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Fully reducible, and lacunary polynomials

Definition

A polynomial over a field F is called fully reducible if it factors into
linear factors over F . A polynomial is lacunary if in the sequence of
its coefficients a long run of zeroes occurs.

The monograph Lacunary polynomials over finite fields by László

Rédei is devoted entirely to such polynomials and their
applications.
We survey the results of that book and some more recent
applications of the theory.
Many results can be found in my paper Around Rédei’s theorem,
Discrete Math. 1999.

szt Lacunary polynomials and finite geometry



László Rédei, 1900-1980
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The 2nd triumvirate in Szeged
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Rédei’s problems

Problem

Let d be a fixed divisor of q − 1. Determine those polynomials
f (x) = x (q−1)/d + g(x) which are fully reducible, are not divisible
by x, do not have multiple roots, and deg(g) ≤ q−1

d2 .

Problem

Determine the polynomials f (x) ∈ GF (q)[x ] \ GF (q)[xp], which
have the form f (x) = xq + h(x), are fully reducible and
deg(h) ≤ q+1

2 .
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Problem I

Theorem (Rédei)

For d > 2 the solutions of Problem 1 are the Euler-binomials
x (q−1)/d − α (where α = u(q−1)/d for a nonzero u). For d = 2
there are other solutions, namely the polynomials:

(

x
q−1
4 − β

)(

x
q−1
4 − γ

)

, (β2 = 1, γ2 = −1),

when q ≡ 1 (mod 4).

This is Theorem 5 in Paragraph 9 in Rédei’s book.
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Part of the solution to Problem II

Theorem (Rédei)

Let f (x) = xq + g(x) be fully reducible and suppose that
f ′(x) 6= 0. Then deg(g) ≥ (q + 1)/2, or f (x) = xq − x.

This is proven in Paragraph 10 of Rédei’s book: Let
f (x) = s(x)m(x), where s(x) = product of roots with multiplicity
1, and let m(x) = multiple roots. Then

s(x)|f (x)− (xq − x) = g(x) + x , m(x)|f ′(x) = g ′(x).

If f (x) 6= xq − x , then f (x)|(g(x) + x)g ′(x). Hence
deg(f ) ≤ deg(g) + (deg(g)− 1).
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Solutions for q = p

Theorem (Rédei)

If q = p 6= 2 prime, then the solutions of Problem II are

f (x) = (x + a)
(

(x + a)
p−1
2 − σ

)(

(x + a)
p−1
2 − στ

)

,

(σ = ±1, τ = 0, 1).

Sketch of the proof. Continue the previous proof: for
deg(g) = (q + 1)/2, we have f (x) = c · (g(x) + x)g ′(x). Let
g(x) = a0x

(p+1)/2 + a1x
(p−1)/2 + ...+ a(p+1)/2. Using a

translation x → x + c we can suppose that a1 = 0. From above,

(1)
a20
2
(xq + g(x)) = (g(x) + x)g ′(x).

Therefore,

(i) g(x) + x and g ′(x) are fully reducible, and
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Solution for q = p, II.

(ii) g(x) + x divides xq − x , that is it has only simple roots.

In equation (1), left-hand side is lacunary, i.e. coefficient of
xp−1, ..., x (p+3)/2 is zero. Hence

(2)
k

∑

i=0

(1− 2i)aiak−i = 0, (k = 1, . . . (p − 3)/2).

(this comes from the coefficient of xp−k).
Using a1 = 0 it implies a1 = a2 = . . . = a(p−3)/2 = 0.

Therefore g(x) = a0x
(p+1)/2 + a(p−1)/2x + a(p+1)/2.
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General solutions

The actual theorem of Rédei is too complicated, so we just
illustrate it. Let us take q = p2: we start from a nice (lacunary)
factorization of xp

2 − x . Take
(xp+1 − 1)(p−1)/2 + 1)(xp+1 − 1)(p−1)/2 − 1). It is

xp+1(xp
2−1 − 1)

xp+1 − 1
,

As the above factors are lacunary, we can write down fully
reducible and (very) lacunary polynomials dividing xq − x .

Intuitively, what happened is that in place of x + a we put the
expression N(x + ̺) + a in the solutions given in the rpevious
Theorem. In the general case we can repeat this procedure for
each chain of subfields in GF(q).

However, in the geometric applications, this general theorem was
not (yet) used (not even for q = p2).
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The degenerate solutions

Theorem (Rédei, Thm. 18)

Let h(x) = xq/p
e

+ g(x) for some 1 ≤ e < n (where q = pn,
n ≥ 2). Suppose that h is fully reducible and h′(x) 6= 0. If
e ≤ n/2, then

deg(g) ≥ q + pe

pe(pe + 1)
.

If e > n/2, then deg(g) ≥ pe .
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Blokhuis’ generalizations I.

Theorem (Blokhuis)

Let f (x) = xqg(x) + h(x) be a fully reducible lacunary polynomial
over GF(q) and assume that (g(x), h(x)) = 1 and f ′(x) 6= 0.
Then either xq − x divides f (x), or the maximum of the degrees of
g and h is at least (q + 1)/2.

Sketch of the proof. Copy Rédei’s proof and observe that
s(x)|xg(x) + h(x) and m(x)|f (x)g ′(x)− f ′(x)g(x).
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Aart Blokhuis
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Blokhuis’ generalizations II.

Theorem (Blokhuis)

Let h(x) = xq/p
e

f (x) + g(x) for some 1 ≤ e < n (where q = pn,
n ≥ 2). Suppose that h is fully reducible, (f (x), g(x)) = 1 and
h′(x) 6= 0. If e ≤ n/2, then

max{deg(f ), deg(g)} ≥ q + pe

pe(pe + 1)
.

If e > n/2, then max{deg(f ), deg(g)} ≥ pe

Combine the proof of the previous result and Rédei’s proof to
bound the degree in case of the degenerate solutions. The bound
can be further improved:
max{deg(g), deg(f )} ≥ ⌈(q/pe + 1)/(pe + 1)⌉ · pe .
Remark: For e|n the theorem is essentially sharp.
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Trace and Norm

In the special case e = n/2, the previous bound gives
max{deg(g), deg(f )} ≥ √

q.

In case of equality BALL and GÁCS-SzT proved that h(x) is either
the Trace or the Norm function from GF(q) to GF(

√
q).

They also showed that max{deg(f ), deg(g)} = 2
√
q is not possible.
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Leo Storme
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Improvements by Blokhuis, Storme, SzT

Theorem (Blokhuis, Storme, SzT)

Let f ∈ GF (q)[x ] be fully reducible, f (x) = xqg(x) + h(x), where
(g , h) = 1. Let k < q be max(deg(g), deg(h)). Let e be maximal
such that f is a pe-th power. Then we have one of the following:

(1) e = n and k = 0,

(2) e ≥ 2n/3 and k ≥ pe ,

(3) 2n/3 > e > n/2 and k ≥ pn−e/2 − 3
2p

n−e ,

(4) e = n/2 and k = pe and f (x) = aTr(bx + c) + d or
f (x) = aN(bx + c) + d for suitable constants a, b, c , d. Here
Tr and N respectively denote the trace and the norm function
from GF(q) to GF(

√
q),
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Improvements by Blokhuis, Storme, SzT, II

Theorem (BBS continued)

Let f ∈ GF (q)[x ] be fully reducible, f (x) = xqg(x) + h(x), where
(g , h) = 1. Let k < q be max(deg(g), deg(h)). Let e be maximal
such that f is a pe-th power. Then we have one of the following:

(5) e = n/2 and k ≥ pe
⌈

1
4 +

√

(pe + 1)/2
⌉

(6) n/2 > e > n/3 and k ≥ p(n+e)/2 − pn−e − pe/2, or if
3e = n + 1 and p ≤ 3, then k ≥ pe(pe + 1)/2,

(7) n/3 ≥ e > 0 and k ≥ pe⌈(pn−e + 1)/(pe + 1)⌉,
(8) e = 0 and k ≥ (q + 1)/2

(9) e = 0, k = 1 and f (x) = a(xq − x).
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Directions

Problem (Rédei, Par. 36)

Given a function f on GF(q) how many different values can the
difference quotients (f (x)− f (y))/(x − y) take?

Geometrically, this is equivalent to the following question. How
many directions are determined by a set U of q points in the affine
plane AG(2, q)?

Definition

A direction (or an infinite point of AG(2, q)) is determined by U if
there is a pair of points in U so that the line joining them passes
through this infinite point.
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Determined and non-determined directions

AG(2,q)

m( 0)

8(  )

8l

(m)

Y=mX+b

(0,b)
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The Rédei polynomial

Consider a subset U = {(ai , bi ) : i = 1, . . . , |U|} of the affine plane
AG(2, q). Recall that the lines of this plane have equation X = c
or Y − yX + x = 0. The Rédei polynomial of U is

H(X ,Y ) :=
∏

i

(X+aiY −bi ) = X |U|+h1(Y )X |U|−1+...+h|U|(Y ).

Note that for all j = 1, ..., |U|: deg(hj) ≤ j . The trick will always
be to consider H(X ,Y ) for a fixed Y = y . It encodes line
intersections of U.

Lemma

The value X = b is an r-fold root of the polynomial H(X ,m) if
and only if the line with equation Y = mX + b meets U in exactly
r points.
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The Rédei-Megyesi theorem

Theorem (Rédei-Megyesi, Thm. 24’)

A set of p points in AG(2, p), (p prime), is either a line or
determines at least (p + 3)/2 directions.

Sketch of the proof. Let D be the set of directions determined
by U and suppose that ∞ ∈ D. The point (y) is not determined
by U if and only if H(X , y) = X p − X .
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Proof of Rédei-Megyesi

Therefore hj(y) = 0 for at least q + 1− |D| different y ’s, which
implies that h1(y), . . . , hq−|D|(y) are identically zero.

If one considers H(X , y) for y ∈ D, then H(X , y) = X p + gy (X )
with deg(gy ) ≤ |D| − 1 and it is fully reducible.
|D| − 1 ≥ (p + 1)/2, by the theorem of Rédei on lacunary
polynomials (case q = p).

This result, together with the theorem on lacunary polynomials
was rediscovered by Dress, Klin, Muzychuk.
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The projective triangle

b=

(a,0): a=

8

l8

(  )

(0)
(0,0)

(0,b):
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László Lovász
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Lex Schrijver
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The Lovász-Schrijver theorem

Theorem (Lovász-Schrijver)

A set U determining (p + 3)/2 directions is projectively equivalent
to

{(0, a) : a(p−1)/2 = 1} ∪ {(b, 0) : b(p−1)/2 = 1} ∪ {(0, 0)}.

This actually follows from Rédei’s characterization of the solutions
of his Problem II for q = p. Geometrically, it gives that lines
through an ideal point either meet the set U in 2 points ((p − 1)/2
times) and 1 point once, or there is a line with (p + 1)/2 points
and the remaining lines meet U in 1 point.
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The Rédei-Megyesi construction I

M

Mb

8

l8

(  )

(0)
(0,0)

(a,0): a M

(0,b):
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The Rédei-Megyesi construction II

(0,a): a A

8

l8

(  )

(1,b):
Ab

A
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Gács’s theorem for q = p

Looking at the examples given when q = p is a prime, we see that
one can obtain sets determining (p + 3)/2, and the next example
coming from Megyesi’s construction will have size at least
2 + 2(p − 1)/3. The following theorem almost reaches this bound.

Theorem (Gács)

Let U be a set of size p in AG(2, p), where p is prime. Then either
U is the affine part of the projective triangle or
|DU | ≥ 1 + [2(p − 1)/3].
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András Gács, 1969-2009
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Gács-Lovász-SzT for q = p
2

Theorem (GLS)

Any set in AG(2, p2) of size p2 determining (p2 + 3)/2 directions
has to be equivalent to the affine part of the projective triangle. If
the set determines more than this number of directions, then it
determines at least (p2 + p)/2 directions.

The proof does not use Rédei’s general (and difficult) theorem on
the solutions of Problem II. The bound here is sharp, Polverino,
SzT and Weiner constructed examples of this size.
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Rédei’s results on directions for general q

Theorem (Rédei, Thm 24)

Let f : K → K (K =GF(q)) be any function, and let N be the
number of directions determined by the graph of f . Then either
N = 1, and f is linear, or N ≥ (q + 1)/2, or
1 + (q − 1)/(pe + 1) ≤ N ≤ (q − 1)/(pe − 1) for some e,
1 ≤ e ≤ [n/2].

Slight improvements on Rédei’s theorem are contained in Blokhuis,
Brouwer, SzT. For example, we proved that N ≥ (q + 3)/2
(instead of (q + 1)/2) and that the e’s for which n/3 < e < n/2
do not occur.
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Aart Blokhuis and Andries Brouwer
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Andries Brouwer and Simeon Ball
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Leo Storme
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The Blokhuis,Ball,Brouwer,Storme, SzT thm

Theorem (Blokhuis, Ball, Brouwer, Storme, SzT)

Let U ⊂ K 2 be a point set of size q containing the origin, let D be
the set of directions determined by U, and put N := |D|. Let e
(with 0 ≤ e ≤ n) be the largest integer such that each line with
slope in D meets U in a multiple of pe points. Then we have one
of the following:

(i) e = 0 and (q + 3)/2 ≤ N ≤ q + 1,

(ii) e = 1, p = 2, and (q + 5)/3 ≤ N ≤ q − 1,

(iii) pe > 2, e|n, and q/pe + 1 ≤ N ≤ (q − 1)/(pe − 1),

(iv) e = n and N = 1.

Moreover, if pe > 3 or (pe = 3 and N = q/3 + 1), then U is
GF(pe)-linear, and all possibilities for N can be determined
explicitly (in principle).
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Ball’s improvement

Simeon Ball found a beautiful new proof of this result, which deals
with the missing cases. This means that for pe = 2 he proved the
lower bound q/2 + 1 ≤ N, and for pe = 3 his method gives the
GF(3)-linearity of the set U.
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Directions determined by < q pts

Theorem (SzT)

A set of k = p − n points in AG(2, p) is either contained in a line,
or it determines at least (p + 3− n)/2 = (k + 3)/2 directions.

Sometimes sharp: put a multiplicative subgroup on the two axes.
About the proof: Rédei type results for polynomials which are
not fully reducible, but have many roots in GF(q).
Generalization for q = ph: FANCSALI, SZIKLAI, TAKÁTS
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Ball, Blokhuis, Gács, Sziklai
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The Fancsali, Sziklai, Takáts thm

Theorem

Let U be a subset of AG(2, q), D be the set of determined
directions. Let s = pe be max. s.t. every line meets U in 0 mod s
points. Let t denote another parameter defined by using the Rédei
pol. Then s ≤ t. If U is not contained in a line then either

(1) 1 = s ≤ t < q, and |U|−1
t+1 + 2 ≤ |D| ≤ q + 1, or

(2) 1 < s ≤ t < q, and |U|−1
t+1 + 2 ≤ |D| ≤ |U|−1

s−1 .
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Blocking sets

Definition

A blocking set is a set of points in PG(2, q) which meets every
line. It is called non-trivial if it contains no line. It is minimal if
deletion of any of its points results in a set which does not meet
every line. Geometrically, this means that there is a tangent line at
each point of the blocking set.

Combinatorial result: BRUEN(-PELIKÁN) for a non-trivial
blocking set |B | ≥ q +

√
q + 1, and in case of equality we have a

subplane of order
√
q. A blocking set is of Rédei type if there is a

line ℓ with |B \ ℓ| = q. This is essentially equivalent with the
direction problem.
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Lower bound for blocking sets

Theorem (Blokhuis)

Let B be a non-trivial blocking set of PG(2, q). If q is a prime,
then |B | ≥ 3(p + 1)/2. If q = ph is not a prime, then
|B | ≥ q +

√
pq + 1.

The proof uses lacunary polynomials and the Rédei polynomial.
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Small minimal blocking sets

A blocking set is called small if it has size less than 3(q + 1)/2.
Such minimal blocking sets are characterized in some cases.

Theorem

(1) (Blokhuis) If q = p prime, then there are no small minimal
non-trivial blocking sets in PG(2, p) at all;

(2) (SzT) If q = p2, p prime, then small minimal non-trivial
blocking sets in PG(2, p2) are Baer subplanes;

(3) (Polverino) If q = p3, p prime, p ≥ 7, then small minimal
non-trivial blocking sets in PG(2, p3) have size p3 + p2 + 1 or
p3 + p2 + p + 1 and they are of Rédei type.
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Péter Sziklai
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1 modulo p results

There is a result which serves as a main tool in the proof of many
particular cases of the Linearity Conjecture.

Theorem

(i) (SzT) In PG(2, q), q = ph, if B is a minimal blocking set of
size less than 3(q + 1)/2, then each line intersects it in 1
modulo pe points for some e ≥ 1;

(ii) (Sziklai) here e|h, so GF(pe) is a subfield of GF(q).
Moreover, most of the secant lines intersect B in a pointset
isomorphic to PG(1, pe), i.e. in a linear pointset.

These results, together with standard counting arguments give
lower and upper bounds for the possible sizes of minimal blocking
sets.
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Zsuzsa Weiner
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A stability result

Theorem (Weiner-SzT)

Let B be a set of points of PG(2, q), q = p prime, with at most
3
2(q + 1)− β points. Suppose that the number δ of 0-secants is
less than (23(β + 1))2/2. Then there is a line that contains at least

q − 2δ
q+1 points.

The proof is again by using almost fully reducible lacunary
polynomials.
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Ferret, Gács, Kovács, Sziklai
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An application for character sums

Theorem (Rédei, Thm. 26)

Let ̺ be a p-th root of unity, S = a0 + a1̺+ . . .+ ap−1̺
p−1 6= 0,

a0 + . . .+ ap−1 = p, ai ∈ N, ai < p. In other words, S is a p-term
sum consisting of p-th roots of unity (p 6= 2), so that not all terms
in S are equal and S is not 1 + ̺+ . . .+ ̺p−1. If S is divisible by
(1− ̺)t then t ≤ (p − 1)/2. Let Γ be the Gaussian sum

∑

̺i
2
. If

S is divisible by (1− ̺)(p−1)/2 then for some integer a we have

̺aS = Γ, or ̺aS = −Γ, or ̺aS =
1

2
(p ± Γ).
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Character sums II.

Then Rédei goes on to specialize Theorem 2.7 for sums of type
S = ±̺± ̺2 ± . . .± ̺p−1. Using Theorem 2.1 he proves that such
an S can be divisible by at most the (p − 1)/4-th power of (1− ̺)
if it is different from the exceptions given in Theorem 2.7. Using
Theorem 2.1 also the case of equality can be characterized. As far
as I know, this is the only place where Theorem 2.1 is applied.
These results were proved independently by Carlitz. Rédei also
proved similar divisibility conditions for certain signed sums, in
which not all p-th roots of unity occur, see Thm. 27.
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Application to planar functions

Definition

A function f : F → F is planar if x → f (x + a)− f (x) is bijective
for every a 6= 0.

Trivial examples of planar functions are quadratic functions over
fields of odd characteristic.

Theorem (Hiramine, Gluck, Rónyai-SzT)

Over the field GF(p), p prime, every planar function is quadratic.
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THANK YOU LÁSZLÓ RÉDEI

THANK YOU FOR YOUR ATTENTION
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