε�  + c        [2] 

The prefactor a summarises various deviations from the fractal law (Gouyet, 1996). 
Such deviations may be due to the presence of huge lacunas (which can exist even in 
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structures that exhibit strict fractal scaling behaviour) in the selected window. Another 
reason for deviations may be that the structure being studied consists of n identical 
fractals. In this case, the number of correlations is simply multiplied by n at each scale, 
what yields simply to a = n.. In real-world structures, we do not expect the distribution 
of built-up areas to follow a strictly fractal law. Such random deviations will be 5 
measured globally by the value of a.  

In many cases, the fractal behaviour is constant over a certain range of distances ε �  to ε � , 
which corresponds to a fractal dimension of D � . However at distance ε � , the fractal 
behaviour changes; another fractal behaviour corresponding to a value D �  is observed. 
In order to ensure a correct estimate for D �  it is necessary to introduce a constant c 10 
(Frankhauser, 1998). The values of the prefactor a and the constant c are controlled in 
our empirical analyses, but not thoroughly studied.  

2.4 Fractal dimension versus density  

The information captured by fractal dimension measured on surfaces has nothing to do 
with density (see e.g. Batty, 2005; Batty and Kim, 1992; Batty and Xie, 1996; Thomas 15 
et al., 2007). This can be illustrated intuitively by an example. Figure 5a shows the 
second iteration of the fractal shown in Figure 3a, which consists of 64 black squares. In 
Figure 5b, the same number of squares (64) has been arranged in a uniform way in the 
same area. Hence the density is exactly the same in both examples. This does not hold 
for the fractal dimension: in the uniform distribution (Figure 5b) D is equal to 2.00, 20 
whereas in Figure 5a D = 1.89. When comparing the two subsequent steps, it is obvious 
that the total black area decreases as the iterations continue. Hence, in fractals, the 
density changes in subsequent iterations, while D remains the same. Density is a 
descriptor that is not suitable for fractals. 

Spatial structures characterised by D = 2.0 correspond to structures where the occupied 25 
sites are distributed uniformly. The other limiting case is that of several isolated points, 
which has a fractal dimension of 0.0. D = 1.0 represents a threshold in fractals: when D 
is smaller than 1.0 the structure comprises a set of unconnected points such as a 
Fournier dust. D describes the extent to which the set of built-up sites are concentrated 
in clusters at different scales, or, in other words, the degree to which a set of built-up 30 
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sites fills the space in which it is embedded at different scales (see Frankhauser (1994) 
and Thomas et al. (2007) for further discussion of this point).  

2.5 Fractal dimensions of borders 

It is also possible to apply the concept of fractal dimensions to urban boundaries. 
However, when looking at real world patterns such as that illustrated in Figure 6a, urban 5 
boundaries do not exist as such: a settlement consists of disconnected houses (or blocks 
of houses) and hence looks more like a Fournier dust than a Sierpinski carpet. 
Nevertheless, it is well established that it is possible to identify urban boundaries by 
using simplified representations of urban patterns. Such boundaries have already been 
studied by means of fractal geometry (see e.g. Batty and Longley, 1994; Frankhauser, 10 
1994).  

In this paper, a procedure based on dilation was used to extract urban boundaries. To 
this end the buildings represented as black surfaces on the map are dilated in a stepwise 
procedure. Hence initially separated buildings touch neighbouring ones at a certain step 
and large clusters appear in the course of the procedure. Boundaries can be seen (Figure 15 
6c) and may be identified as an approximation of the urban border. Investigations have 
shown that large clusters emerge after just a few dilation steps, when courtyards and 
small streets are filled in (Figure 6b). This method is explained in more detail by De 
Keersmaecker et al. (2003) and a mathematical justification was recently given by 
Frankhauser and Tannier (2005).  20 

The dilated patterns consist of a few clusters corresponding to large settlements, with a  
large number of small villages, hamlets and isolated farms. Such a hierarchical system 
can be illustrated theoretically by combining Sierpinski carpets and Fournier dusts as 
shown in Figure 6d. Sierpinski carpets provide the possibility of modelling tentacular 
structures with tortuous boundaries (as in Figure 4b), whereas Fournier dusts add the 25 
possibility of creating detached elements. Combining these two types of fractal allows a 
cluster hierarchy to be generated, as shown in Figure 6d. Several tests (not reported 
here) have shown that the results are quite stable when the boundaries are extracted after 
different steps in the dilation process. However, the boundaries become progressively 
smoother and empty intra-urban space is filled up as the dilation process continues, 30 
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which may affect the fractal dimension. Hence it is recommended that dilation be 
limited to a few steps; in this paper it is limited to three. 

The fractal dimension of boundaries is denoted D�
	���
 , while that of surfaces is denoted 
D ����� � . For topologically linear objects D�
	���
  characterises the extent to which they cover 
space in a uniform way. It is obvious that the boundary of the fractal in Figure 6d does 5 
not cover space in a uniform way, but it is possible to imagine linear fractals that would 
do so.  

2.6 Borders versus surfaces 

The ratio of D�
	���
 to D ����� �  has been used in empirical studies (e.g. Imre and Bogaert, 
2004). Its meaning can be elucidated by using a fractal relationship for both the border 10 
and the surface: 

  [3] 

  [4] 

Equation [3] shows that, by re-writing the fractal relationship for the surface, we obtain 
a relationship between the distance parameter ε and the number of elements N ����� �  (ε). By 15 
inserting this in the fractal relationship for the border, we can link the length of the 
border N�
	���
 (ε) directly to the surface occupation N ����� � (ε) by means of a scaling 
exponent which is simply the ratio D�
	���
 / D ����� �  (Equation [4]). In a sense, this ratio 
measures the compactness of a structure. Geometrical objects such as squares or circles 
have smooth borders and compact uniform inner surfaces without lacunas. Their 20 
dimensions are D�
	���
 = 1 and D ����� �  = 2 and thus D�
	���
 / D ����� �  = 0.5. This is the minimum 
value of the ratio. For fractals, the borderlines have higher D values and the surfaces 
may have values lower than 2. For teragons, D ����� � = 2 and 1<D�
	���
  <2, and the ratio 
varies between 0.5 and 1.0. For Sierpinski carpets D�
	���
 / D ����� �  = 1, since the two 
dimensions are identical and D�
	���
 = D ����� � . We might expect this to be the maximum 25 
value of the ratio. However we will come back to this question when dealing with real-
world patterns of built-up areas. Like all ratios, D�
	���
 / D ����� �  is ambiguous: multiplying 
both the numerator and the denominator by the same factor does not affect its value. 
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Hence we obtain the value 1 not only for Sierpinski carpets, but also for straight lines, 
since D1
2�3�4 =D 5�6�3 7  =1.  

The objective now is to see how D values obtained for observed built-up structures vary 
within a region: do places close to each other look alike? As the ratio of D values is not 
sufficient, the following section develops a clustering method. 5 

 

3. Classifying fractal dimensions 

3.1 The problem 

In spatial analysis, it is interesting not only to characterise the morphology of each 
pattern, but also to test whether it is possible to use morphometric parameters to 10 
distinguish patterns that are linked to particular historical or geographical topics. For 
instance, we might expect that settlements which grew up during early periods of 
industrialisation would show different patterns to sprawling peri-urban villages or 
villages located in rural regions. Recent observations seem to confirm such a 
hypothesis: the comparative study of samples of built-up environments shows that 15 
different types of urbanisation generate patterns that correspond to typical ranges of 
fractal dimensions (Badariotti, 2005; Thomas et al., 2007). However this has not been 
tested using appropriate clustering methods.  

For several reasons, statistical clustering procedures may be an interesting alternative to 
ratios in distinguishing homogeneous and meaningful classes of settlements as 20 
described by morphometric indicators. First, such procedures often allow some 
traditional non-statistical methods, for instance geometric-based methods, to be used 
and generalised. Moreover, the underlying probabilistic hypotheses suggest a formal 
context for selecting models, the number of classes in a model being of particular 
interest. Consequently, we adopted a model-based clustering method to address the 25 
classification problem.  

3.2 A solution 
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The aim here is to define clusters of places characterised by similar fractal dimensions 
of their borders and/or surfaces. In more formal terms, the purpose is to estimate an 
unknown partition P of a collection of n places x={x 8 ,...,x 9 } with x :=(D ;=<�>�?@: ,D ACB�> DE: ) into K 
clusters. Since the places x F  are continuous observations in G , mixtures of bivariate 
Gaussian distributions may be used. Indeed, such a model provides a powerful and 5 
nowadays standard tool for clustering (see references in McLachlan and Peel, 2000). In 
this context, x 8 ,...,x 9  are assumed to arise independently and identically distributed 
(i.i.d.) from a mixed distribution with density 

                ( ) ( )HH
I

JH
H Σ,µx;φp=θx;f ∑K  [5] 

where p L  is the proportion of the k M N  cluster (p O +...+pP =1, p Q >0) and φ(x;µ,Σ) is the 10 
bivariate Gaussian distribution with mean µ and variance matrix Σ. The parameter for 
the whole mixture is denoted by θ=(p R.S ...,pPUT µ O ,...,µP ,Σ O ,...,ΣP ). As the attentive reader 
will have noticed, the underlying idea of model-based clustering is to link each cluster 
to each Gaussian mixture component. 

An estimate P' of the partition P may easily be obtained from the estimate θ' of the 15 
mixture parameter θ by invoking the maximum a posteriori procedure (which consists 
of assigning each place x V  to the cluster k having the largest conditional probability that 
x W arises from it). Then 

( ) ( )
( )'Σ,'µ;xφp

'Σ,'µ;xφp=θ';xt
XXY

Z
X\[ X

]]Y]Y]
∑̂

[6] 

An estimate θ' can be obtained by maximising the log-likelihood given by 20 

( ) ( )( ).ln_ θ;xf=xθ;L `
a

b∑̀ [7] 

Maximising L(θ; x) is generally performed using the expectation maximisation (EM) 
algorithm, which is an iterative procedure well adapted to incomplete data structures 
(Dempster et al., 1977). 
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The Gaussian density model leads to an ellipsoidal class with centre µ c�d  whose 
geometric characteristics can be deduced from the eigenvalue decomposition of the 
variance matrix Σ c . Following Banfield and Raftery (1993) and Celeux and Govaert 
(1995), each mixture component variance matrix can be written as 

efffff BABλ=Σ ,                                  [8] 5 

where λ g  = det(Σ g ) h�i j  , B g  is the matrix of eigenvectors of Σ g , and A g  is a diagonal matrix 
such that det(A k )=1 with the normalised eigenvalues of Σ k  on the diagonal in decreasing 
order. The parameter λ k  determines the volume of the k l m  cluster, B k  determines its 
orientation and A k  its shape. By allowing some of these quantities to vary between 
clusters, parsimonious and easily interpreted models can be obtained, which are useful 10 
in describing various clustering situations. Varying the assumptions concerning the 
parameters λ k , B k  and A k  leads to fourteen models of interest, divided into three main 
families. From the simplest to the most complex these are the spherical family (A k  is the 
identity matrix), the diagonal family (B k are permutation matrices and so Σ k  are diagonal 
matrices), and the general family (other situations). Celeux and Govaert (1995) identify 15 
a specific maximisation step of the EM algorithm for each of these 14 models. 

Aside from these geometrical features, another important parameter of the k l m  cluster is 
its proportion p k . Two typical situations are generally considered with regard to 
proportions: it is assumed that they are either equal or free. Combining these alternative 
assumptions with the 14 previous models produces 28 different models. 20 

It is worth noting that some of these 28 models shed new light on some standard 
clustering criteria that have been proposed without reference to any statistical model. 
For instance, Ward’s (1963) K-means criterion corresponds to the simplest of the 
models in the spherical family when the mixing proportions are equal. The criterion 
suggested by Friedman and Rubin (1967) is obtained with the simplest model of the 25 
general family (corresponding to the homoscedastic situation). Celeux and Govaert 
(1992) present a survey of such cases. 

There is now a need to select one of the 28 models (denoted by M) and K, the number of 
clusters. Schwarz’s (1978) Bayesian information criterion (BIC) is generally relevant to 
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performing such a selection. It is expressed as the following penalisation of the 
maximum log-likelihood value  

( ) ( )nopqrtsuvwyx{z |}E~|}E~|}E~ �,��−           [9] 

where ν��� �  denotes the number of parameters to estimate (in other words, the dimension 
of θ) and θ'��� �  denotes the maximum likelihood estimate of θ. The couple (M,K) 5 
yielding the largest value of BIC is then retained. 

In many situations, practitioners decide to perform the Gaussian clustering procedure on 
a one to one transformation g(x) = {g(x � ),...,g(x � )} of the initial data set instead of on the 
initial data set x itself. The reasons are generally either that the new data set g(x) either 
“seems to have a better Gaussian mixture shape” than x, or that its unit has a particular 10 
meaning for the practitioner. Typically, standard transformations are g(x)=exp(x) or 
g(x)=ln(x). The first transformation expresses data in the same units as N(ε), which is a 
more traditional quantity than D for many geographers. This may be sufficient reason to 
consider such a transformation. To avoid the difficult task of proposing and justifying a 
particular transformation, the practitioner may use the statistical framework to choose 15 
one of the suggested transformations automatically. We describe this interesting and 
innovative feature below. 

It is possible to interpret any transformation as another kind of model which is no longer 
a Gaussian mixture model (as the previous model M was). Indeed, if the new sample 
g(x) arises i.i.d. from the Gaussian mixture density f(x; θ) then the initial sample x arises 20 
i.i.d. from a density f � (y; θ) which is a transformation of f(x; θ) and so not necessarily a 
Gaussian mixture density. Consequently, it is possible to employ the BIC criterion to 
select this transformation, which can be used for any model. Denoting by J the Jacobian 
of the transformation g, and by θ'��� �U� � the maximum likelihood estimate obtained with 
the triplet (M,K,g), we retain the triplet (M,K,g) leading to the largest of the following 25 
BIC expressions: 

( )( ) ( ) ( )( )Jdet+nνxg;θ'L=BIC ��@��� ��@��� ��@� lnln
 2

− .            [10] 
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Note that the number of parameters ν��� �  does not depend on the transformation g. It is 
also worth noting that in many applications the selection of the transformation is 
performed in an empirical manner, and that the method proposed here allows an answer 
to this problem to be found in a formal way. We apply this classification method to 
observed fractal dimensions below, and show its usefulness in defining built-up 5 
morphologies.  

 

4. Data  

4.1 Study area 

The empirical analysis was carried out on one NUTS-1 region (Wallonia), which 10 
encompasses the southern part of Belgium. It is 16,845 sq. km large and has 3.4 million 
inhabitants. The average density is 200 inhabitants per sq. km with very large 
differences between sub-areas (see Figure 7). Administratively, Wallonia is divided into 
262 communes (townships). The population is mainly concentrated on the former 19 �

�
 

century industrial axis running from the east (Liège) to the west (Mons) and following 15 
the rivers Meuse and Sambre. North of this axis, built landscapes are strongly 
influenced by the presence of Brussels (exhibiting suburbanisation and peri-
urbanisation) especially in the Province of Walloon Brabant. In the southernmost part of 
Wallonia, communes are affected by the presence of the city of Luxembourg (rents are 
lower in Belgium than in Luxembourg and many Belgian residents commute to 20 
Luxembourg). The rest of the territory is less densely inhabited with fewer than 50 
inhabitants per sq. km in some communes of the Ardennes. Until now, Walloon 
landscapes have often been defined in terms of natural characteristics (Antrop, 1997; 
Dussart, 1957, 1961; Feltz, 2004; Van Eetvelde and Antrop, 2005).  

4.2 Database 25 

Buildings are individually identified in the Plan de Localisation Informatique (PLI) 
developed by MRW-DGATLP (2004), which is based on digitised topographical maps 
at a scale of 1:10,000 (Institut Géographique National) and on the land registry (called 
Cadastre). This database is annually updated and is available by commune. No 
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information is available about the function of the buildings (residence, public service, 
industry, service or farm), their height (number of floors), their architectural 
characteristics, or about their occupants (number of inhabitants or number of jobs within 
a building). Hence we distinguish only built-up and non built-up sites. One picture 
(raster) was extracted for each commune, where built-up sites correspond to black 5 
pixels. By means of fractal analysis the empirical relation N(ε) was determined. Let us 
here remind that N(ε) is the mean number of black pixels lying within a distance ε one 
from the other, according to relations [1] and [2]. The software Fractalyse  estimates the 
fractal dimension as well as the parameters a and c by minimising least square 
deviations between the theoretical fractal law [2] and the empirical relation N(ε). The 10 
quality of adjustment is evaluated by means of the ratio of correlation η² �  . For fractal 
analysis of urban patterns, experience shows, that the values are usually very close to η 
² = 1 (η² > 0.9999). 

Given the scale of analysis adopted here, some cartographic details are already 
smoothed: small courtyards or very narrow streets are not visible on the map. Hence the 15 
original patterns consist of clusters. Taking into account the “semi-aggregated” nature 
of the database, the patterns are reminiscent of the logic of the hybrid Sierpinski carpet. 
This is illustrated in Figure 8 where a real pattern is compared to a theoretical one that 
allows the tentacular aspect of clusters to be combined with highly tortuous boundaries 
and a hierarchy of clusters. D ����� �=� ��� is equal to 1.50 in the theoretical fractal pattern and 20 
to 1.27 in the real world example.  

D values are computed for communes, which are administrative areas. It should be 
remembered that new communes were defined in Belgium in 1977: former townships 
were aggregated into larger administrative units. This means that, morphologically, 
many communes are made up of several villages. This is particularly true in less 25 
urbanised areas, where villages have not merged. The fractal dimension is measured 
here for the entire commune and not for individual villages. This leads to the well-
                                                 �    ¡£¢¥¤¦¢ §£¨ª©\«­¬®©�¯ °\ ,©±¤E  ¡£©y²£°\¬®¢ °\§£³�©µ´ª¶·©\¸º¹»¢ ¬®¢ ³�°�¯
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known MAUP (modifiable areal unit problem):  we know that D values for the 
communes are not simply an average of the values computed for the villages. Choosing 
to handle villages separately would, however, be quite tricky in urban and peri-urban 
areas. Moreover, former villages no longer correspond to functional administrative 
entities.  5 

As each commune is analysed separately, the size of the window varies. This may lead 
to slight differences in the values of the indices, but it does not affect the general 
conclusions (see Thomas et al., 2007). The window is defined as the smallest rectangle 
including the commune. Fractal dimensions are computed for the original database 
(D Ï�Ð�Ñ Ò=Ó Ô�Õ ) as well as on slightly dilated patterns (D Ï�Ð�Ñ Ò=Ó Ô\ÖØ× DÙ
Ú�Ñ�Ô\Ó Ô\Ö ). We expect these 10 
dimensions to vary in space and to illustrate the diversity of built environments.  

 

5. Results  

5.1 Fractal dimensions 

The fractal dimensions computed for the built-up surfaces of the 262 communes are 15 
often (but not always) larger than those computed for their borders (see Section 5.2 
below), and the observed variation in D values is larger for D Ï�Ð�Ñ Ò  than for DÙ
Ú�Ñ�Ô .  D 
values are far from revealing a compact pattern of built-up areas: compactness would 
give values of D Ï�Ð�Ñ Ò  ≈2 and DÙ
Ú�Ñ�Ô ≈1, but the history of urbanisation seems to have led to 
a large variety of morphologies in Wallonia.  20 

Some of the fractal dimensions observed on the original (not dilated) surfaces (D Û�Ü�Ý Þ=ß à�á ) 
are smaller than 1.0.  This means that the built-up sites are mostly isolated one from the 
other; this looks like Fournier dusts that consist in a fractal arrangement of isolated 
sites. In a settlement pattern, such a situation corresponds to small dispersed villages in 
areas which are not densely built-up and communes mainly comprised of isolated 25 
hamlets.  

In addition, the significance of these small values is relatively low compared to that of 
other measurements (η² < 0.9999). Note that when slightly dilated, the fractal 
dimension for surfaces (D Û�Ü�Ý Þ=ß à\â ) is always larger than 1.0, and the same is true for 
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borders (Dã
ä�å�æ\ç æ\è ). Remember that values of D é�ê�å ë  close to 2.0 correspond to perfect 
homogeneity, while values equal to 1.0 correspond to a line (that is to single-street or 
ribbon villages).  

D é�ê�å ë=ç æ\è  and Dã
ä�å�æ\ç æ\è  are positively and significantly, but not perfectly, correlated 
(Pearson correlation = 0.806). For Sierpinski carpets the two dimensions would be 5 
equal, but, as we have already seen, this is not true for teragons. Hence, the two 
dimensions do not correspond to exactly the same realities. This is also true for D é�ê�å ë=ç æ�ì  
and Dã
ä�å�æ\ç æ\è (Pearson correlation =0.642). If we eliminate D values less than 1.0 (due to 
their low significance levels), then these two correlation coefficients become 0.732 and 
0.507 respectively. The morphology of the borders is different than that of the surfaces 10 
(although the two measures are certainly not independent): D é�ê�å ë  and Dã
ä�å�æ  involve 
different ways of describing the geometry of built-up areas.  

5.2 Ratio of dimensions 

5.2.1 The paradox of Walloon urbanisation: an example  

As mentioned in Section 2.6, it is common practice to compute the ratio of Dí
î�ï�ð  to 15 
D ñ�ò�ï ó . In this study this ratio is normally distributed, and generally larger than 1.0. This 
result is mathematically counter-intuitive, since 1.0 is logically the upper limit of the 
ratio. In our analyses, Dô
õ�ö�÷\ø ÷\ù  is only smaller than D ú�û�ö ü=ø ÷\ù  in a few communes: the 
border (perimeter) of the urban patch is less homogeneous than the surface of the built-
up area, especially in very densely built-up communes. This surprising result spurred us 20 
to analyse several communes in detail. The results from one of them, Le Roeulx, are 
reported here.  

Parameters were estimated for the entire range of distances (1 to 143 pixels) as well as 
for reduced ranges of distances, selected with respect to the shape of the empirical 
function N(ε) i.e. taking into account thresholds in the empirical functions (estimation 25 
results see Table 1). Hence the chosen ranges may not be the same for the surface and 
the border analysis. The quality of the adjustment is again here noted η². We know 
from experience that η² values should be higher than 0.9999. This is not the case for the 
largest range of surface distances. For the reduced ranges, and for the border ranges, the 
adjustments seem to be correct. The surface prefactors a (see Section 2.3) are higher 30 
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than usual in Le Roeulx. However this is not totally inexplicable, as a > 1 may indicate 
an area consisting of several former villages that all have approximately the same 
scaling behaviour.   

In order to verify whether a influences the results, some new tests were performed by 
fixing the prefactor at a = 1 and by estimating only D and c (Table 2). The η² values 5 
then suggest a lower quality of adjustment. This may be understood as indicating that 
each value a ≠ 1 allows the adjustment to be improved. The graphical comparison 
between the estimated and empirical as (Figure 9) makes this clear. When the Ds are 
considered we can see that they differ substantially between Table 1 and Table 2, for 
both surfaces and borders. Moreover in Table 1 D ý=õ�ö�÷  is always larger than D þCû�ö ü , 10 
whereas the reverse is true in Table 2. As discussed above, it makes more sense 
mathematically for D þCû�ö ü  to be larger than D ý=õ�ö�÷ . On this basis, if no other, the second set 
of results seems more realistic. 

5.2.2 An attempt at an explanation 

An explanation of these surprising results can be proposed by referring to the special 15 
features of Le Roeulx (see Appendix). Figure 10 shows the relative variations, 
dN(ε)/N(ε), by distance for both the border and the surface; it confirms that the relative 
variations of the border exceed those of the surface. This is why Dÿ������  is greater than 
D ���	� 
 , especially for small distances.  The two curves tend to the same limit for large 
distances. This seems quite reasonable: for large distances, the transient effects 20 
discussed in appendix 1 progressively disappear.  

Last but not least, and quite empirically, we should remember that nowadays communes 
consist of several villages. So two different distance ranges come into play when 
measuring the distribution of built-up areas: the intra-urban scale referring to the 
location of buildings and blocks of houses within a village, and the inter-urban scale 25 
corresponding to the position of one village with respect to the others. For intermediate 
distances both phenomena contribute to the shape of the empirical curve N(ε). Moreover 
since Walloon planning legislation has traditionally been rather weak, diffuse 
urbanisation is often observed between the villages. This can also influence the results. 
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Additional explanations can put forward. Firstly, the scale of the analysis: 
measurements are made at the level of the commune, and by definition communes differ 
in shape and size. This certainly leads to MAUP, but fractals – by their very nature – 
should not be too sensitive to this problem. Secondly, in Wallonia there are both 
urbanised and rural communes. The ratio of Dÿ������  to D ���	� 
  is smaller than 1.0 in very 5 
densely populated communes (cities). In these areas the morphology is totally different 
(see De Keersmaecker et al., 2004). And thirdly, as in many other places throughout the 
world, the administrative limits of the commune do not correspond to the real functional 
borders of the urban agglomerations: in some rare cases the town is smaller than the 
commune; in many others the city extends beyond its administrative limits. The border 10 
of the urban area is thus not included in the commune.  

This discussion suggests that fractal dimensions seem to vary sufficiently to characterise 
the morphology of the built-up surfaces, although errors and the scatter in the data 
suggest that no perfect relationship exists. There are several reasons why Dÿ������  may 
exceed D ���	� 
 in some places. Taking into account the reliability of the parameter 15 
estimation, we treat the estimated D-values as morphological order parameters, 
according to our descriptive approach. We will now map the D values in order to 
consider their spatial variation (Section 5.3) and then cluster the communes by means of 
several D values (Section 5.4). 

5.3 Mapping fractal dimensions 20 

The surface dimensions observed here are rather low compared to those observed in 
France and Germany (see e.g. Frankhauser, 1994, 2004). This means that built-up areas 
are less uniformly distributed in Wallonia than elsewhere, which may be explained by 
the rather weak control of peri-urbanisation in Belgium. Mapping fractal dimensions 
enables the spatial variation to be analysed visually. Univariate choropleth maps were 25 
drawn for the entire region, natural breaks being used to define exploratory classes of 
values.  

Figure 11 shows the fractal dimension computed for the undilated built-up surfaces. It 
clearly reveals the urbanisation structure: D ���	
 ��� ��� is high (> 1.58) in Walloon cities along 
the 19 � �  century Sambre–Meuse industrial axis and also in some communes in the 30 
central northern part of the region due to the peri-urbanisation process along the 
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southern edge of Brussels (see communes such as Waterloo and Wavre–Ottignes–
Rixensart which could be considered as emerging edge-cities). This shows that in these 
areas the built-up surface is more uniformly distributed than in other areas. Indeed in the 
former industrialised communes (Charleroi, Liège, La Louvière, etc.), we can assume 
that the initially empty interstitial sites have been progressively filled up with time. This 5 
also holds for the areas south of Brussels where peri-urbanisation is very significant. 
D ���	� ��� ��� values between 1.57 and 1.39 characterise peri-urban communes and the western 
part of the region (Hainaut, with its specific industrial history). The southern part of 
Wallonia (Province of Luxembourg) is less urbanised, and two types of morphologies 
seem to coexist in accordance with traditional landscape/geographical analyses 10 
(Dussart, 1957; 1961; Feltz, 2004): compact (D ���	�  �! "�#  = 1.23 to 1.39) and elongated 
villages (D ���	�  �! "�#  = 1.01 to 1.23). In these elongated villages, tentacular concentrations of 
buildings along transportation axes lead to patterns with a high degree of contrast: 
almost empty corridors exist between the different built-up branches. Finally, values 
smaller than 1.0 are observed in some communes in the southern part of Wallonia. 15 
These communes are composed of isolated settlements (villages, hamlets and large 
farms) that are highly dispersed and consist of detached splashes rather than large 
clusters. In this respect they resemble Fournier dusts.  

At this stage of the analysis, the map suggests a typology of D ���	�  �! "�#  that clearly reveals 
the history of urbanisation as well as differences in morphology: it seems likely that the 20 
shape of the built-up surfaces within the Walloon communes is the result not only of 
physical characteristics (soil, relief, initial vegetation, afforestation, etc.), but also of 
human activities and land use (suburbanisation, etc.). Hence the older and more densely 
populated communes are more uniformly built up and have high values of D ���	�  ; 
medium values occur in communes with more tentacular patterns, which were more 25 
recently affected by peri-urbanisation; and more rural areas are dominated by small 
isolated “splashes” (D ���	�   <1.0). This corresponds to the different stages of peri-
urbanisation: firstly, isolated detached houses are built which correspond to 
“leapfrogging”; then “tentacular” evolution occurs where interstitial spaces are filled in 
along transportation axes; and finally the large empty lanes between the former axes are 30 
developed and a fairly uniform pattern emerges. This result accords with Benguigui and 
Czamanski’s (2004) analysis of  Tel Aviv. 
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The spatial distribution of the fractal dimension of dilated borders is shown in Figure 
12. As expected, the patter here differs slightly from the preceding one. Some densely 
populated communes (e.g. Waterloo and Liège) have relatively low D$�%���"&! "&'  values, 
while the western communes (Hainaut) (which do not, on average, have high population 
densities) have large values of D$�%���"&! "&' . This shows that in some highly urbanised areas 5 
the composition of the town is such that no large non-built-up areas remain. The 
remaining small non-built-up spaces (streets and small squares) have disappeared after 
three dilation steps. Another consequence is that the built-up space has become more 
compact. Hence such patterns show characteristics similar to teragons or even circles: 
the surface tends to be uniform and the dimension is high, whereas the borders are quite 10 
smooth (e.g. Liège). If the dimension of surfaces is low and that of borders high, the 
inner fragmentation is high: the interstitial spaces between the buildings have obviously 
not disappeared with dilation and hence we find borders of clusters within the 
settlement. In the southern part of the Walloon region, low values are also observed for 
the borders. This corresponds to the non-uniform distribution of built-up surfaces (i.e. to 15 
tentacular morphologies).  

Comparative investigations of agglomerations in other European countries have shown 
that D ���	�   in peri-urban areas lies between 1.60 and 1.87 and D$�%���"  between 1.20 and 
1.55 (Frankhauser, 2004). In general, we can conclude that surface dimensions of about 
1.7 and border dimensions of about 1.4 – 1.5 guarantee a good articulation of urbanised 20 
and green areas. Green areas are easily accessible, but the pattern nevertheless preserves 
a certain degree of compactness. Compared to these observations, the Walloon case 
should be considered as an extreme example. It appears that local densification could 
occur without real loss of quality of life. 

5.4 Classifying fractal dimensions 25 

The 262 communes can now be classified in terms D (�)	* +�, -�. , D (�)	* +�, -&/  and D0�1�*�-&, -&/  to 
identify similar built-up landscapes using the methodology described in Section 3.2.  

As well as the initial data set, the two transformations g(x)=ln(x) and g(x)=exp(x) were 
considered. The EM algorithm was run for 150 iterations from 5 random starting 
parameters for each combination: Gaussian model M × transformation g × number of 30 
clusters K. Only the trial with the starting parameters leading to the largest likelihood 
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was retained. The 28 Gaussian models described in Section 3.2, with three types of 
transformations (no transformation, logarithm and exponential), and 12 different 
numbers of clusters (K varying from 1 to 12) were considered. Whichever pair of 
variables were used, the results were similar: the data were spatially well discriminated. 
The first pair (D 2�3	4 5�6 7�8 ; D9�:�4�7&6 7&; ) enabled the communes that are alike in terms of the 5 
texture of their surfaces and borders to be clustered; the second (D 2�3	4 5�6 7&; ;D9�:�4�7&6 7&; ) 
enabled a classification replacing their simple ratio. The results were quite similar. For 
the sake of clarity, only one set of results (D 2�3	4 5�6 7�8 and D9�:�4�7&6 7&; ) is discussed below. 
The optimum number of classes (BIC criterion) with the exponential transformation is 
two (which means that the clusters are Gaussian when using the unit of N(ε)). Using a 10 
Gaussian model with different mixing proportions, the same volume and shape but 
different orientations between clusters, one cluster includes all the urban communes 
(cities) while the other covers all the other communes (peri-urban, rural). The built-up 
landscape of Wallonia is hence very clear cut: urban and non-urban.  

If we force the classification procedure to adopt the standard Ward methodology (which 15 
corresponds to the simplest model M: the same proportions and the same volume in all 
the clusters, plus the spherical family; for a early reference on the Ward methodology,  
see for instance Forgy, 1965), the BIC criterion retains five classes and the exponential 
transformation. In fact, to follow the standard Ward methodology exactly, it would be 
necessary to optimise the completed likelihood instead of the likelihood (see Celeux and 20 
Govaert, 1992). The completed likelihood differs from the likelihood in that the 
partition appears explicitly in its expression. Thus, unlike the likelihood (which only has 
to be maximised on the mixture parameters (see Equation [7])), the completed 
likelihood has to be maximised both on the mixture parameters and on the partition 
itself. Nevertheless, the results of these two procedures are expected to be very close 25 
(Celeux and Govaert, 1992). If the number of classes is forced to six, the BIC criterion 
retains both Ward's model and the exponential transformation. The results for six 
classes of communes are illustrated in Figure 13. The map reveals strong effects of 
contiguity: communes close to each other look alike in terms of fractal dimensions. 
Clusters are, however, spread out, all over the region.  30 
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Table 3 gives the mean values of D 2�3	4 5�6 7�8 and D9�:�4�7&6 7&;  for each class, and an example of a 
commune in each cluster is illustrated in Figure 14. Since the exponential 
transformation has been retained, the mean values correspond to the logarithm of the 
centre of each class; this enables the centre of each cluster to be expressed in the unit D. 
Table 3 lists the three communes which are closest to the centre of each class 5 
(Mahalanobis distance) and shows that both fractal dimensions (borders and surfaces) 
have to be considered.  

On average, we can say that the morphology of the built-up surfaces in Wallonia is 
strongly influenced by the history of urbanisation and the underlying processes: the 
history of the urban network, the 19 < =  century urbanisation leading to the Sambre-Meuse 10 
industrial axis, and the 20 < =  century suburbanisation spreading from Brussels and other 
cities (including Luxembourg). D reveals the dispersion and concentration processes but 
also enables compact and elongated/spread patterns of building to be differentiated.  

Some remnants of traditional rural landscapes are to be found in the Ardennes, where 
two types coexist (east–west partition), so corroborating a traditional description of the 15 
habitat (Dussart, 1961; Feltz, 2004). For some communes, the value of D>�?�@�A  exceeds 
that of D B�C	@ D  . These exceptions do not, however, lead to absurd results when the D-
values are classified. Rather, they seem to indicate that these communes exhibit 
particularities which are correctly identified by the classification procedure.  

Recent peri-urbanisation has generated patterns with low surface dimensions and high 20 
border dimensions. These patterns are rather fragmented. Such observations could be 
useful when thinking about how to manage urban sprawl. The dream of a compact city 
is no longer realistic: we cannot ignore the fact that a large number of households prefer 
to live in semi-rural areas offering peace and quiet with pleasant landscapes, while still 
within reach of urban amenities. In some sense the morphological properties of peri-25 
urban patterns may be seen as resulting from such a demand. 

These results confirm that centre–periphery structures seem to dominate the Walloon 
space and that suburban areas are characterised by a wide variety of land uses, creating 
complex and diverse landscapes consisting of a highly fragmented mosaic of different 
forms of land cover (see Antrop, 1997; Paquette and Domon, 2001). The fractal 30 
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measurements used here are obviously suitable for characterising the morphology of 
built-up settlements: this has been demonstrated both theoretically and empirically.  

We end up with a well defined spatial structure showing a clear relationship between 
morphology and historical/geographical/planning contexts, even if nowadays sprawl 
reduces contrasts between rural and urban areas.  The major effect of sprawl  is here due 5 
to Brussels which lies out of the studied area; southern periurbanisation of Brussels 
started 40 years ago in several waves mainly due to the construction of transportation 
axes. This sprawl also occurs more locally around the regional urban centres.   

Obviously, fractal dimensions are suitable for characterizing the form of the built-up 
patterns and for defining orientations for urban development.  However, considering the 10 
spatial distribution of built-up areas does not  provide information about how “free 
spaces” between the buildings is effectively used.  It can however be argued that the 
uniform distributions characterizing city centres as well as some individual housing 
areas can never offer a diversified range of green amenities. If homogenously built-up 
residential areas offer an individual garden for each house, they provide no public space 15 
for events, which necessitate large ‘green areas’ at a different spatial scale.  

Accessibility to the green amenities and hence traffic is also to be considered (see on 
going research of Frankhauser et al., 2007). Let us also add here that in a fractal 
structure, the penetration of built-up and non built-up spaces (green, empty) is multi-
scale. Such a spatial organisation offers the chance of having zones of high 20 
concentration near urban amenities (shopping, services), e.g. in the vicinity of public 
transportation networks, but also more diluted spaces. It then  becomes possible to 
maintain a social mix by means of a higher local variety of densely and less densely 
built-up (populated) zones and also to preserve huge empty zones in the neighbourhood 
of urbanized areas, which may be imagined as natural E	FHG�FIEKJLFHG&MONQPHE�RTSIUWV XYU�E	NZV\[Q]_^LFHG&MOF`XaSObZc	G�FQF25 d E	NI^�eOfLNIUgG�FIE�M_hLi�i_j\k&b  

6. Conclusion 

We have analysed the spatial arrangement of the built elements in all the communes of 
Wallonia, Belgium, using fractal dimension(s) measured on their surfaces and borders. 
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Wallonia turned out to have particular values which were, from a strictly mathematical 
point of view, counterintuitive. Possible explanations have been given.  

Despite the many limitations in the data, fractal indices partition the region into clear-
cut sub-areas that do not match the physical landscape: the structures observed 
correspond more closely to the history of urbanisation. It seems likely that the shape of 5 
the built-up areas within Wallonia is the result not only of physical characteristics (soil, 
relief, initial vegetation, afforestation, etc.) but also of human activities and land-use 
(such as suburbanisation). Nowadays, centre–periphery structures seem to dominate the 
region. Peri-urbanisation has affected most communes and traditional village structures 
(compact, ribbon, etc.) are rare, as they are progressively transformed into more uniform 10 
clusters of buildings which loose the tentacular aspect often observed in the first phase 
of urbanisation.  

Indices of fractal dimension represent the morphology of the built-up environment as 
well as its extent. They are – on average – quite independent of the appearance of the 
built environment. Hence suburban landscapes are characterised by a wide variety of 15 
land uses, creating complex and diverse landscapes consisting of a highly fragmented 
mosaic of different forms of land cover and a dense transport infrastructure. 

This paper has introduced a coherent method of identifying classes of settlements with 
respect to their fractal dimensions. A specificity of the clustering method is its reliance 
on statistical hypotheses, in particular on the bivariate Gaussian model-based 20 
hypothesis. In this context, the estimation of the partition is performed through 
maximisation of the likelihood of the mixture parameter through the EM algorithm. The 
BIC criterion allows a model to be selected from among many proposals. Models 
include the number of clusters, the geometrical feature of the Gaussian class and the 
possible transformation of the axis. Note that this last kind of model is rarely selected in 25 
a formal way in applications, and the specific procedure to perform this selection 
contributes to the originality of the present paper. 

The fractal dimension measured on surfaces gives different information from that 
measured on borders. Fractal dimensions are of value in studying built-up landscapes as 
they provide a theoretical basis for the observed features of self-similarity and scale-30 
independence. They also provide a quantitative measure of the roughness or complexity 
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that could help in the interpretation of maps of built-up areas, and assist the explanation 
of processes creating built-up landscapes. Linking surface dimensions and perimeter 
dimensions revealed counterintuitive results, for which a heuristic explanation has been 
found and verified. Nevertheless, more multidisciplinary research on other regions is 
required to decide whether the relationships observed here reveal fractal properties of 5 
the shapes or whether they are an artefact. 

Fractal measures serve to characterise the spatial organisation of urban patterns with 
unequivocal values. They can be used to measure to what extent the built-up area is 
distributed in a uniform or a varied way within an urban pattern. When interpreting the 
results it becomes obvious that a fractal approach to urban patterns helps to improve our 10 
knowledge of their spatial organisation, regardless of the extent to which they were 
planned. Obviously multi-scale pattern organisation is an interesting way of managing 
the consequences of the new peripheral lifestyle which tends to have good access to 
different kinds of urban and rural amenities, while simultaneously reducing the risks of 
a diffuse sprawl which tends to reduce the quality of the environment and generate more 15 
and more traffic flow. This empirical work can also help to inform the choices made in 
urban simulations (see Cavailhès et al., 2002 and 2004).  
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APPENDIXDlWm	nYo  > DpQq�n r  
The fractal law in Equation [2] shows that the fractal dimension depends on the distance 
range considered. By replacing D by D(ε) we get  

[11] 

The derivative of N(ε) can now computed with respect to ε in order to get information 5 
about the variation in the number of pair correlations N(ε) and the variations of D(ε). In 
this context it is convenient to introduce a new variable N’(ε) = N(ε) – c which yields 
dN’(ε) = dN(ε). Moreover, since D(ε) is no longer a constant, we ought to rewrite the 
power law as an exponential function: 

                             [12] 10 

In order to compute the derivative of N’(ε) it is convenient to take the logarithm of the 
previous relationship 

[13] 

which yields 

 15 

We now use the identity )('
)(')('log

ε
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N
dNNd ≡  and we multiply both sides by dε: This 

gives 

[14] 

This relationship links the relative variation of the number of correlations N(ε) with the 
relative variation of the distance ε. It shows that the second term vanishes when the 20 
dimension remains constant, but it also generates an increase in the ratio dN(ε)/N(ε) 
when D(ε) changes (see also Frankhauser, 1998). 

N s�t	u v (ε) and Nw�x�u�y (ε) are then computed for a slightly dilated pattern. At very small 
distances, the inner surfaces of the clusters are mainly filled up. The correlation analysis 
will hence detect a relatively high number of pair correlations. The borders are now 25 
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rather smooth due to the scale of analysis, the characteristics of the database (see 
Sections 2.4 and 4) and dilation. Hence, when analysing the borders, the number of 
correlations N������� (ε) remains low i.e. close to that observed for a simple line. The 
situation is similar to that of a set of compact smooth objects resembling Euclidean 
objects and we expect that, for a given distance, N ���	� � (ε) >> N������� (ε). However as the 5 
distance parameter,ε, increases, the tentacular character of the patterns comes into play: 
the border lines become rather tortuous and N������� (ε) increases rapidly. This means that 
the fractal dimension changes, as well as the second term of Equation [14]. Since the 
tentacles are rather filigree, the number of pair correlation N ���	� � (ε) now increases less 
rapidly than before. Thus, for this range of variations, we expect dN������� (ε) ≈ dN ���	� � (ε). If 10 
we now assume not only that N ���	� � (ε) >> N������� (ε) but that N ���	� � (ε) – c ���	� �  >> N������� (ε) – 
c�������  , then we obtain 

[15] 

which yields D�������  > D ���	� �  . In any case, according to Equation [14], a large change in 
dimensions increases the ratio dN(ε)/N(ε). 15 

Referring to Equation [12], let us call the c-value corresponding to the fractal law of 
surfaces c ���	� � , and that of borders c������� . In all cases, we observe N ���	� � (ε) >> N������� (ε) and 
c ���	� � < 0. c������� can be positive or negative, but |c ���	� �  | > |c������� | always holds. Hence we 
always obtain N ���	� � (ε) - c ���	� �  >> N������� (ε) - c������� .  
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Table 1: Estimated values of a and D for different distance ranges in Le Roeulx 

Surface Border 
 Distance range D ¯�°	± ²�³ ´�µ  a η²  Distance range D¶�·�±�´&³ ´�µ  a η² 
Smallest Largest    Smallest Largest    
 1 143 1.447 3.84 0.999836  1 143 1.667 0.21 0.999949 
21   57 1.525 2.69 1.000000 57   91 1.771 0.13 0.999995 
21   99 1.500 3.02 0.999984 21   57 1.701 0.17 0.999967 
57 103 1.407 4.84 0.999999 91 143 1.503 0.49 0.999990 

¸º¹¼»T½Q¾Z¿ZÀQÁKÂYÃ�Ä�½ÅÃ&ÆHÇ¬È_¹¼ÁKÇZ½&ÁÉÇZÊ ËÌ½&Æ_ÍÎÊ ¹¼Æ®Ã&ÁK½Å½`Ía»TÊ ËÌÃ&»T½�ÇºÃ�ÂT»T½&ÁÉÏ®Ía»T½&ÐOÍÑ¹ZÂLÇZÊ Ò Ã&»TÊ ¹¼Æ�Ó

 

Table 2: Estimated D values in Le Roeulx using the simplified data model 5 

Surface Border 
 Distance range  Distance range 
Smallest Largest D

Ô�Õ	Ö ×�Ø Ù�Ú  η² Smallest Largest D
Û�Ü�Ö�Ù&Ø Ù�Ú  η² 

 1 143 1.717 0.996232  1 143 1.350 0.993683 
21  57 1.756 0.999196 57  91 1.352 0.999312 
21  99 1.733 0.998467 21  57 1.295 0.997422 
57 103 1.720 0.994160 91 143 1.375 0.999929 

ÝºÞ¼ßTàQáZâZãQäKåYæ�ç�àÅæ&èHé¬ê_Þ¼äKéZà&äÉéZë ìÌà&è_íÎë Þ¼è_íÑæ&äKàÅà`íaßTë ìÌæ&ßTà�éºæ�åTßTà&äWß îQäKà�à¦íaßTà&ïOíÑÞZåLéZë ð æ&ßTë Þ¼è�ñQéZæ&ßTæ`íÎà&ß�æ&èHéºéZëòíaßTæ&èHç�à
äKæ&èZóZà`íÑæ&äKàôß îHà¦íÎæ&ìÌàÅæ`íÑë è®õÑæ&ê_ð àÌö`÷`øYèªß îHëòíùíÎë ìºï_ð ë åYë à�é¬ìÌÞZéZà�ðOúªëòíÑåYë ûHà�éºæ&ßùö . 
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Table 3: Results of the fractal classification of communes 
üþý ÿ�������� �
	���
 ��� ����������
 ��� ���������! #"$"&%('*)�+, #"$-! #"$)."$/0+�12+�3 45"6 '*%(%(7�/�"$) �985-�'*: '*;<8
= =�> ?*@ =�> ACB D*D EGF�H*I*J$K JML LNJ�O�PRQTSMU<V5W�X�YMZC[<\^] Z _a`M\^] bNc2\�d5YMZ�efYMZC[Rg�hiY$j j5k$] lN] `�g
m n0o p<m q�o r2n s5n tvu QTS�V5Q#w$xCWzy{YM|C`$j YMZ*}*`�Wz~�`M\�d5`�g�bj `$b��&o � c2\^Y$jCe��<k$�<h��5Y$kMl�]�g��*j YMlN`$[
�CYMhij `Ml�g
� q�o r2n q�o �*� s5p _a`M�5] Z5g�lN`M\�WC�5Y$] Z2lNb���`$�<\�}*`�g.W�����Q��5VT� _a`M\^] bNc2\�d5YMZ�e�efYMZC[�`$Y�g�lN`M\�Z{�5YM\�l� y{Y$] ZCYMc2l��
s q�oNq*q q�o r2p s5� �,\^�<cC`$j ] Z2ZC`�g.Wz�&Y$`$j `MZ5W���QMV5�*Q#w$x � c2\^Y$jCe�e����CYMhij `Ml�gf��] l �RY&j ] ZC`$YM\g�l \�cCkMl c2\^`
r q�o �5� q�o �*n s5n � l lN] }<ZC] `�g.W2�9�C�MlN`$j `Ml�W�9�5 2wC�N¡<U<VC¢�  u V5Q £ \�d5YMZ � �C�<hi�2}*`MZC`$�<c5g.W2¤NcCj j ¥{c2\�d5YMZC]�g�`$[k$�<h�h�c2ZC`�g^�
� q�o m0r q�o �*� s*m ��`�g�|C`�g.W<¦TY$j �CYT¥5W*� u V5Q�� � c2\^Y$jCe�e�e���\�c2\^Y$j5k$�<h�h�c2ZC`�gf��] l ��CYMhij `Ml�gvYMZC[��<ZC` � g�hiY$j j �fk$] l ¥Rk$`MZ2l \^`
V!��Z2c2h�d5`M\,�*¤§k$�<h�h�c2ZC`�gv] Z{l �C`&k$j Y�g.gT¨ZCYMhi`�gv] ZR] lNY$j ] k�gv] ZC[*] k$YMlN`Gl �C`&k$�<h�h�c2ZC`�gv] j j c5g�l \^YMlN`$[�] Z{©§] }<c2\^`iq�s
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Figure 1: First steps in generating a Fournier dust 

 

 10 

 

 

 

 
15 

Figure 2: Same dimension, D, for different initiators ((a), (b) and (c)) or positions of the 
elements in the generator ((a) and (d)) of a Sierpinski carpet 

(a) (b) (c) (d) 
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Figure 3: Two generators with identical Ns, but different reduction factors, r, forming a 
Sierpinski carpet (a) or a Fournier dust (b), depending on the initiator 10 ´
µ�¶ ·z¸T¹�µ�º0¶ »2·�¼�½�¾2·�µ<¿5ÀMÁ ½�º�Â ¶ Ã*ÄM¶ »2·�Á Â Å2·#¼§Æ<·MÁ Â Ç�Â ¶ Â Å<È¬¶ »2·�·MÁ ·�Ç�·�Åz¶�¼�»2½�É2·vÊ*·M·�Å�µ�Ç�Â ¶ ¶ ·MÆË¿ º�µ�ÇÌ¶ »2·vÍ9Î{Ï
µ<¿*¹�Â È�Ðzº�·�Ñ<Ò�½TÓ^Ô
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 (a)                         (b) 

Figure 4: Two Sierpinski carpets in the second iteration 

20 

(a) N = 8 and r = 1/3 

(b) N = 8 and r = 1/4 
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Figure 5: Two figures, each composed of 64 black squares, having the same density but 15 
different fractal dimensions (D = 1.89 in (a) and D = 2.00 in (b)) 
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Figure 6: Extracting boundaries by dilation. Figure 6a shows the original urban pattern, 
Figure 6b the corresponding dilated structure (3 steps), Figure 6c the extracted boundary 
and Figure 6d a theoretical fractal with similar features to the observed fractal in (c) 
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Figure 7: Population density in Wallonia 
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Figure 8: A hybrid multifractal Sierpinski carpet (a) and a Walloon settlement pattern (b) 
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   (a)        (b) 
Figure 9: Estimated and empirical results for Le Roeulx with (a) estimated and (b) 10 
fixed values of a Ù#Ú�Û Ü  Ý�Þ<ßNà2á�â{ã�ä�åCà$æ�ç è éCà�ê±à�ä�ßNè ëiãMßNà$æ
ì^à�ä�íCç ß�äTî2ï$Þ<é2ßNè é2íCÞ<í5ävç è éCà�ê±àMë�ð5è ì^è ï$ã$ç*ì^à�ä�íCç ß�ä
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Figure 10: Relative variations (dN(ε)/N(ε)) for the border (upper curve) and for the 
surface (lower curve) 
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Figure 11: Fractal dimensions of the undilated surfaces (D ó#ô�õ öT÷ ø$ù ) 

 
Figure 12: Fractal dimensions of the dilated borders (Dú�û.õ�øM÷ øMü ) 
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Figure 13: Classification of the 262 Walloon communes in terms of D values (see 
Table 3 for the definitions of the clusters)
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Figure 14: Cluster analysis results: one example of each type of cluster (not to scale) 
Source: Plan de Localisation Informatique (MRW-DGATLP, 2004) 

Cluster 1: Héron Cluster 2: Lierneux  

 
Cluster 3: Blégny 

 
Cluster 4: Rendeux 

 

Cluster 5: Chaudfontaine Cluster 6: Ciney  


