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Simultaneous Gaussian Model-Based Clustering

for Samples of Multiple Origins
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Abstract

Mixture model-based clustering usually assumes that the data arise
from a mixture population in order to estimate some hypothetical un-
derlying partition of the dataset. In this work, we are interested in the
case where several samples have to be clustered at the same time, that is
when the data arise not only from one but possibly from several mixtures.
In the multinormal context, we establish a linear stochastic link between
the components of the mixtures wich enables the joint-estimate of their
parameters�estimations are performed here by maximum likelihood�and
the simultaneous classi�cation of the diverse samples. We propose sev-
eral useful models of constraint on this stochastic link, and we give their
parameter estimators. The interest of these models is highlighted in a bi-
ological context where some birds belonging to several species have to be
classi�ed according to their sex. We show �rstly that our simultaneous
clustering method does improve the partition obtained by clustering inde-
pendently each sample. We then show that this method is also e�cient in
assessing the cluster number when assuming it is unknown. Finally some
additional experiments are performed to show the robustness of our simul-
taneous clustering method when one of its main assumptions is relaxed.

Résumé

Lorsqu'on classi�e des données il est courant de supposer qu'elles provi-
ennent d'une population mélange pour en estimer une éventuelle parti-
tion sous-jacente. Nous nous intéressons ici au cas où plusieurs échantil-
lons doivent être classi�és en même temps, c'est-à-dire au cas où la don-
née ne provient pas seulement d'une, mais éventuellement de plusieurs
populations mélange. Dans un contexte multinormal nous établissons un
lien linéaire stochastique entre les composantes des mélanges, qui per-
met d'estimer de façon conjointe leur paramètre�les estimations sont réal-
isées ici par maximum de vraisemblance�et de classi�er simultanément les
di�érents échantillons. Nous proposons plusieurs modèles de contrainte,
utiles et réalistes, portant sur le lien stochastique établi, et nous donnons
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l'estimateur de leur paramètre. L'intérêt de ces modèles est mis en lumière
dans un contexte biologique où des oiseaux d'espèces di�érentes doivent
être classi�és selon leur sexe. Nous montrons dans un premier temps que
notre méthode de classi�cation simultanée améliore la partition obtenue en
classi�ant indépendamment les échantillons. Nous montrons ensuite que
cette méthode est aussi e�cace pour déterminer le nombre de groupes
lorsqu'on l'ignore. Des expériences complémentaires sont �nalement réal-
isées pour montrer la robustesse de notre méthode de classi�cation simul-
tanée à la relaxation de l'une de ses principales hypothèses.

MSC 2000 subject classi�cations. Primary-?????; secondary-?????.

Key words and phrases. Biological features; Distributional relationship; EM
algorithm; Gaussian mixture; Model-based clustering; Model selection.
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1 Introduction

Clustering aims to separate a sample into classes in order to reveal some hid-
den but meaningful structure in data. In a probabilistic context it is standard
practice to suppose that the data arise from a mixture of parametric distribu-
tions and to draw a partition by assigning each data point to the prevailing
component (see [13] for a review). In particular, in the multivariate contin-
uous situation, Gaussian mixture model-based clustering has found successful
applications in diverse �elds: Genetics [15], medicine [13], magnetic resonance
imaging [1], astronomy [4]. Consequently, nowadays, involving such models for
clustering a given dataset could be considered as familiar to every statistician
as to more and more practitioners.
In many situations, one needs to cluster several datasets, possibly arising from
di�erent populations, instead of a single one, into partitions having both the
same number of clusters and identical meaning. For instance, in biology, Thibault
et al. [17] described three samples of seabirds living in several geographic zones,
leading to very di�erent morphological variables (tarsus, bill length, etc.). The
clustering purpose here could be to retrieve the sex of birds from these features.
In such a situation, a standard clustering process could be independently ap-
plied to each dataset. In the Gaussian mixture model-based clustering context,
we propose a probabilistic model which enables us to simultaneously classify all
individuals instead of applying several independent Gaussian clustering meth-
ods. Assuming a linear stochastic link between the samples, what can be justi-
�ed from some simple but realistic assumptions, will be the basis of this work.
This link allows us to estimate�estimations are performed here by maximum
likelihood (ML)�all Gaussian mixture parameters at the same time which is a
novelty for independent clustering, and consequently allows us to cluster the
diverse datasets simultaneously. Any likelihood-based model choice criterion
such as BIC [16] enables us then to compare both clustering methods: The
simultaneous clustering method which assumes a stochastic link between the
populations, and the independent clustering method which considers that pop-
ulations are unrelated.
Generalizing a one-sample method to several samples is common in statistical
literature. Flury [8], for example, proposes the use a particuliar Principal Com-
ponent Analysis based on common principal components for representing several
samples in a mutual lower-dimensional space when their covariance matrices
share a common form and orientation. Gower [10] generalizes to K samples
(K ≥ 3) the classical Procrustes analysis which estimates a geometrical link,
established between two samples. Hierarchical mixture models [18] for a last ex-
ample, devoted to nested data classi�cation, can be viewed as speci�c mixtures
allowing to classify several samples at the same time. Our models di�er from
those on our knowledge of level-2 cluster memberships and also on our exclusive
multinormal conditional population hypothesis.
In Section 2, starting from the standard solution of some independent Gaussian
mixture model-based clustering methods, we present the principle of simultane-
ous clustering. Some parsimonious and meaningful models on the established
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stochastic link are then proposed in Section 3. Section 4 gives the formulae re-
quired by the ML inference of the parameter, and also proposes, for some models,
a simpli�ed alternative estimation combining a less-expensive least square step
and a standard ML for Gaussian mixture step. Some experiments on seabird
samples show encouraging results for our new method. They will be presented
in Section 5. Finally in Section 6 we plan extensions of this work.

2 From independent to simultaneous Gaussian

clustering

We aim to separate H samples into K groups. Describing standard Gaussian
model-based clustering (Subsection 2.1) in this apparently more complex context
(H samples instead of one), will be later convenient for introducing simultaneous
Gaussian model-based clustering (Subsection 2.2). Let us remind here that, in
each sample the same number of clusters has to be discovered, and that the
obtained partition has the same meaning for each sample. Each sample xh

(h ∈ {1, . . . ,H}) is composed of nh individuals xhi (i = 1, . . . , nh) of Rd, and
arises from a population Ph. In addition, all populations are described by the
same d continuous variables.

2.1 Standard solution: Several independent Gaussian clus-
terings

Standard Gaussian model-based clustering assumes that individuals xhi of
each sample xh are independently drawn from the random vector Xh fol-
lowing a K-modal mixture Ph of non degenerate Gaussian components Chk
(k = 1, . . . ,K), with probability density function:

f(x;ψh) =

K∑
k=1

πhkΦd(x;µhk ,Σ
h
k), x ∈ Rd.

Coe�cients πhk (k = 1, . . . ,K) are the mixing proportions (for all k, πhk > 0 and∑K
k=1 π

h
k = 1), µhk and Σh

k correspond respectively to the center and the co-
variance matrix of Chk component, and Φd(x;µhk ,Σ

h
k) denotes its probability

density function. The whole parameter of Ph mixture is ψh = (ψhk )k=1,...,K

where ψhk = (πhk ,µ
h
k ,Σ

h
k).

The component that may have generated an individual xhi constitutes a missing
data. We represent it by a binary vector zhi ∈ {0, 1}K of which k-th component
zhi,k equals 1 if and only if xhi arises from Chk . The vector zhi is assumed to
arise from the K-variate multinomial distribution of order 1 and of parameter
(πh1 , . . . , π

h
K).

The complete data model assumes that couples (xhi , z
h
i )i=1,...,nh are realizations

of independent random vectors identically distributed to
(
Xh,Zh

)
in Rd ×

{0, 1}K where Zh denotes a random vector of which k-th component Zhk equals 1
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(and the others 0) with probability πhk , and
(
Xh|Zhk = 1

)
∼ Φd( . ;µhk ,Σ

h
k). We

note also zh = {zh1 , . . . ,zhnh}.

Estimating ψ = (ψh)h=1,...,H , by maximizing its log-likelihood

`(ψ; x) =

H∑
h=1

nh∑
i=1

log
[
f(xhi ;ψh)

]
=

H∑
h=1

`h(ψh; xh),

computed on the observed data x =
⋃H
h=1 xh, leads to maximizing indepen-

dently each likelihood `h(ψh; xh) of the parameter ψh computed on xh sample.
Invoking an EM algorithm to perform the maximization is a classical method.
One can see [13] for a review.

Then the observed data xhi is allocated by the Maximum a Posteriori Princi-
ple (MAP) to the group corresponding to the highest estimated posterior prob-

ability of membership computed at the ML estimate ψ̂:

thi,k(ψ̂) = E(Zhk |Xh = xhi ; ψ̂). (1)

Since the partition estimated by independent clustering is arbitrarily num-
bered, the practitioner has if necessary, to renumber some clusters in order to
assign the same index to clusters having the same meaning for all populations.
The simultaneous clustering method that we present now, aims both to improve
the partition estimation and to automatically give the same numbering to the
clusters with identical meaning.

2.2 Proposed solution: Using a linear stochastic link be-
tween populations

From the beginning the groups that have to be discovered consist in a same
meaning partition of each sample and samples are described by the same fea-
tures. In that context, since involved populations are so related, we establish
a distributional relationship between the identically labelled components Chk
(h = 1, . . . ,H). Formalizing thus some link between the conditional populations
constitutes the key idea of the so-called simultaneous clustering method, and
this idea will be speci�ed thanks to three additional hypotheses H1, H2, H3

described bellow.
For all (h, h′) ∈ {1, . . . ,H}2 and all k ∈ {1, . . . ,K}, a map ξh,h

′

k : Rd → Rd is
assumed to exist, so that:

(Xh′
|Zh

′

k = 1) ∼ ξh,h
′

k

(
Xh|Zhk = 1

)
. (2)

This model implicates that individuals from some Gaussian component Chk are

stochastically transformed (via ξh,h
′

k ) into individuals of Ch
′

k . In addition, as
samples are described by the same features, it is natural, in many practical
situations, to expect from a variable in some population to depend mainly on the
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same feature, in another population. So we assume that the j-th (j ∈ {1, . . . , d})

component
(
ξh,h

′

k

)(j)
of ξh,h

′

k map depends only on the j-th component x(j) of

x, situation that is expressed by the following hypothesis:

H1 :
∀j ∈ {1, . . . , d},∀(x,y) ∈ Rd × Rd,

x(j) = y(j) ⇒
(
ξh,h

′

k

)(j)
(x) =

(
ξh,h

′

k

)(j)
(y).

In other words,
(
ξh,h

′

k

)(j)
corresponds to a map from R into R that trans-

forms, in distribution, the conditional Gaussian covariate (Xh|Zhk = 1)(j) into

the corresponding conditional Gaussian covariate (Xh′ |Zh′

k = 1)(j). Assuming

moreover that
(
ξh,h

′

k

)(j)
is continuously di�erentiable�this assumption about all

superscripts j is noted H2�, then the only possible transformation is an a�ne
map. Indeed, De Meyer et al. [6] have shown that for two given non-degenerate
univariate normal distributions, there exists only two continuously di�erentiable
maps from R into R that transforms, in distribution, the �rst one into the sec-
ond one, and they are both a�ne.
As a consequence, for all (h, h′) ∈ {1, . . . ,H}2 and all k ∈ {1, . . . ,K}, there
exists Dh,h′

k ∈ Rd×d diagonal and bh,h
′

k ∈ Rd so that:

(Xh′
|Zh

′

k = 1) ∼Dh,h′

k (Xh|Zhk = 1) + bh,h
′

k . (3)

Relation (2) constitutes the keystone of the simultaneous Gaussian model-
based clustering framework, and (3) is its a�ne form involved from the two
previous hypotheses H1 and H2.

For now as components Chk are non degenerate, Dh,h′

k matrices are non sin-
gular. Let us assume henceforward that any couple of corresponding conditional

covariables (Xh|Zhk = 1)
(j)

and (Xh′ |Zh′

k = 1)
(j)

are positively correlated. That

assumption�noted H3�involves thatD
h,h′

k matrices are positive, and means that
covariable correlation signs, within some conditional population, remain through
the populations. Although it seems to be realistic in many practical contexts as
in our biological example below (Section 5), this assumption may be weakened
as we remark it at the end of Subsection 4.4.

Thus, any couple of identically labelled component parameters, ψhk and ψh
′

k ,
has now to satisfy the following property: There exists some diagonal positive-

de�nite matrix Dh,h′

k ∈ Rd×d and some vector bh,h
′

k ∈ Rd, such that:

Σh′

k = Dh,h′

k Σh
k D

h,h′

k and µh
′

k = Dh,h′

k µhk + bh,h
′

k . (4)

(Let us note then that Dh,h′

k =
(
Dh′,h
k

)−1
and bh,h

′

k = −Dh,h′

k bh
′,h
k .)
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Property (4) characterizes henceforward the whole parameter space Ψ of
ψ and the so-called simultaneous clustering method is based on ψ parameter
inference in that so constrained parameter space.

2.3 A useful and statistically meaningful interpretation of
the linear stochastic link

Each covariance matrix can be decomposed into :

Σh
k = T hkR

h
kT

h
k , (5)

where T hk is the diagonal matrix of conditional standard deviations in Chk

component�for all (i, j) ∈ {1, . . . , d}2 : T hk (i, j) =
√

Σh
k(i, j) if i = j and 0

otherwise�and Rh
k =

(
T hk
)−1

Σh
k

(
T hk
)−1

is the conditional correlation matrix
of the class. As each decomposition (5) is unique, Relation (4) involves for ev-

ery (h, h′) ∈ {1, . . . ,H}2 and every k ∈ {1, . . . ,K} both T h′

k = Dh,h′

k T hk and

Rh′

k = Rh
k . The previous model (3) is equivalent therefore to postulating that

conditional correlations are equal through the populations.

This interpretation of the a�ne link between the conditional populations (3)
allows the model to keep all its sense when simultaneous clustering is envisaged
in a relaxed context�as in Subsection 5.4�where the samples to be classi�ed are
described by di�erent descriptor sets.

3 Parsimonious Models

This section displays some parsimonious models established by combining
classical assumptions on both mixing proportions and Gaussian parameters,
within each mixture, with meaningful constraints on the parametric link (4)
between conditional populations.

3.1 Intrapopulation models

Inspired by standard Gaussian model-based clustering, one can envisage sev-
eral classical parsimonious models of constraints on the Gaussian mixtures Ph:
Their components may be homoscedastic (Σh

k = Σh) or heteroscedastic, their
mixing proportions may be equal (π) or free (πk) (see [13], chapter 3). These
models will be called intrapopulation models.
Although they are not considered here, some other intrapopulation models can
be assumed. Celeux and Govaert [4] for example propose some parsimonious
models of Gaussian mixtures based on an eigenvalue decomposition of the co-
variance matrices which can be envisaged as an immediate extension of our
intrapopulation models.
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3.2 Interpopulation models

Thus we can also imagine some meaningful constraints on the parametric link

(4). In the most general case, Dh,h′

k matrices are de�nite-positive and diago-

nal. Moreover they could be variable-independent (Dh,h′

k = αh,h
′

k I, αh,h
′

k ∈ R+
∗ ),

component-independent (Dh,h′

k = Dh,h′
), both component and variable-indepen-

dent (Dh,h′

k = αh,h
′
I, αh,h

′
∈ R+

∗ ). They could even be all equal to identity ma-

trix (Dh,h′

k = I) when considering that components Chk (h = 1, . . . ,H) only dif-

fer in their center. The vectors bh,h
′

k themselves may be unconstrained (bh,h
′

k free),

component-independent (bh,h
′

k = bh,h
′
), or null (bh,h

′

k = 0). Finally we can sup-

pose the mixing proportion vectors (πh1 , . . . , π
h
K) (h = 1, . . . ,H) to be free (πh)

or equal (π). These models will be called interpopulation models and they have
to be combined with some intrapopulation model.
There we can see that some of the previous constraints cannot be set simulta-
neously on the transformation matrices and on the translation vectors. When

bh,h
′

k vectors do not depend on k for example, then neither do Dh,h′

k matrices.

Indeed, from (4), we obtain µhk =
(
Dh,h′

k

)−1
µh

′

k −
(
Dh,h′

k

)−1
bh,h

′

k , and conse-

quently bh
′,h
k = −

(
Dh,h′

k

)−1
bh,h

′

k depends on k once Dh,h′

k or bh,h
′

k does.

Some of the previous interpopulation models have a meaningful statistical

interpretation. Assuming bh,h
′

k vectors to be null with unconstrained Dh,h′

k ma-
trices for example leads us to suppose that each conditional covariable has iden-
tical coe�cients of variation through the populations. Indeed in that case (4)
becomes:

Σh′

k = Dh,h′

k Σh
k D

h,h′

k and µh
′

k = Dh,h′

k µhk . (6)

As the �rst equality involves the following relation between the conditional
standard deviation matrices:

T h
′

k = Dh,h′

k T hk , (7)

we deduce then from the second one:(
T h

′

k

)−1
µh

′

k =
(
T hk
)−1

µhk . (8)

This signi�es that
(
T hk
)−1

µhk vectors do not depend on h and therefore that any
conditional covariable has equal coe�cients of variation across the populations.

3.3 Combining intra and interpopulation models

The most general model of simultaneous clustering is noted(
πh,Dh,h′

k , bh,h
′

k ;πk,Σ
h
k

)
.
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It assumes that mixing proportion vectors may be di�erent between popu-

lations (so πhk coe�cients are free on h), Dh,h′

k matrices are just diagonal

de�nite-positive, bh,h
′

k vectors are unconstrained, and that each mixture has
heteroscedastic components with free mixing proportions (thus πhk coe�cients
are also free on k).

The model
(
π,Dh,h′

, bh,h
′
;π,Σh

)
for another example, assumes all mixing

proportions to be equal to 1/K, Dh,h′

k matrices, bh,h
′

k vectors to be component
independent and each mixture to have homoscedastic components.

As a model of simultaneous clustering consists of a combination of some
intra and interpopulation models, one will have to pay attention to non-allowed
combinings. It is impossible for example, to assume both that mixing proportion
vectors are free through the diverse populations, and that each of them has equal
components. Then a model

(
πh , . , . ; π , .

)
is not allowed.

In the same way, we cannot suppose�it is straightforward from the relationship

between Σh
k and Σh′

k in (4)�both Dh,h′

k transformation matrices to be free, and,
at the same time, each mixture to have homoscedastic components. A model(
. , Dh,h′

k , . ; . , Σh
)
is then prohibited.

Table 1 displays all allowed combinations of intra and interpopulation models.

Table 1: Allowed intra/interpopulation model combinations and identi�able
models. We note `.' some non-allowed combination of intra and interpopula-
tion models, `◦' some allowed but non-identi�able model, and `•' some allowed
and identi�able model.

Intrapopulation models

π πk

Interpopulation models Σh Σh
k Σh Σh

k

π (πh)

I , αh,h′
I , Dh,h′

0 • (.) • (.) • (•) • (•)

bh,h
′

• (.) • (.) • (•) • (•)

bh,h
′

k ◦ (.) • (.) • (•) • (•)

αh,h′

k I , Dh,h′

k

0 . (.) • (.) . (.) • (•)

bh,h
′

k . (.) • (.) . (.) • (•)

3.4 Requirements about identi�ability

For a given permutation σ in SH (symmetric group on {1, . . . ,H}), and
another one τ in SK , ψ

σ
τ will denote the parameter ψ, in which popula-

tion labels have been permuted as σ, and component labels as τ , that is:
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∀k ∈ {1, . . . ,K},∀h ∈ {1, . . . ,H} : (ψστ )hk = ψ
σ(h)
τ(k) .

Identi�ability of a model is de�ned up to a permutation of population labels,
and up to the same component label permutation within each population, that
is, formally, a model is said to be identi�able when it satis�es:(
∃(ψ, ψ̃) ∈ Ψ2,∀x ∈ Rd, g(x;ψ) = g(x; ψ̃)

)
⇒
(
∃σ ∈ SH ,∃τ ∈ SK : ψ̃ = ψστ

)
,

where g(x;ψ) denotes the probability density function of an observed data x.

Although most of the proposed models are identi�able, some of them, which
we have to take care about, authorize di�erent component label permutations
depending on the population, and, as a consequence, some crossing of the link
between Gaussian components. Let us assume for instance that each mix-
ture has homoscedastic components (Σh

k = Σh) with equal mixing proportions

(πhk = 1/K), that Dh,h′

k matrices in (4) only depend on population labels

(Dh,h′

k = Dh,h′
), and that bh,h

′

k vectors are free. It is easy to show in that
case, that any component may be linked to any other one. This model is not
identi�able.

Identi�able models among the allowed matchings of intra and interpopula-
tion models are displayed in Table 1.

Assuming the data arise from a model which is not identi�able must not be
rejected. It just leads to combinatorial possibilities in constituting groups of
identical labels from the components Chk . In that case, simultaneous clustering
provides a partition of the data, but the practitioner keeps some freedom in
renumbering the components in each population.

3.5 Model selection

In a parametric model-based clustering context the BIC criterion (see [16]
and see also [11] for a review) is commonly used, when the cluster number is
known, in order to select a model within some model set, but also for assessing
the number of clusters when this one is ignored [14] [9].
The BIC of a model is de�ned here by:

BIC = −`(ψ̂; x) +
ν

2
log(n), (9)

where `(ψ̂; x) denotes the maximized log-likelihood of the parameter ψ com-
puted on the observed data x, ν the dimension of ψ, and n the size of the
data (n =

∑H
h=1 n

h). Table 2 indicates the values of ν corresponding to the di-
verse intra and interpopulation model combinations. The model selected among
competing ones corresponds to the smallest computed BIC value.

Let us remark that BIC appears also, here, as a natural way for selecting
between independent clustering (Subsection 2.1) and simultaneous clustering
(Subsection 2.2).



VII � 11

Table 2: Dimension ν of the parameter ψ in simultaneous clustering in case of
equal mixing proportions. β = Kd represents the degree of freedom in the param-

eter component set {µ1
k} and γ =

d2 + d

2
is the size of Σ1

1 parameter component.

If mixing proportions πhk are free on both h and k (resp. free on k only), then
one must add H(K − 1) (resp. K − 1) to the indicated dimensions below.

Σh Σh
k

I

0 β + γ β +Kγ

bh,h
′

β + γ + d(H − 1) β +Kγ + d(H − 1)

bh,h
′

k β + γ + dK(H − 1) β +Kγ + dK(H − 1)

αh,h′
I

0 β + γ + (H − 1) β +Kγ + (H − 1)

bh,h
′

β + γ + (d+ 1)(H − 1) β +Kγ + (d+ 1)(H − 1)

bh,h
′

k β + γ + (dK + 1)(H − 1) β +Kγ + (dK + 1)(H − 1)

αh,h′

k I
0 . β +Kγ +K(H − 1)

bh,h
′

k . β +Kγ +K(d+ 1)(H − 1)

Dh,h′

0 β + γ + d(H − 1) β +Kγ + d(H − 1)

bh,h
′

β + γ + 2d(H − 1) β +Kγ + 2d(H − 1)

bh,h
′

k β + γ + d(K + 1)(H − 1) β +Kγ + d(K + 1)(H − 1)

Dh,h′

k

0 . β +Kγ + dK(H − 1)

bh,h
′

k . β +Kγ + 2dK(H − 1)
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4 Parameter estimation

After a useful reparameterization (Subsection 4.1), a GEM procedure for
estimating the model parameters by maximum likelihood is described in Sub-
sections 4.2 to 4.4. An alternative and simpli�ed estimation process is proposed
then, in Subsection 4.5, for some speci�c models.

4.1 A useful reparameterization

The parametric link between the Gaussian parameters (4) allows a new pa-
rameterization of the model at hand, which is useful and meaningful for esti-
mating ψ.

It is easy to verify that for any identi�able model, each Dh,h′

k matrix is unique

and each bh,h
′

k vector also. It has sense then to de�ne from any value of the
parameter ψ, the following vectors: θ1 = ψ1, and for all h ∈ {2, . . . ,H},
θh =

[(
πhk ,D

h
k , b

h
k

)
; k = 1, . . . ,K

]
, where Dh

k = D1,h
k and bhk = b1,hk . Let us

note Θ the space described by the vector θ = (θ1, . . . ,θH) when ψ scans the
parameter space Ψ. There exists a canonical bijective map between Ψ and Θ.
Thus θ constitutes a new parameterization of the model at hand, and estimating
ψ or θ by maximizing their likelihood, respectively on Ψ or Θ, is equivalent.

θ1 appears to be a `reference population parameter' whereas (θ2, . . . ,θH)
corresponds to a `link parameter' between the reference population and the
other ones. But in spite of appearance the estimated model does not depend on
the initial choice of P 1 population. Indeed the bijective correspondance between
the parameter spaces Θ and Ψ ensures that the model inference is invariant by
relabelling the populations.

4.2 Invoking a GEM algorithm

The log-likelihood of the new parameter θ, computed on the observed data,
has no explicit maximum, neither does its completed log-likelihood:

lc(θ; x, z) =

H∑
h=1

nh∑
i=1

K∑
k=1

zhi,k log
(
πhkΦd

(
xhi ;Dh

kµ
1
k + bhk ,D

h
kΣ1

kD
h
k

))
, (10)

with z =
⋃H
h=1 zh and where we adopt the convention that for all k, D1

k is the
identity matrix of GLd(R) and b1k is the null vector of Rd. But Dempster et al.
[7] showed that an EM algorithm is not required to converge to a local maximum
of the parameter likelihood in an incomplete data structure. The conditional
expectation of its completed log-likelihood has just to increase at each M-step
instead of being maximized. This algorithm, called GEM (Generalized EM),
can be easily implemented here; It consists, at its GM-step, on an alternating
optimization of E [lc(θ;X,Z)|X = x] where X and Z denote respectively the
random version of x and z. Starting from some initial value of the parameter
θ, it alternates the two following steps.
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� E-step: From the current value of θ, the expected component member-
ships (1) are computed.

� GM-step: The conditional expectation of the completed log-likelihood,
obtained by substituting zhi,k for thi,k in (10), can be alternatively maxi-
mized with respect to the two following component sets of θ parameter:
{πhk ,µ1

k,Σ
1
k} and {Dh

k , b
h
k} (h = 1, . . . ,H). It provides the estimator θ+

that is used as θ at the next iteration of the current GM-step.

The algorithm stops either when reaching stationarity of the likelihood or
after a given iteration number.

Let us detail now the GM-step since it depends on the intra and interpopu-
lation model at hand.

4.3 Estimation of the reference population parameter θ1

� Mixing proportions π1
k

Noting n̂hk =
∑nh

i=1 t
h
i,k and n̂k =

∑H
h=1 n̂

h
k , we obtain π

1
k
+

= n̂1k/n
1 when

assuming that mixing proportions are free, π1
k
+

= n̂k/n when they only

depend on the component, and π1
k
+

= 1/K when they neither depend on
the component nor on the population.

� Centers µ1
k

Component centers in the reference population are estimated by:

µ1
k
+

=
1

n̂k

H∑
h=1

nh∑
i=1

thi,k
(
Dh
k

)−1 (
xhi − bhk

)
.

� Covariance matrices Σ1
k

If mixtures are assumed to have heteroscedastic components, the covari-
ance matrices in the reference population are given by:

Σ1
k
+

=
1

n̂k

H∑
h=1

nh∑
i=1

thi,k

[(
Dh
k

)−1 (
xhi − bhk

)
− µ1

k
+
] [(

Dh
k

)−1 (
xhi − bhk

)
− µ1

k
+
]′
.

Otherwise, when supposing each mixture has homoscedastic components,
the covariance matrices in P 1 are estimated by:

Σ1
k
+

=
1

n

H∑
h=1

K∑
k=1

nh∑
i=1

thi,k

[(
Dh
k

)−1 (
xhi − bhk

)
− µ1

k
+
] [(

Dh
k

)−1 (
xhi − bhk

)
− µ1

k
+
]′
.
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4.4 Estimation of the link parameters θh (h ≥ 2)

� Vectors bhk

Noting x̄hk = (1/n̂hk)
∑nh

i=1 t
h
i,kx

h
i the empirical mean of Chk component,

when vectors bhk (k = 1, . . . ,K) are assumed to be free for any h ∈ {2, . . . ,H},
they are estimated by the di�erences bhk

+
= x̄hk −Dh

kµ
1
k
+
, and by:

bhk
+

=

[
K∑
k=1

n̂hk

(
Dh
kΣ1

k
+
Dh
k

)−1]−1 [ K∑
k=1

n̂hk

(
Dh
kΣ1

k
+
Dh
k

)−1 (
x̄hk −Dh

kµ
1
k
+
)]

,

(11)
when supposing they are equal.

� Matrices Dh
k

When Dh
k (k = 1, . . . ,K and h = 2, . . . ,H) are some homothety matrices,

that is whenDh
k = αhkI (α

h
k ∈ R+

∗ ), orD
h
k = αhI (αh ∈ R+

∗ ), according to
their depending (or not depending) on the components, they are estimated
respectively thanks to the two following formulas:

αhk
+

=
−uhk +

√
(uhk)

2
+ 4dn̂hkv

h
k

2dn̂hk
or αhk

+
=
−uh +

√
(uh)

2
+ 4dn̂hvh

2dnh
,

vhere

� uhk =

nh∑
i=1

thi,k

(
xhi − bhk

+
)′ (

Σ1
k
+
)−1

µ1
k
+
and uh =

K∑
k=1

uhk ,

� vhk =

nh∑
i=1

thi,k

(
xhi − bhk

+
)′ (

Σ1
k
+
)−1 (

xhi − bhk
+
)
and vh =

K∑
k=1

vhk .

In the other more general cases, Dh
k matrices can not be estimated ex-

plicitly. Nevertheless, as the conditional expectation of θ completed log-
likelihood is concave with respect to (Dh

k )−1 (whatever are h ∈ {2, . . . ,H}
and k ∈ {1, . . . , k}), we obtainDh

k

+
by any convex optimization algorithm.

Remark: Until now we have supposed that Dh
k matrices were positive.

If that assumption is weakened by simply �xing each Dh
k matrix coe�-

cient sign (positive or negative), then, �rst, identi�ability of the model is
preserved, and secondly the conditional expectation of θ completed log-
likelihood E [lc(θ;X,Z)|X = x], keeps on being concave with respect to
(Dh

k )−1 on the parameter space Θ. Then we will always be able to get

Dh
k

+
at the GM-step of the GEM algorithm, numerically at less.
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4.5 An alternative sequential estimate

According to Subsections 4.3 and 4.4, ψ estimate based on ML relies on an
alternate likelihood optimization with respect to the reference parameter θ1 and
to the link parameter θh (h ≥ 2). However some of the models of simultaneous
clustering allow an alternative sequential estimation which does not maximize
ψ likelihood in general, but which is simpler than the previous GEM algorithm
and which leads also to consistent estimates.

When the interpopulation model is (π,Dh,h′
, bh,h

′
) (or one of its parsimo-

nious models obtained by assuming Dh,h′
= αh,h

′
I, Dh,h′

= I or bh,h
′

= 0)
the conditional link (3) stretches over unconditional populations:

Xh′
∼Dh,h′

Xh + bh,h
′
. (12)

Still using both notations Dh = D1,h and bh = b1,h, the �rst step of the
proposed strategy is to estimate each population link parameter (Dh, bh) with
each sample pair (x1,xh) (h = 2, . . . ,H). This can be performed very simply
by a least square methodology leading to explicit estimates given in Table 3.

Table 3: Link parameter least-square estimates in the sequential estimation

method. x̄h = (1/nh)
∑nh

i=1 xhi and Ŝh = (1/nh)
∑nh

i=1(xhi − x̄h)(xhi − x̄h)′

denote respectively the empirical center and the empirical covariance matrix of
the whole population Ph.

Interpopulation model D̂h b̂h

(I, bh,h
′
) I b̂h = x̄h − x̄1

(αh,h
′
I,0)

(x̄h)′(x̄1)

(x̄1)′(x̄1)
I 0

(αh,h
′
I, bh,h

′
) α̂1,h =

[
tr
(
Ŝ1Ŝh

)
/tr
(

(Ŝ1)2
)]1/2

b̂h = x̄h − α̂1,hx̄1

(Dh,h′
,0) {D̂h}jj = {x̄h}j/{x̄1}j 0

(Dh,h′
, bh,h

′
)

(
diagŜh

)1/2 (
diagŜ1

)−1/2
b̂h = x̄h − D̂hx̄1

Since in case of the most complex model considered in this subsection,
(π,Dh,h′

, bh,h
′
), the least square estimator of Dh parameter requires a numer-

ical procedure, we give an alternative but explicit and consistent estimator of
Dh based on the relation [Sh = DhS1Dh] ⇒ [(diag Sh) = Dh(diag S1)Dh],
where Sh denotes the covariance matrix of the whole population Ph.

The second step of the strategy is the following: As all the transformed data
points (Dh)−1(xhi −bh) (h = 1, . . . ,H, k = 1, . . . ,K) are assumed to arise inde-
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pendently from P 1 population, a simple and traditional EM algorithm devoted
to Gaussian mixture estimation, can be involved. Softwares as MIXMOD [3]
are now available for practitioners to perform that estimation.

Remark: That alternative estimation procedure still consists of a ML esti-
mate of ψ parameter but now under the constraint of the previously estimated
and plugged in link parameter. Although estimators given in Table 3 depend
on which sample holds the label 1, the constraint set on ψ likelihood does
not depend on this population label choice in case of interpopulation models
(π,Dh,h′

, bh,h
′
), (π,Dh,h′

,0) or (π, I, bh,h
′
). Indeed for these models, the link

parameter owns some symmetry and transitivity properties which are also satis-
�ed by the corresponding estimators of Table 3. In case of both other interpop-
ulation models the symmetry and transitivity properties of the link parameter
are no more satis�ed by the estimators of Table 3 and then the sequential esti-
mation does depend on the population label choice. Nevertheless next section
will suggest that, in these cases, sequential estimates are still close to ML esti-
mates obtained by the previous GEM algorithm (Subsections 4.3 and 4.4).

5 A biological example

5.1 The data

In [17] three seabird subspecies (H = 3) of Shearwaters, di�ering over their
geograpical range, are described. Borealis (sample x1, size n1 = 206 individuals,
45% female) are living in the Atlantic Islands (Azores, Canaries, etc.), Diomedea
(sample x2, size n2 = 38 individuals, 58% female), in Mediterranean Islands
(Balearics, Corsica, etc.), and Edwardsii (sample x3, size n3 = 92 individuals,
52% female), in Cape Verde Islands. Individuals are described in all species
by the same �ve morphological variables (d = 5): Culmen (bill length), tarsus,
wing and tail lengths, and culmen depth. We aim to retrieve the sex of the birds
(K = 2).

Figure 1 displays the birds in the plane of the culmen depth and the bill
length. Samples seem clearly to arise from three di�erent populations. We aim
to distinguish males and females for each of them and, so, three standard Gaus-
sian model-based clusterings should be considered. However, let us remark that
the researched partition (males, females) has the same meaning in each sample,
and the three samples are described by the same �ve morphological features.
Then the data set is suitable for some simultaneous clustering process.

5.2 Partitioning when the cluster number is known

We applied on the three seabird samples each of the 66 allowed models of
simultaneaous clustering displayed in Table 1. Since the birds must be clustered
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Figure 1: Three samples of Cory's Shearwaters described by variables of identical
meaning.

9 10 11 12 13 14 15 16 17 18 19
35

40

45

50

55

60

65

Culmen depth

B
ill

 l
e
n
g
th

 

 

x
1
 : Calonectris diomedea borealis

x
2
 : Calonectris diomedea diomedea

x
3
 : Calonectris edwardsii

according to their sex, the number of groups is set to 2. The clustering procedure
consists in estimating the parameter of each model by a GEM algorithm (5 trials
for each procedure, 500 iterations and 5 directional maximizations at each GM
step (see Subsection 4.2)) and selecting the model which gives the smallest BIC
value. Results are constituted by the empirical error rate (obtained thanks to
the known true partition) and by the BIC value of each model.

BIC criterion allows also to compare the simultaneous clustering procedure
to the independent one. Indeed, one can also estimate the parameter ψ assum-
ing that the stochastic link (3) does not hold in the three seabird populations
and compute then the BIC value of the model so inferred. In Table 4, the BIC
values obtained by the independent clustering method, have been computed
according to (9). Comparing them with BIC obtained from simultaneous clus-
tering, leads to choose the simultaneous clustering method.

BIC criterion and error rate are quite di�erent statistics. BIC translates
in some particular sense the adequacy of a model to the data, whereas the error
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rate translates the overlapping of components in a mixture model. Some model
well adapted to the data may be quite ine�cient to determine well-separated
clusters and conversely. Table 4 shows that BIC and error rate seem to behave,
here, in the same manner. The model selected by BIC, (π,Dh,h′

,0;π,Σh),
corresponds also to the smallest error rate (10.42%). According to this model,

bh,h
′

k vectors are all null. Biernacki et al. performed in [2] some test on the

empirical covariance matrices Σ̂h
k estimated from the sexed samples, in order to

corroborate this hypothesis. That model involves also that the mixture compo-
nents are homoscedastic. Some cross-validation criterion can show that males
and females should constitute some homoscedastic components, at less among
Borealis and Diomeda (see [2]).

Remark: Table 5 displays BIC values and all associated errors rates ob-
tained by sequential estimation (Subsection 4.5). BIC values are greater than
the corresponding BIC of Table 4�except four of them which correspond to a
parameter located on a degeneracy path of the likelihood�but both correspond-
ing BIC values are often close to each other and the corresponding error rates
also.

That example shows that the alternative sequential method can provide for
less some acceptable partition close to the one which the full ML parameter
estimate would lead to. Remember however that this alternative strategy is
available only for some peculiar models of simultaneous clustering.

5.3 The general situation: Partitioning when the cluster
number is unknown

Experiments exhibited in the previous paragraph were extended to less or
more than two clusters. We considered successively that bird species were parti-
tioned into one (no structure), two, three or four underlying groups and results
are respectively displayed in Tab. 6, 4, 7 and 8. Obviously no empirical error
rate is displayed when K 6= 2.

When the cluster number was set equal to 2, the best model inferred by
simultaneous clustering was better than the best model obtained in indepen-
dent clustering. By comparing the best BIC values obtained in both methods,
Table 9 con�rms when K = 1, 3, or 4, that advantage of the simultaneous clus-
tering method on the independent one. Indeed, whatever isK among {1, 2, 3, 4},
the best model is always obtained by simultaneous clustering, which shows how
relevant may be the speci�c parsimony of simultaneous clustering models.

According to Table 9, selecting the cluster number thanks to the best BIC
values obtained by independent clustering leads to an error (indeed it corre-
sponds to K = 1), whereas the best BIC obtained in simultaneous clustering
selects the cluster number which is researched (K = 2).
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5.4 Some robustness study of the simultaneous clustering
method: Relaxing the exact variable concordance

Simultaneous clustering relies, among other things, on the assumption that
samples to be classi�ed are described by variables of identical meaning. How-
ever in many concrete situations descriptors do not have exactly the same sense
in some sample or other. The parsimonious models of simultaneous clustering
are still relevant in those cases if it remains realistic to suppose that conditional
correlations are invariant through the populations for some variable permuta-
tion within each population. Then the practitioner will have in that relaxed
context to propose, if possible, a realistic correspondance between all involved
population variables.

The following example shows that the models of simultaneous clustering may
still be of interest when relaxing the covariable concordance assumption.

We dispose of another bird sample x4 (size n4 = 22 individuals, 54% fe-
male) [5] composed of White-throated Dippers (Cinclus cinclus cinclus) living
in Lorraine (France), which size is close to Calonectris diomedea diomeda sam-
ple's one. Birds of x4 are described by their tarsus and the length of their folded
wing, that is two variables close in meaning to the couple tarsus-wing length
which describes among others x2 sample.

We aim to classify simultaneously the 60 birds of x2 and x4 (see Figure 2)
according to their sex and then the cluster number is set to 2. Table 10 dis-
plays BIC values of the 66 allowed combinations of intra and interpopulation
models of simultaneous clustering, BIC values of the 4 parsimonious models of
independent clustering, and the corresponding error rates obtained thanks to
the known true partitions.

In that relaxed context, the best BIC value (309.8) is still obtained from
the simultaneous clustering method, as the second and the third best one (re-

spectively 309.9 and 310.1), and they all correspond to a model in which Dh,h′

k

matrices are equal among males and females and bh,h
′

k vectors also. Moreover
these models provide some error rates (respectively 23.33%, 30% and 18.33%)
which are often better than the error rate corresponding to the best model of
independent clustering (25.00%).

6 Concluding remarks

This work is a scope enlargement of clustering based on Gaussian mixtures.
It displays models allowing to classify automatically and simultaneously several
samples even when they arise from di�erent populations. It is based on the
assumption of a linear stochastic link between the components of the mixtures
which translates identical conditional correlations of the descriptors through
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Figure 2: Two bird samples described by variables close in meaning.
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the populations. Full ML estimates are proposed through a GEM procedure.
Alternatively, for some models, it is possible to perform an estimation with tra-
ditional tools available for any statistician or biologist: Explicit least square
estimates followed by a standard EM algorithm for Gaussian mixtures.

We showed the e�ciency of the models on biological data which true parti-
tion was known. Experiments revealed that for some given number of clusters,
the model inferred from simultaneous clustering was better than the model esti-
mated by several independent clustering methods. On the other hand, feigning
to ignore the true cluster number, the models available in simultaneous cluster-
ing did select it naturally. We noticed at last that the so-called simultaneous
clustering method had some kind of robustness to one of its main assumptions
relaxation that is to say the exact concordance of population descriptors.

If the subspecies of each Shearwater that we classi�ed in Subsection 5.2
were unknown and had to be determined so as its sex, our model of simulta-
neous clustering could easily be extended to hierarchical mixtures for nested
data structures [18]�level-1 groups consisting on the bird sex and level-2 ones
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on subspecies�by considering some additional latent variable in the model, in-
dicating each bird subspecies.

Gaussian mixtures are widespread in model-based clustering but the litera-
ture mentions many other distributions useful in that context. Mixtures of factor
analyzers are used in order to assess groups in high-dimensional data sets [13],
mixtures of Student distributions are applied when the data include outliers [13].
Some combined use of both factor analyzers and t-distributions seems to give
interesting results in microarray gene-expression data clustering [12]. Studying
the possibility and the e�ciency of performing some simultaneous clustering
method based on t-mixtures or factor analyzer mixtures, in those situations,
would be of interest.

The simultaneous clustering method relies in this work on an a�ne stochastic
link between the components of diverse mixtures. Some other kinds of link can
be envisaged which should improve�if they translate some realistic constraint on
the populations�the standard method consisting on several independent sample
clusterings. For example some close overlappings of the groups within the di-
verse samples to be classi�ed should make as di�cult every sample clustering.
Formalizing that information by supposing all mixtures to have equal global
component entropies (or identical error rates) and setting this as a constraint
on the model should improve the sample classi�cation insofar as this constraint
is close to truth.
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Table 4: BIC value and (error rate) in simultaneous (full ML estimates) and
independent clustering (2 groups) of Shearwaters.

π πk

Σh Σh
k Σh Σh

k

π

I

0 4392.9 (43.45) 4392.5 (44.94) 4371.8 (45.24) 4383.6 (43.45)

bh,h
′

4064.5 (11.61) 4089.8 (11.61) 4067.4 (11.61) 4091.2 (15.77)

bh,h
′

k 4084.4 (12.20) 4110.1 (13.10) 4080.0 (41.96) 4107.4 (26.49)

αh,h′
I

0 4254.0 (33.04) 4279.7 (29.17) 4246.2 (42.56) 4276.0 (41.37)

bh,h
′

4056.8 (11.61) 4081.7 (11.61) 4059.7 (11.01) 4083.7 (14.88)

bh,h
′

k 4079.6 (11.61) 4105.2 (11.90) 4079.9 (40.77) 4095.8 (45.83)

αh,h′

k I
0 . 4282.9 (32.14) . 4279.4 (38.69)

bh,h
′

k . 4110.4 (12.50) . 4110.4 (16.07)

Dh,h′

0 4047.0 (10.42) 4071.9 (11.61) 4049.7 (11.31) 4073.9 (11.88)

bh,h
′

4071.8 (10.71) 4096.9 (12.20) 4074.7 (10.71) 4099.3 (14.58)

bh,h
′

k 4094.9 (33.33) 4122.2 (11.31) 4101.9 (41.96) 4122.7 (15.77)

Dh,h′

k

0 . 4097.5 (11.90) . 4099.2 (14.88)

bh,h
′

k . 4154.5 (38.39) . 4147.9 (25.29)

πh

I

0 . . 4194.9 (43.45) 4186.1 (45.54)

bh,h
′

. . 4058.0 (40.48) 4088.5 (25.89)

bh,h
′

k . . 4084.4 (41.96) 4110.5 (44.05)

αh,h′
I

0 . . 4095.2 (47.32) 4123.7 (47.32)

bh,h
′

. . 4059.4 (40.48) 4090.1 (26.19)

bh,h
′

k . . 4081.5 (41.96) 4102.9 (45.83)

αh,h′

k I
0 . . . 4129.5 (47.32)

bh,h
′

k . . . 4107.8 (45.83)

Dh,h′

0 . . 4055.5 (11.01) 4079.5 (15.18)

bh,h
′

. . 4079.9 (39.88) 4107.8 (40.18)

bh,h
′

k . . 4107.6 (42.86) 4128.5 (15.18)

Dh,h′

k

0 . . . 4101.8 (45.24)

bh,h
′

k . . . 4153.6 (16.37)

Independent 4139.8 (12.50) 4218.2 (38.39) 4143.0 (29.17) 4219.7 (40.18)
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Table 5: Sequential estimation: BIC value and (error rate) in simultaneous and
independent clustering (2 groups) of Shearwaters.

π πk

Σh Σh
k Σh Σh

k

π

I
0 4392.9 (43.45) 4392.5 (44.94) 4371.8 (45.24) 4383.6 (43.45)

bh,h
′

4064.6 (11.61) 4090.9 (11.90) 4205.6 (37.20) 4337.0 (45.83)

αh,h′
I

0 4259.5 (32.74) 4283.5 (29.46) 4247.6 (43.45) 4278.1 (42.26)

bh,h
′

4057.0 (11.31) 4082.4 (11.61) 4059.6 (36.01) 4068.7 (46.13)

Dh,h′ 0 4047.0 (10.71) 4072.0 (11.90) 4049.0 (35.11) 4074.2 (14.28)

bh,h
′

4072.4 (10.42) 4097.5 (11.90) 4074.3 (34.52) 4099.7 (14.28)

Table 6: BIC value in simultaneous (full ML estimates) and independent
clustering (1 group) of Shearwaters.

I
0 4472.0

bh,h
′
, bh,h

′

k 4061.8

αh,h′
I, αh,h′

k I
0 4246.4

bh,h
′
, bh,h

′

k 4057.3

Dh,h′
, Dh,h′

k

0 4047.8

bh,h
′
, bh,h

′

k 4073.3

Independent 4102.6
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Table 7: BIC value in simultaneous (full ML estimates) and independent
clustering (3 groups) of Shearwaters.

π πk

Σh Σh
k Σh Σh

k

π

I

0 4372.7 4405.3 4349.3 4409.9

bh,h
′

4074.5 4125.5 4067.9 4129.2

bh,h
′

k 4112.9 4167.2 4110.0 4160.1

αh,h′
I

0 4253.2 4317.0 4249.9 4307.6

bh,h
′

4065.7 4120.1 4060.8 4119.8

bh,h
′

k 4110.0 4161.8 4108.1 4157.0

αh,h′

k I
0 . 4322.1 . 4311.9

bh,h
′

k . 4174.2 . 4151.5

Dh,h′

0 4053.8 4105.5 4051.0 4103.2

bh,h
′

4078.7 4132.2 4076.7 4137.9

bh,h
′

k 4129.8 4181.6 4126.2 4173.5

Dh,h′

k

0 . 4153.3 . 4155.9

bh,h
′

k . 4232.4 . 4216.6

πh

I

0 . . 4079.2 4137.7

bh,h
′

. . 4070.2 4129.0

bh,h
′

k . . 4118.1 4159.8

αh,h′
I

0 . . 4073.8 4143.3

bh,h
′

. . 4068.6 4128.3

bh,h
′

k . . 4115.9 4159.5

αh,h′

k I
0 . . . 4155.2

bh,h
′

k . . . 4173.8

Dh,h′

0 . . 4062.4 4119.9

bh,h
′

. . 4089.2 4141.2

bh,h
′

k . . 4133.8 4174.4

Dh,h′

k

0 . . . 4153.9

bh,h
′

k . . . 4236.3

Independent 4137.6 4289.3 4148.0 4291.3
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Table 8: BIC value in simultaneous (full ML estimates) and independent
clustering (4 groups) of Shearwaters.

π πk

Σh Σh
k Σh Σh

k

π

I

0 4357.8 4429.2 4341.7 4444.6

bh,h
′

4075.9 4157.5 4079.9 4162.0

bh,h
′

k 4136.7 4225.1 4138.3 4219.0

αh,h′
I

0 4259.5 4351.3 4263.0 4354.0

bh,h
′

4067.4 4154.3 4071.3 4160.4

bh,h
′

k 4135.8 4222.3 4137.9 4219.0

αh,h′

k I
0 . 4360.4 . 4362.6

bh,h
′

k . 4238.2 . 4231.0

Dh,h′

0 4055.7 4147.6 4058.7 4151.7

bh,h
′

4082.4 4169.3 4085.4 4172.5

bh,h
′

k 4153.7 4243.5 4155.0 4229.0

Dh,h′

k

0 . 4213.9 . 4207.9

bh,h
′

k . 4320.8 . 4304.9

πh

I

0 . . 4078.7 4169.9

bh,h
′

. . 4084.2 4165.9

bh,h
′

k . . 4151.5 4220.9

αh,h′
I

0 . . 4078.7 4175.7

bh,h
′

. . 4087.3 4163.7

bh,h
′

k . . 4151.9 4224.5

αh,h′

k I
0 . . . 4193.2

bh,h
′

k . . . 4235.8

Dh,h′

0 . . 4073.1 4155.2

bh,h
′

. . 4107.4 4175.0

bh,h
′

k . . 4168.7 4243.8

Dh,h′

k

0 . . . 4228.5

bh,h
′

k . . . 4318.1

Independent 4159.6 4363.4 4171.8 4359.3
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Table 9: Best BIC values obtained in simultaneous (full ML estimates) and
independent clustering of Cory's Shearwaters with di�erent number of clusters.

Cluster Number 1 2 3 4

Simultaneous Clustering 4047.8 4047.0 4051.0 4055.7

Independent Clustering 4102.6 4139.8 4137.7 4159.6
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Table 10: BIC value and (error rate) obtained in simultaneous (full ML esti-
mates) and independent clustering (2 groups) of two bird samples in some case
of non concordant descriptors.

π πk

Σh Σh
k Σh Σh

k

π

I

0 357.3 (46.67) 356.2 (46.67) 357.2 (46.67) 356.1 (46.67)

bh,h
′

318.9 (28.33) 321.7 (41.67) 318.9 (48.33) 328.8 (41.67)

bh,h
′

k 316.5 (30.00) 320.2 (45.00) 317.8 (45.00) 318.2 (21.67)

αh,h′
I

0 352.4 (46.67) 358.2 (46.67) 352.3 (46.67) 363.1 (18.33)

bh,h
′

309.8 (23.33) 315.2 (25.00) 313.1 (33.33) 310.1 (18.33)

bh,h
′

k 311.5 (25.00) 315.6 (41.67) 311.0 (38.38) 312.0 (36.67)

αh,h′

k I
0 . 468.8 (25.00) . 465.1 (20.00)

bh,h
′

k . 318.1 (43.33) . 320.0 (41.67)

Dh,h′

0 319.0 (28.33) 322.7 (30.00) 318.8 (28.33) 316.9 (30.00)

bh,h
′

311.5 (23.33) 316.6 (23.33) 312.6 (28.33) 314.3 (18.33)

bh,h
′

k 313.6 (23.33) 318.4 (41.67) 312.8 (38.33) 314.4 (36.67)

Dh,h′

k

0 . 313.4 (20.00) . 310.2 (40.00)

bh,h
′

k . 320.8 (18.33) . 314.5 (18.33)

πh

I

0 . . 319.8 (46.67) 318.7 (46.67)

bh,h
′

. . 323.9 (43.33) 316.1 (21.67)

bh,h
′

k . . 319.8 (43.33) 318.6 (21.67)

αh,h′
I

0 . . 314.9 (46.67) 320.7 (46.67)

bh,h
′

. . 316.7 (43.33) 317.5 (21.67)

bh,h
′

k . . 312.4 (40.00) 313.2 (36.67)

αh,h′

k I
0 . . . 447.2 (30.00)

bh,h
′

k . . . 317.5 (28.33)

Dh,h′

0 . . 311.9 (28.33) 309.9 (30.00)

bh,h
′

. . 317.2 (43.33) 324.1 (41.67)

bh,h
′

k . . 314.5 (26.67) 315.1 (36.67)

Dh,h′

k

0 . . . 310.4 (40.00)

bh,h
′

k . . . 314.9 (21.67)

Independent 310.9 (25.00) 315.8 (23.33) 313.9 (28.33) 318.2 (20.00)


