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§1. Introduction

The zeta function associated with the subgroups of finite abelian groups of rank at
most r is difficult to investigate, except for the classical case r = 1. Using a correspondence
between divisor classes of integer matrices and subgroups of finite abelian groups, we are
able to obtain the said function precisely up to a highly convergent Dirichlet series. Then
we use the zeta function to deduce the average number of subgroups of finite abelian
Zroups.

Let 4= 7/mZ®---® Z/n,Z be a finite abelian group of rank r with nln;; for
1 £j<rand let t(¥) be the number of subgroups of % and r(%) the rank of 4. We

introduce the level function ¢V (n) == Y. (%), and study the associated zeta func-
tion, i.e. ' |%|=n,r{¥) =
(1.1) DN (z,5) = 3 £ (n) jn.
=1

Since it is known that #{" () is multiplicative, we can formally write the Euler product

o0
90(r,5) =TI 3 £9(p")p ™,
P ov=0

where p runs through all prime numbers. In [3] the abscissa of convergence of ) (z, 5) was
found to be ([r*/4] + 1)/r (here [f] denotes the integral part of ¢) while for » = 2 the zeta
function was completely determined as

DB (2,8) = U 2s - D] (L + p% — 2p7),
P

where {(s) is the Riemann zeta-function. We define the summatory function of £ (n) as

T(x) = 3 £0(n).

nEx
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The asymptotic behaviour of {,({2) (n) was carefully investigated by Bhowmik and Wu [5],'
Menzer [8] and Ivié [7]. In particular we proved (1.6) of Theorem 2 below.

In the present paper we study the Dirichlet series associated with fgr) {n) and establish
an asymptotic formula for 7,{x) when r = 3.

Bhowmik and Ramaré [4] have shown that there exists a bijection between the set of
subgroups of a finite abelian group ¥ = Z/mZ @ --- © 7 /nZ and that of divisor classes of
an r x r Smith Normal Form matrix diagny, ...,n,] with a;jn;,1. If the cardinality of the

latter set is denoted by z(diag|m, . ..,n]) then for ¥ ~Z/phZ @ --- ® 2/p/i+"Z with
f; € Z* we have

(12) (pH= Y @)= X t(diag[pfi, ..., pittA)),
[#|=p" Az0 f£20
n#)=r W frens i)=Y

where v(f;,.--, /)= % if,;1- Though the expression obtained (in [2]} for the divi-
1<j=sr

sor function t(diag|p?, ..., p/i*~]), a polynomial in p with positive integral coefficients,
is very complicated we have now been able to evaluate its leading term and the sum of its
coefficients {see Theorem 3) and shown that we can extract enough information from these

to get a zeta function precisely up to a highly convergent factor.

We let a; := | /4] and ; == 01if j is even, &; 1= 1 otherwise; and obtain our Dirichlet
series as: :

Theorem 1. With notations as above, we have

9Nz, = T1 LUs— o)™ Cils),

l=j=r
where C,{s) is a Dirichlet series absolutely convergent for Res > o, /r. In particular we have
(1.3)  29(,s) = ()25 — 1)Gals),
(14)  9P(z,5) = {(5)%2s — DLBs — 2)°Gals),
(1.52) 9% (g,5) = {(2ks — kD) Gu(s) (k2 2),

(15b) 2PN (z,) = L((2k+1)s — (K +K) Coen(s) (k2 2),
o
where G,(s) = 3. g.(n)n™ is a Dirichlet series absolutely convergent for Res > a, /r.
ne=1

The formula (1.3) with Go(s) = £(2s)* [T(1 — 2p~ — p~* + 2p~™} was obtained by

Bhowmik and Ramaré ({3}, Corollary 1) whereas the other relations are new.
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We notice that the cases r =2 and r =3 are indeed singular, for the former the
largest pole, at s =1, is of order 3 and the latter has its largest pole of order 5 at s = I,
while for r = 4 the largest pole is of order only 1 or 2, depending on the parity of r, at
s={a+1)/r>1

With the help of the last theorem we can immediately see that the average value of
the number of subgroups is 4,x'*+1/*~1log? x where A, is an effective positive constant.
For finer results we need to use techniques of multiple exponential sums ([5], [12]}. In the
process we obtain results for weighted 5-dimensional divisor functions (see Lemmas 4.1, 4.2
below) which could have other applications as well. For what concerns the number of
subgroups we prove:

Theorem 2.  With previous notations, for k z 2, we have

(1.6)  Ta(x) = xPy(logx) + O(x**log* x),

(1.7)  Ts(x) = xPy(logx) + O(x'¥ " log® x),
{
(1.8)  To(x) = Ayx® 2% L o (M2e) (ve > 0),

(19)  Tonr () = x(k2+k+1)/(2k+])P1 (logx) + Ok(x(k2+k+ﬁ)/(2k+1) logﬂ x),

where P;(x) is a jth degree polynomial, Ay is an effective constant, y and B are the exponents
of x and log x in the error terms of the classical divisor problem. On the other hand for the
error term Ay (x) of T,(x) we have

(1.10) A(x) = Q(x*/).
. . . . 23
We notice that (1.8} is an optimal result and in (1.9} we can take x = 7 {or better
131 461 _ o
still m) and § = 146 ([6] and private communication).

§2. The divisor functions

While studying the arithmetic of integer matrices we encounter a left divisor class of an
r % r non-singular matrix M, say A4, which is a canonical representative of 4 - GL,(Z) and
for which there exists a matrix B e GL,(Z) such that AB = M. It was shown that a divisor
class of M corresponds to a sub-lattice of V' (M), the imagé of the endomorphism whose
matrix is M in a chosen base [4]. Since the co-kernel of the endomorphism, Z'/V (M), is
a finite abelian group whose invariant factors are the same as that of M and since V(M)
depends only on the right unimodular class of M, we consider the divisor functions {with a
weight a € C) of M which are at the same time divisor functions of Z'/V(M). Let

ool M) = A% (det A)%, (M) = oo(M).

We choose M to be a unique representative of a two-sided equivalence class, i.e. in Smith
Normal Form (SNI) and A4 to be a unique representative of a one-sided equivalence class,
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i.e. in Hermite Normal Form (HNF). Further the functions o,{M) are multiplicative, ie.
ga(AB) = 0,(A)a,(B) whenever A, B have co-prime determinants and it is enough to con-
sider M to be an SNF matrix with a prime power determinant.

For simplicity, we wite o,{f;,..., />, for ag(diaglph, ..., p/it*2]) and
t{fy,-- - Ji)p for t(diag[ph, ..., pitH/]). Now ¢(fy,. .., f,», counts the number of sub-
groups of the abelian p-group % = Z/ph7 @ --- ® Z/p/*+/Z In [2], Bhowmik has given
a precise formula of a,{f}, ..., f,), in terms of Gaussian multinomials. But the expression
obtained is very complicated and not convenient to use. Hence we need to extract infor-
mation which give us fairly precise analytic resulis.

For convenience we set f; =0 if 7 <0 or j>r, and use 0, to denote a string of m
zeros. By convention, the empty sum is 0 and the empty product is 1. We now give the
leading term and the sum of coefficients of the polynomial 6,{f1,-.., f,2p-

Acknowledgement. The relation (2.3) in fact emerged during a discussion with V. C.
Nanda.

Theorem 3. Fora, f,...,f, € Z', the function 6,{f1, .., f,),, a polynomial in p with
non-negative integral coefficients, has as leading term: A‘(I) (fis- s 1o) pg‘(fr) Wi f | where

21) 0, L f)= Y wpnefita Y (=i DS,

1Zj2r—a rHi—agjsr

@2)  AD(A,- )= 11 (frogja + 1)

07 £[(r—a)/2

Further the sum of its coefficients, S,, is given by

(23) s~ 11 ( D fk+1)-

Igjsr\1=ks)
In the proof of Theorem 3 we need a recursion formula proved earlier.
Lemma 21. Fora, fy,...,f,c Z%, we have
@A) 0ulfir o Sy = P°0alSisee s Sy = D+ Garilfise s fy D
{fag(),fkglandj;:()(k<j§r), then we have
(2.5} 0alfis-- -+ Ji: Oy
= p%aulfiy s fe = L L Oim1)p + 0a1 {f1s -+ o fion Ori1 2
Proof. The first assertion is Theorem 2 of [1]. Applying this theorem we have
Golfry s firOrmiedp = POl 1 -3 Jis Ot =10 + Gatr {1y - S Ori12

and the SNF of {f1, -+ firOrmieets — 1508 (fyy s fo — 1, 1,01y O
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Now we are ready to prove Theorem 3.

We use mnduction on v,{f},..., Z]f 1 M (f1,- -, f;) =1, we have f, =1,
fi=0(1=j<r). Thus g,{0, 1, l}lp p? + 1 It is easy to venify (2.1), (2.2) and (2.3).

Next we suppose v,.(f1,.- -, f,) = 2 and discuss the two exhaustive possibilities.
I. The case f, 2 1. By definition we have

max{vr(fl,...,fr - 1)7vrfl(f11"':fr—l)} < vr(flﬂ"'ﬂf;-)'

From (2.4) and the recursion hypothesis we verify that ,{/},..., f,, is indeed a polyno-
pual in p with non-negative coefficients and

O fros fi) = max{0O(frs o /o= ) + 0,00 (A, fo))

Applying again the recursion hypothesis, we can deduce

(2.6) 00(fy,. -V +a= ¥ wafita S (r—jt+1)f,

12j=r-a rHl-agj<r
r—1 .
(2'7} go(zﬂ )(fla- -- :fr-]) = Z Ofr—j+1+af,- =+ (a + l) E (r m])fj
l<j<r-2-a —1—azjgr—1

= 2 Ggufitle+l) X (=)

1<j<r—a rlea j<r-1

=00, =D 4+a— 3 Mt jma

1£j<a
In the second equality of {2.7), we have used the relat1ons g ia = (a + 1)
®24+1 = ala+ 1). Thus the inequality 6”)(]‘], sh=-1l+az 9;; (fi,---,f_|) always
holds. Consequently 87 (f;,...,£) =6 (f,...,f.— 1)+ a and {2.6) show that the for-
mula (2.1) holds.
In order to verify (2.2) we need to know when the relation

ng)(fla"':ﬁ_l)+a“0£):|-l (fla"'? r—l)

holds. From (2.7) this is only possible for a = 0. Hence we have

1t} {r—1) .
A(r) _ A(} (fl)»f ) A (f!: sy r*l) lfa:O:
Ui ) {Aﬁj(fl,...,f,n ifa=1.

With the help of the recursion hypothesis 1t is a simple exercise to verify (2.2).
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By (2.4) and the hypothesis, we have

r—1

=i 1w B ) R 301)
=1 A\1gk=) 1=ksj F=1\1=2k=<)

This proves (2.3).
IL The case fr = 1, ;=0 (k < J=r). As before by using (2.5) and the recursion

hypothesis we check that g, < 15+ [y, i a polynomial in p with non-negative coefficients
and that

ng)(flu"wﬁw{)r—k) max{@r)(f[, k_ lalﬂor—k 1)+a19¢(;:11)(ﬁ)"'7fic70r-k—1)}'

IfO<a=r—k—1,again the use of the recursion hypothesis yields

65(:) (fl: R Jffc - 19 1: Orfk—l) +a Z kmrmj+l+af = Okt g+ O fa T a,
[<j<
0(!‘ 1) .
it F1oe o foOim) = 50 %r—jr1vat;
1<j=k

Noticing that ~o_gyt1a+ ta +a= —[(r—k+a+ 1)/2] 4+ a £ 1, we have
()¢ g ’—1)
{Ba (fh- -:fk: r— k) g+1 (f'li"'af,"noi’fkﬁl):
AD s s Fin 0 = ATV (o £ 0, 0).

If @a=r—k, by using the recursion hypothesis and the relations Oap2 = (a+ 1)2,
O2a+1 = a(a + 1), we can deduce

0 frs- e s o= LL0) +a =00 (f o S Oge) = 5 Yjttvaf;

1€k

Thus

{B((Zr)(ﬂT" fk? r—-"f)_ a:-ll)(f-li""fk’orfkil)’
Ag)(f],_..,fk, r—-k):Ag(gr (f“_._hf;,cw—17150,._;{_;)—FA‘(I:II)(f]:---(,fkaor—kkl).

In view of the recursion hypothesis we can show that (2.1) and (2.2) are indeed true.

Ifazr-k+1, then we have

00 s fe= L0 ) +a= T Gojrirafita Y (rj+ 1),

1£j<r—a e i<k
r—1 .
95(;.;.1)(f1a“'7fk10?’—k—1) - Z ar*jﬁ—l—i—a]i‘i_’_ (a+ 1) E (?‘ "_J)fj
1£jsr-a rl-axj<k

zegr}(ﬂ,...,f,c-1,1,0,_;(_1)+a— Z Jfr+j~a'

1< jgk+a—r
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Therefore 0 (f1,..., fi =1, 1,0, 4 1) +a > Qizl)(ﬂ, oo s J1:0r—g1) + 1. Thus we have

{ Bgr)(fla'-'afkaon‘”*k) = Hg)(fl':“'afk -1, Lor—k—l) + a,
A.fgr)(fli ' "7fk70?*k) - A;(f]:"'afk - 17 I;Orﬁk—l)v

From these we easily show that (2.1) and (2.2) are true.

Finally we verify (2.3). As before the sum of the coefficients of o, (f;, ..., f, Or s, 18
il r—k P Pk
1)) (e ) (e (200
=1 \1ig; 1<izk 1<isk =1 \1=izj 1si<k

1 r—k+1
= (Zf,-+1)(2ﬁ+l) .
=l \1gigy 1gizk

This completes the proof. []
As a consequence we get the following information:

Corollary 2.2. We have

)
hgisoglp =y > 0.
Proof. Wetake fj =1and f, =--- = f, =0 in (2.1} to see this. The omega result

(1.10) follows. For r = 2, a more precise result was obtained in [5].

§3. Dirichlet series associated and proof of Theorem 1
From Theorem 3 we can write

(3.1) e Jp = A )PP RGA, L S0

where

Alfiseof) =TI Ofn + 1), fi )= 2 whim

1£jsr 1<jsr
and R{f, ..., f,>, is a polynomial in p of degree at most (f,,. .., f,) — 1 satisfying
(3.2) Ry fiop S0 + -+ [y p" i i1,

The last relation is derivable from (2.3) knowing that the coefficients in question are
positive and f; +---+ f, = 1.
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The following lemma describes the contribution of z(f), . . ., Jeop to the p-component
of the series @'/ (r,s). For simplicity we write (f7,.. o)y for f1=0,...,/,20,
v(fi,-- ., /) = vand put x;(s) = js — a;.

Lemma 3.1. For o = Res > a,/r, we have

(33) }: Z A(fl: . f) B fies fr)—vs — H (1 _ p—xj(s))*l“"aj’

v=U0 (f,, 1), 1€j=r
(34) > 3 KA, SOp P2y Y p T ay(p, 6),
vzl (S f), 1<j<r
O f 121

where ®,(p,) = (L= p5) I (1~ p =)
Proof.  Obviously, for ¢ > a,/r, the member on the left-hand side of (3.3) is equal to

H Z (5Jf;-gj+1 + l)p ?CJ(S).fr'-J+l

1=/=r fﬂ-l_

and the last series equals &;(1 — pa 2 4 (1—-6)(1 — pth™ = (1 —p*"f(s))_l_‘sf.
Since o/ j is increasing, we get formula (3.3).

Using (3.2), we see that the member on the left-hand side of (3.4) is

(3.5) =@y X X FARTRY . (Ao ff)—vo—1

VEL(f L) 1575

@) ¥ oSy I (- ey

IEFEY 1<kZr,kej

where S7(y) = > n"y". We notice that

nzl

SHy)y=y z<n+1)’ "Lyt D2y (nk )yt =yt )

nzo

Using the last inequality with y = p~9(*) in (3.5), we obtain (3.4} for ¢ > a,/r. This con-
cludes the proof. []

Now we are in a position to prove Theorem 1.

From (1.1), {1.2}, (3.1) and (3.3), we can formally obtain the first assertion with

I3 EE V1 (firaf
O(fy i) 21

a@:ﬂ(u [1 (- o)y R<f1,...,ﬁ>pp—“).

In view of (3.4) and the increase of «;/;, the Dirichlet scries C,(s) is absolutely convergent
for Res > «,/r. This proves the first assertion. Taking G,(s) = C,(s) for r = 2,3, we obtain
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(1.3) and (1.4). When r = 4, we have (1.5) with G.(s) = C(s) T ¢(js — )" ™. Noticing
< j<r
that o, /r = (%1 + 1)/(r—1) = --- 2 oy + 1, the series G,(s) is absolutely convergent for

Res > o, /r.
Next we give a direct proof of (1.3) with Go{s) = {(25)* T[(1 ~ 2p 3 — p= 4 2p~%).
»
From Remark 1.4 of [9], we know that t(f}, £,>, = 3. (f» + 2 +1)p/™7. Thus we find,

0=j=h
by interchanging the order of summation and by putting f{ = £; —J,

o0 oo oo fi
(3.6} TP =3 3 S (f Y+ )phiChAs
v=0 720 20 j=0
[+a]

D (o2 kAR

=302 Y+ 2+ )p A,
=0

T
[==1
=
I
<@
>

In addition we easily show that 5 p~-1f = (1- Pﬁ(zs_l))il and

A=0
) . Zp_z*‘ 1
AR +
j=6 Ao 1=p)(1—p2? (1—p=(1 - p2)

B 1— ZP—S.V 7p74s +2p—5s
(1-p=)"(1—p %)’

Inserting these in (3.6} yields

11— Zp—3s . p74s 4 2P—55
(1= 71 = D)1= p 2

& 2) —¥s
2_304 (P)p "=

completing the proof. [J

§4. Weighted 5-dimensional divisor problems and proof of (1.7)

Before proving {1.7) we investigate weighted 5-dimensional divisor problems, which
are of course of independent interest. For a = (a1,...,as) € (RY), b= (by,...,bs) € (7+)°
with | £ b; < --- < bs, we define a weighted 5-dimensional divisor function

tb,an)= 3 nf---nd.

o s
Let =(1,...,5) be the set of all permutations of (1,...,5). The notation ken(l,...,5)
means that & = (k,..., ks) runs over all permutations of (1,...,5). Let A(b,a; x) be the
error term in weighted 5-dimensional divisor problems
D(b,a;x) = 3 t(b,a;n) = main term + A(b, a; x).

nlx
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We know (see (2), (3) and (4) of [11])

A(b,a;x) = — > {Alk b, a; x) + O(xT%E) Y
ken(l1,2,3,4,5)

where #(k, b, &) = 1r£a§5(ak‘ +oeag + - 23 (b - By) and
==

Ak by x) = x“% ¥ ( I /) ((ef ey )

1<j<4

t) =t — |{| — = and the condition of summation o 1s given by
;dh dition of ion of 3, is given b

by, by, b
SC(ZI) nlkl n2k2n3k3nfk“+bk5 =x, m{=2)---(S)na.

The notation n; (<)n; means that n; = n, for by, < by,, and n) < my otherwise. As usual, we
consider the truncated sum

A(k, b, a,N;x) = x%s/% Zz( T nﬁkfak5b‘9/bk5)ljf((x/nfkl...nf"“)l/bks)

1</<4

where N = (N, N2, N3, N3) € N*, and the condition of summation of >, is given by

b
SC(L2) nm e Sk () (S,

N <m 22N (15/<4).
Lemma 4.1. With notations as above we have
(4.1) Alk,b,a,N;x) « Z(GNIN;NIND) ' 22,

(42) A(k,b,a,N;x) « E{(GNININING)'S + (GNP NININ,) )22

I/ka a
with G = (x/ 1T ]\{;}kj) , 8= G% ] Njkf and & = log x.

1=j=4 1<j=4
. . . a;(j "“ﬂk5 bkj/bki
Proof. By partial summation, we remove the smooth coefficients n; 10
write

Al ba, N;x) < B, W((X/nfkl N -nfk")]/b"ﬁ)_
Using (4.13} and {4.15) of Lemma 3.3 of [12], we obtain (4.1} and {4.2). [

Lemma 4.2. There is a 4th degree polynomial Q4 such that

> mngn? = x Qulogx) + O(x'"1ogb x).

mugnininl <x
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Proof. We have a=(0,0,1,2,2), b= (1,1,2,3,3) and max @k b,a) <
Thus it is sufficient to prove ken(l..3)

s

Alk,b,a,N;x) « x"#? forallken(l,...,s5).
We discuss all the possibilities. The first column of this table lists the possibilities for
(ak, - - -, ax;), the second one the possibilities for (brys .- -, br,), the third and fourth ones
give the values of G and = that we take, while the fifth one gives the npper bound obtain-
able by using (4.1). In the five cases followed by a number, we have to use (4.2) as well, as is

explained afterwards.
Now we consider the singularities:

1° If (a,, a,, iy, ai,, arg) = (0,0, 1,2,2), we have
By iy, By, By, b)) = (1,1,2,3,3),
G = (x/NiN;NIN})'P, & = G?N3N2. Thus (4.1) implies
Alk,b,a, N;x) < (x'NTINT NN P 22« (085 /N W) VO 922 < 14117 o2
if 1Nz 2 x'/'7. In the opposite case, (4.2) gives us
Ak, b, a,N; x) < {(xSN]NFN3N3) '8 1 (X NPNZNG) ) 02
« {(x13N13N23)[/16 4 (wa]sst)l/:m}yz « XM g2
7 U (ay, ar,, Gy, ar,, ar, ) = (1,0,0,2,2), we have
(Bry s Bry, By By, by = (2,1, 1,3, 3),
G = (x/NINoN3N3)', B = G2N, N2. Thus (4.1) yields
Alk,b,a,N; x) « (x7N1N{1N;1Nf)1/9$2 < (X7 N N Y6 2« 1417 g2
if NiN2 2 x/V7_ In the other case, from (4.2) we get
Ak, b, a, N; x) « {(xNINFNTINHYS 4 (T NENINT) ) 22
« {(x13N[3N23)1/16 + (x”NleZS)I/IS}E’Z « x4 g2
13° I (ag,, ar,, iy, iy, ar,) = (0, 1,0,2,2), we have
(B, Bty by, by b)) = (1,2,1,3,3),
G = (x/NiNFN;sN3)' P, B = GEN,N2. Thus, from (4.1}, we deduce

Alk,b,a,N; x) < (X' NT ' NoNTING) P 22« (x5 /N ) 6 502 < 1417 g2
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Ne | (@yzies | Brdi<ics G = upper bound
1° | (0,0,1,2,2) | (1,1,2,3,3) | (x/NiNoN2ZND)'P | GPNsNG | XMW 2
(0,2,1,0,2) | (1,3,2,1,3) | (x/NiN3NEN)' | GPNIN, | x¥5.27
(2,0,1,0,2) | (3,1,2,1,3) | (x/NINoNZN)'® | GENEN; | x¥5.47
(0,2,1,2,0) | {1,3,2,3,1) x/NINJNIN; | NZNsNZ | X247
(2,0,1,2,0) | (3,1,2,3,1) x/NIN2NIN} | NIN3NG x*5 p?
(2,2,1,0,0) | (3,3,2,1,1) | x/N}NINZN, | NANZN; | x5
70 1 (1,0,0,2,2) | (2,1,1,3,3) | (x/NZNoNsN)'P | GPNiNG | x4V 2
(1,0,2,0,2) | (2,1,3,1,3) | (x/NINNZN)'P | GENiNG | X171 92
(1,2,0,0,2) | (2,3,1,1,3) | (x/N2N2NsN)V? | GPNiNG | x5 92
(1,0,2,2,0) | (2,1,3,3,1) | x/NINoN3N; | NONENG | V72092
(1,2,0,2,0) | (2,3,1,3,1) x/NINJN3N; | NiNjN} x*5 2
(1,2,2,0,0) | (2,3,3,1,1) | x/NiN3NJN, | NiNJN? x5 72
13° | (0,1,0,2,2) | (1,2,1,3,3) | (x/MiNENsND)'? | G2NyNE 1T 2
(0,1,2,0,2) | (1,2,3,1,3) | (x/MiNZN3N)' | G*NoNE | x2742
(2,1,0,0,2) | (3,2,1,1,3) | (x/N}NZN3N)'? | GPNEN, | x*5.2
(0,1,2,2,0) | (1,2,3,3,1) x/NINJNIN; | NoNINE | xUP2lg?
(2,1,0,2,0) | (3,2,1,3,1) | x/N{NIN:N; | N{N2Nj x5 52
(2,1,2,0,0) i (3,2,3,1,1) | x/N]NIN;Ns | NJNNZ | x*P5%7
19° | (0,0,2,1,2) | (1,1,3,2,3) | (x/ MiN2N3NDY? | GPNGN | x4 722
(0,2,0,1,2) | (1,3,1,2,3) | (x/ MNINND'P | GINGN, | 22722
(2,0,0,1,2) | (3,1,1,2,3) | (x/NIN2NsNDY? | GENENG | X597
0,2,2,1,0) | (1,3,3,2,1) | x/NMiNNIN} | NININg | x2M7g2
(2,0,2,1,0) | (3,1,3,2,1) | x/NiN2NJN? | NiN{N, x5 2
(2,2,0,1,0) | {(3,3,1,2,1) x/NfN§N3N§ NINZINy xH3 7
25° | (0,0,2,2,1) | (1,1,3,3,2) | (x/NiNaN3N)'Y? | GNNG | X1 gR
0,2,0,2,1) | (1,3,1,3,2) | (x/Ni\N2NsNY)'? | GNIN} | X227 47
(2,0,0,2,1) | (3,1,1,3,2) | (x/N}N2NsND)V* | GNINE x5 2
(0,2,2,0,1) | (1,3,3,1,2) | (x/MiNIN3NJYV? | GNINE | X2/ 87
(2,0,2,0,1) | (3,1,3,1,2) | (x/N3NoN3Ng)'* | GNENG x5 2
(2,2,0,0,1) | (3,3,1,1,2) | (x/NIN3NsNg)'? | GNING x5 ?




Bhowmik and Wu, Zeta function
if NiN» = x'/17, Else (4.2) gives us
AUk, b,a,N; x) < {(*NENINTINOYE 4 (TNENE N DL 22
« {(x13N13N23)”16 " (melsst)l/S:;}yz « x4 2
19° If {ag,, ax,, ag,, ax,, axs) = {0,0,2,1,2), we have
(Biey s Preyy Bley» By, Bics ) = (1,1,3,2,3),
G = (x/NiN,NIND'? 2 = G*NZN,. Thus (4.1) implies
Alk,b,a,N;x) < (x' NN NN Y2 27 « (5 )Ny N) V6 922 117 2
if NN, = x!/17_ In the opposite case, (4.2) gives us
Alk,b,a,N; x) < {(x* NINZNINYVE + T NEINININ,D)VP ) 92
« {(xBIVEJ\f;‘)l/[6 + (xwl’\’f]\le’-)Uzﬂ'}éﬁ2 « x1V 2,
25 If (agy , Qiyy Qs Ay, is) = (0,0,2,2,1), we have
(Biey s Pieyy Biey» By, B} = (1,1,3,3,2),
G = (x/NiNoN3N3)'?) B = GN2N}. Thus from (4.1) we find
Alk,b,a,N;x) « (szfo)mﬁfz < (X7 NN )8 7 « 1V 2
if NyN; = x'17. When not (4.2) gives us
Alk,b,a, N; x) « {(NiNINSNEYE 4 (xPN i NoN2ZNG) ' Py 22
« {(x13N13N23)1/16 n (xlngN§)1/24}$2 « 17 gt
This completes the proof. [}

Now we are ready to prove {1.7). From (1.4), we can write

63 (m) = {x(b, a;-) * g3} (n)

13

. 14 2 .
with @ = (0,0,1,2,2) and b = (1,1, 2,3, 3). Noticing that G > 3 Lemma 4.2 implies, by a

simple convolution argument, the asymptotic formula (1.7).

Remark. Here we use only two simple estimates for A(k, b,a, V; x), i.e. (4.1) and
(4.2). Combining carefully results of [10} and [12] 1t is possible to obtain a better exponent

_ 14 :
(for example, 2. 0.81) than T 0.8235 1n Theorem 2 and Lemma 4.2. But the numer-

11
ical verifications would be very complicated.
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§5. The case r = 4 and proofs of (1.8) and (1.9)

When 7 = 4, the singularity of 2% (7,s) is much simpler than for r = 2 or 3. There-
fore these cases are easier to treat. Because of the omega result {1.10) we know that even if
we could move the abscissa of absolute convergence of G,(s) further (1.8) would still be the
best. There is perhaps still some room for improving (1.9).

For r=2k (kz2), the relation (1.5a) implies ¢7(n) = ¥ n¥g,(n;), where
nfng:n

(0]
> g-(mn~ is absolutely convergent for Res > o, /r. Thus
n=1

(5.1) S Om = 3 grlm){e/m) " (o + 1) + O((x/n2) ")}

nEx mEx

Obviously the contribution of O{(x/n,) / ") is O{x™/™¢) (Ve > 0). In addition we have

o
Z gr(nz)/ngﬂﬂr'i‘l)/r — Z gr(nz)/ng&r‘Fl)/r + O(x—((oc,+"l)/rga,,—s)) (V& > O)
i

m=Ex A=

Combining these with (5.1) yields (1.8).
When 7 = 2k+1 (k=2), by (1.5b) of Theorem 1 we have /) (n) = {z(a, b;-) * g,}(n)
with @ = (o, %), b = {r,r), and the Dirichlet series } g,(n)n~ is absolutely convergent
n=l1
for Res > o, /r. Since (o, + p)/r > o, /r for = %, the following lemma implies (1.9) by a
simple convolution argument.

Lemma 5.1. Letr=2k+1(k=2),a= (o) and b= (r,r). Then we have

x(ﬁ!r-i-[)/r logx 2)}0(,4—2’))— 1 x(ar+1)/r 4 O(X(G’Jr'u)/r logﬁ x)

(5.2) > t(a,b;n) =

REX F(ar+1) (oc,—{-l)z
2
where y is the Euler constant and y = %, b= %

Proof. Let t(n) be the usual divisor function and let D(r) = Y z(n). Then the

member on the left-hand side of (5.2) equals n<s
xUr wlir
S n%u(n) = J‘ 1 dD() = X%/ S 2(n) —a J‘ D([)ra,—l dr.
n=x\r 1- n<xlfr 1

Using Huxley’s estimate ([6], Corollary)

S° z(n) = xlogx + (2y — D)x + O(xP/ 10g*1/146 x),

HEx

a simple calculation gives the required result. [
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