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Abstract: We prove some conditions on the existence of natural boundaries of Dirichlet series.
We show that generically the presumed boundary is the natural one. We also give an application
of natural boundaries in determining asymptotic results.

Keywords: natural boundary, Dirichlet series, random series, omega results.

1. Introduction

It is very difficult to say much about the meromorphic continuation of Euler pro-
ducts of Dirichlet series beyond the region of convergence. The only general method
to show the existence of a natural boundary is to prove that every point of the
presumed boundary is the limit point of either poles of zeros of the function in
question. In general, it does not suffice to prove that each point is a limit point of
poles or zeros of the single factors, since poles and zeros might cancel.

There are, of course, many examples of special cases where precise informa-
tion was obtained, as was done by Estermann [2] who proved that if there is an
Euler product D(s) =[], h(p™*) where h(Y) is a ganzwertige polynomial, then
D(s) is absolutely convergent for #(s) > 1 and can be meromorphically continued
to the half plane R(s) > 0 . If h(Y) is a product of cyclotomic polynomials, then
and only then can D(s) be continued to the whole complex plane. Dahlquist [3]
generalised this result to h being any analytic function with isolated singularities
within the unit circle. This line of investigation was continued to several varia-
bles. Analytic continuations of multiple zeta functions received a lot of attention
in recent years, especially by the Japanese school. The known examples confirm
the belief that if there is an obvious candidate for a boundary, it is the natural
boundary.

However, in cases like D(s) = [[, h(p,p~*), which occur in the study of
algebraic groups (see, for example, [5]), the above belief is yet to be confirmed.
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Thus a simple case like D(s) =[], (1 +p 4+ p“gs) [6] remains resistant to our

understanding. In this paper, we find some conditions such that too much cancel-
lation among potential singularities becomes impossible and a natural boundary
is obtained (Theorem 1). This helps us give partial answers to series like the one
just cited (Corollary 1).

Our belief in the possibility of meromorphic continuation upto an expected
domain is strengthened by a generic consideration. Several authors (see, for exam-
ple, [8] or [9]) studied Dirichlet series with random coefficients and showed that
such series almost surely have natural boundaries. In this paper, the definition of a
random series is adapted to serve our interest and we prove that almost surely the
series thus defined has meromorphic continuation upto the presumed half-plane
(Theorem 3).

Finally, we show that the existence of a natural boundary can help in ob-
taining 2-results for Dirichlet series associated to counting functions. We prove
that if D(s) = Xa(n)n™° has a natural boundary at s = o, then there does not
exist an explicit formula of the form A(z) := 3>, ., an =3, ¢,2” +0(z?), where
p is a zero of the Riemann zeta function and hence it is possible to obtain a term
Q(277¢) in the asymptotic expression for A(z). We treat the Igusa-Weil function
for algebraic groups for rank 3 (interpreted as a counting function) as an example
of this manoeuvre.

2. Criteria for a boundary

Combinatorics of sets of integers and real numbers are often an ingredient of the
proofs of natural boundary; confer, for instance, Dahlquist’s concept of vertex
numbers [3]. The following Lemma shows that in an appropriate setting, there
cannot be too much cancellations among potential singularities. For a discrete set
X C [0,00), denote by X(x) the number of elements of X N [0, x].

Lemma 1. Let 0 < ¢ < 1 be given. Let P be a set of primes with P((1 4 €)x) —
P(x) > 2%log?z and let X C [0,T] be a discrete set of real numbers satisfying
X(z) < zlogzx and T € X. Assume that for all p € P and all x € X with
> € [1,14 €], there exists some n € N\ P and some y € X with £ = 4. Then we

have § < ¥5-1 = 0.618....

Of course, the condition on the growth of X is somewhat arbitrary; the
formulation chosen here being dictated by the application, where X will be chosen
as a set of imaginary parts of certain zeros of (.

Proof. For each p € PN [1%6, T, there exists some y, € X such that there is some

n ¢ P with £ = % For each such p, choose an integer a, with the property that
p n . .

apyp € X, but kapy, ¢ X for all integers k > 2. Next, for each p choose prime

numbers p’ € X N[22, apy,] with p’ { a,. For each such choice, there exists an

clement z,,, € X and an integer n’ ¢ P, such that “2%2 = Z2£°. We claim that
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Zppr = 2zp implies that {p,p'} = {p,p'}. In fact, we have

1 =1
apnn agnn

= T —=
pp’ pp’

Zpp = Zpy & T

By construction, all the integers ap,a,,n,n,n',7’ are at most 7', while p and
p are at least 1T€. Hence, neither p nor p cancel, and we either obtain p = p,
or p=p and p’ = p. In the latter case the sets {p,p'} and {p,p'} coincide,

and we are done. To deal with the first possibility, note that the choice of a,

and n depend only on p, hence, z,, = z;; implies n— L If p’ does not

divide n’, this implies p’ = p’, and we obtain {p,p'} = {p, '} as in the first case.
Finally, we show that by construction of p’ and n’, p’ can never divide n’. In fact,
p' # n’, since otherwise n’ would be in P, contrary to our choice of n’. Thus,
o — J would be an integer > 2, and we would obtain Zp,p = kapyp, which would
contradict our definition of a,. Hence, we have shown that z, , indeed determines
the set {p,p’}. Next, we estimate the number of sets {p,p’} in the above manner.
By assumption, there are > T?log? T choices for p. The growth condition for
X implies that there are at least 7% prime numbers p, such that Yp > T°. For
each such prime p, the number of choices for p’ is > yz log? Yp > T log? T,

hence, the total number of pairs (p,p’) is of order of magnitude 9+ log® T, and
the number of unordered sets differs from this quantity by a factor of 2 at most.
Hence, we obtain the estimates

T 1062 T < Hzpp} < |1X| <« TlogT,

which implies 6 + 62 < 1, that is, § < ¥5=1. n

Theorem 1. Assume the Riemann (-function has infinitely many zeros off the
line § +it. Suppose that f is a function of the form f(s) = [1,5: Cv(s — )+
%)”" where the exponents n, are rational integers and the series > ;V converges
absolutely for every € > 0. Then f is holomorphic in the half plane s > 1 and
has meromorphic continuation in the half plane Rs > % Denote by P the set
of prime numbers p, such that n, > 0, and suppose that for all e > 0 we have
VE— . .

P((1+€)z) — P(x) > 27 log? x. Then the line s = 1 is the natural boundary
of f; more precisely, every point of this line is accumulation point of zeros of f.

Proof. Let ¢ > 0 be given. Then only finitely many factors in the infinite product

have a pole in the half-plane R®s > % + €, and we have ((v(s — 3) +3) — 1 ~

2v(s=5)+3 for v — o0, thus apart from a discrete subset we have
1
Fs) =exp (Y mlogl(v(s — 5) +3))

= exp (Z 72u(:2)+% +0(1)),
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and by assumption this sum converges absolutely for all s with Rs > % this sum
converges absolutely for all s with s > %, hence, apart from a discrete set of
poles, f can be holomorphically continued to the half-plane s > % We shall
now prove that every point of the line 1/2 4 it is an accumulation point of zeros
or poles of f. To do so, note first that every point on this line is accumulation
point of zeros with real part > 1/2 of factors in the infinite product defining f.
In fact, by assumption there are infinitely many zeros of ¢ to the right of the line
Rs = 1/2, thus, for every € > 0 and every t there is a zero p = o +iT of (, such
that P(T/t) —P(T/((1+€)t)) > (T/t)? log(T/t), where 6 = ¥3-1 In particular,
there exists a prime number p with n, > 0, such that T'//p € [t, (1 + €)¢]. Hence,
to prove our claim, we have to show that this zero cannot be cancelled by poles
stemming from other factors. We cannot do so for a single point, however, using
Lemma 1, we can show that not all such poles or zeros can be cancelled. In fact,
let X be the set imaginary parts of zeros of ( lying on the line passing through
1

5 and p and having positive imaginary part. Let T" be the maximum of X, that

is X C [0,T7]. Since the number of all zeros of ¢ with imaginary part < z is of
1

magnitude O(zlogx), we have a fortiori X(z) < (zlogz). If p_T}/Q + 5 is not a
zero of f, there has to be some integer v and a zero p’ of ¢, such that n, <0,
and ”%/Q = pl_—yl/g, that is, p’ is on the line through % and p, and has positive
imaginary part, thus, S'p’ € X. Moreover, for every p € P we have n, > 0, whereas
n, < 0, thus, v € P. Since we are not restricted in our choice of p and p except
for the conditions p € P and % € [t, (1+€)t], we find that we can apply Lemma 1

to deduce 6 < @ However, this contradicts our assumption on the density of

P, which show that there is some p € P and a zero p of (, such that pr}/z + %

a zero of f, that is, in every square of the form {s: Rs € [%, %—l—e], Ss et t+ell},
there is a zero of f, that is, every point of the line R s = % is accumulation point of
zeros of f, and since f is not identically zero, this line forms a natural boundary.

|

is

We can use Theorem 1 to give a partial solution to an “embarrassingly
innocuous looking” case (see [6, sec. 3.2.4]).

Corollary 1. Suppose that there are infinitely many zeros of ¢ off the line % +1t.

Then the function
flor =11 (1 +p° +p1*25)

P
has meromorphic continuation to the half plane Rs > %, and the line s = % is
the natural boundary of f.

Proof. The function f can be expanded into a product of {-functions as follows:
flo) S8 — (85— )
C(2s)¢(4s —2)

¢((4m +1)s — 2m)
- 1;[1 C((4m +3)s —2m — 1)¢((8m + 2)s — 4m)’

R(s)
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where R(s) is a function holomorphic in some half-plane strictly larger than the
half-plane s > % Denote by D the infinite product on the right of the last
equation. Then we have

(4m +1)s — 2m
HC 4mnj_3 —om HC (8m+2)s —4m)~ H H

m>1

say. [[, is of the form considered in Theorem 1, whereas for ®s > %, [], is

an absolutely convergent product of values of ¢ in the half-plane Rs > 1, thus,

[I; is holomorphic and non-vanishing in the half-plane Rs > %, and therefore

cannot interfere with zeros of [],. Hence, every point of the line Rs = % is an
accumulation point of zeros of D, and D cannot be continued meromorphically
beyond this line. [ |

Another application is the following, which partially resolves a class of po-
lynomials considered in [6, Theorem 3.23].

Theorem 2. Let D(s) = [[W(p,p~*) = [[{(ms —n)°»™ be a Dirichlet-series,
such that all local zeros are to the left of the line s = 3, where (3 is the largest
limit point of the set {I : cp, # 0}. Suppose that the number P(x) of prime
numbers p such that there is some n with ¢y, # 0 and n/p+1/2p > (3 satisfies

P(1+e)z)— Plx) >« ot log? . Then 3 is the natural boundary for D.

Proof. For any € > 0, there is some N, such that in the half-plane s > 5+ €
the product [],_ ¢((ms—n)m has the same zeros and poles as D(s). Hence, to
prove that the line %8s = @ is the natural boundary of D(s) it suffices to show that
for every fixed tg € R and § > 0 there is some € > 0 such that for N sufficiently
large the product [],_, ¢(ms — n)®m has a pole or a zero in the rectangle R
defined by the conditions 8+ € < Rs < S+, tg < s < tg + d. The latter
would follow, if we could show that there exist integers n,m with ¢, # 0 and
a zero p of ¢, such that ’%p € R, and such that for all other values n’ and
m', p' =m/™L — p’ is not a zero of (. Suppose first that ¢ has infinitely many
zeros off the line s = % . Then we choose one such zero py with sufficiently large
imaginary part, and apply Lemma 1 with P being the set of primes p such that
there is some n with ¢,, # 0 and n/p + 1/2p > 3, and X being the set of all
imaginary parts of roots of ¢ of the form m/“t2 — n/ to obtain a contradiction
as in the proof of Theorem 1.

Now suppose that up to a finite number of counterexamples, the Riemann
hypothesis holds true. Since these finitely many zeros off the line of ¢ can only
induce a discrete set of zeros of D(s) apart from a possible accumulation points on
the real line, we can totally neglect these zeros. Similarly, we forget about all pairs
n, m apart from those that can induce zeros to the right from (; in particular, we

may assume that 3 is the only limit point of the set of all occurring fractions -.

Finally, we can neglect finitely many pairs n,m and assume that all fractions
are in an arbitrarily small interval around (3. The contribution of a zero p induced

by some ¢, # 0 can be cancelled by a zero p’ only if there are integers n’, m’
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with m(3 +iy)—n =m/(3+iy/)—n’, that is, my =m/v’, and m—2n = m’ —2n’.
Without loss we may assume that § # %, that is, - — % is bounded away from
0. Then the second equation implies an upper bound for m’, that is, for at each
cancellation among zeros there are only finitely many zeros concerned, that is, we
may assume that among these p is the one with largest imaginary part. But now
we can apply Lemma 1 again, this time to the set of all zeros of (, and obtain

again a contradiction. |

3. A random series

Although the problem to decide whether a given Dirichlet-series can be meromor-
phically extended to the whole complex plane may be very difficult, we believe
that in most cases the obvious candidate of a natural boundary is in fact the na-
tural boundary. This belief is strengthened by the following theorem, which shows
that this conjecture is generically true. Note that our definition of a random series
differs from the usual one, in which random coefficients are used (for example in
Kahane [8] or Quéffelec [9]). The following definition appears to be better suited.

Theorem 3. Let (a,), (b,),(c,) be real sequences, such that a,,b, — oo, and
set op = limsup — b . Let €, be a sequence of independent real random Vanables

V—00

such that
lim inf max P(e, = z) = 0,

v—oo xR

and suppose that for o > o, the series
lev + e
ngﬂ (1)
converges almost surely. Then with probability 1 the function

s) =[] ¢lavs + byt

v=1

is holomorphic in the half-plane R s > o, and has the line ® s = o, as its natural
boundary.

Proof. If the series (1) converges, then Z can be written as a finite product
of (-functions multiplied by some function which converges uniformly in the
half-plane Rs > o, +€ for each € > 0. Let so = o, + it be a point on the supposed
boundary with ¢ # 0 rational, and consider for a natural number n the bquare S
with side length 2 centred in s, that is, the set [0} — L, 0y, + 2] x [t — }L,H— =]

Let € > 0 be given. We show that with probability > 1 — € the functlon Z is not
meromorphic on S, or has a zero or a pole in S. Once we have shown this, we
are done, for if sy were an interior point of the domain of holomorphy of D, there
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would be some n such that Z would be holomorphic on S, and have a zero or a
pole in S almost surely. Letting n tend to oo, we see that sy is either a pole or
a zero, or a cluster point of poles or zeros. Hence, with probability 1, every point
with rational imaginary part on the line ®s = o}, is a pole, a zero, or a cluster
point of poles or zeros. Hence, o}, is a natural boundary of Z almost surely.

To prove the existence of a pole or zero in S, note first that by the same
argument used to prove almost sure convergence to the right of o, we see that if

1

for some € > 0 there are infinitely many indices v with —Z—Z < op— 7, the product

defining Z extended over all such indices converges uniformly in Rs > o, — %,
hence, deleting these indices does not alter our claim. In particular, we may assume

that for all u sufficiently large we have |0}, — Z—: < %, a, > 3n, |ayt| > 1000, as

well as maxger P(e, = ) < €. For such an index p set

Zu(s) = H C(ays +b,)vtev.
v#p

If Z is meromorphic on S, sois Z,. Let D; be the divisor of the restriction of
Z, to S, and let Dy be the divisor of ((a,s +b,) restricted to S. We have to
show that D; + (¢, + €,)D2 is non-trivial with probability > 1 — €. To do so, it
suffices to show that Dy is non-trivial, since then Dy + Dy is trivial for at most
one value of x, and we assumed that €, is not concentrated on a single value. The
preimage of S under the linear map s — a,s + b, is a square of side £ > 6 and
centre with real part of absolute value < ¢ and imaginary part of absolute value
> 1000. Hence, the number of zeros of ((a,s+b,) in S equals N(T'+h)—N(T),
where N denotes the number of zeros of { with imaginary part < T, and T and
h are certain real numbers satisfying 7" > 1000 and h > 6. Now Backlund [1]
showed that for 7" > 1000 we have
T T
N(T) o log o < 0.7logT,

that is, N(T'+6) > N(T) for T > 1000, which shows that D5 is non-trivial, and
proves our theorem. [

4. Natural boundaries and asymptotic formulae

The hunt for natural boundaries has certainly some intrinsic interest, however,
in this section we show that the existence of a natural boundary implies the
non-existence of an asymptotic formula of a certain kind. This leads to a les-
ser known kind of Q-result : usually when proving an 2-result, one first derives
an explicit formula with oscillating terms and then shows that these terms cannot
cancel each other out for all choices of the parameters. Here we show that even
if we allow for infinite oscillatory sums to be part of the main terms, we still get
lower bounds for the error terms.



14  Gautami Bhowmik & Jan-Christoph Schlage-Puchta

Theorem 4. Let a, be a sequence of complex numbers, and suppose that there
exist an explicit formula of the form

A(z) = an =Y cpa” +0(z"), (2)

n<x pEfR

where for some constant ¢ we have |c,| < (1+ |p|)® and |[RN{s: Rs > 0,|Fs| <
T}| <« T€. Then the Dirichlet-series D(s) = > a,n~* can be meromorphically
continued to the half-plane $s > 0.

Since the condition $s > 6 describes an open set, we could have formulated
this theorem with an error term O(z%*€) for every e > 0, or with O(z?~¢) for
some € > 0 without affecting the conclusion. We shall move freely between these
different formulations without further mention.

Proof. Our claim does not change if we absorb finitely many of the summands
cpx” into the sequence a,. Thus we can assume that all p satisfy [Sp| > 1.
Set Ag(xz) = A(x), Art1(x) = >, <, Ar(v). Then there exists an explicit
formula b
Ap(z) = 2F Z c(pk)xp +0(29),
peRy,

where Ry, is contained in the set of all numbers of the form {p—j:p € R,j € N},

(k)

;) - By induction on k we obtain

(k)
k+1) _ ¢
and cg T = - —|—O(mal\)]<c
Jje

c(pk) < max{|cp4;| 7 € N}p*keraX{j:PHeR}’

where cy4; is understood to be 0, if p + j ¢ R. Combining this estimate with
the assumption on the number of elements in R, we see that there exists some
k such that the explicit formula for A converges absolutely. Note that we can
immediately delete all terms with ®p < 6, and Rp is bounded, since otherwise
the explicit formula for A(x) would not converge in any sense. Thus, putting
M = [sup{Rp:p € R} — 0], we obtain

cg)k) < max{|cptj] 1 j € N}p=*+tM,

Applying partial summation and interchanging the order of summations, which is
now allowed since the explicit formula is absolutely converging, we find

D(s) = Z Z c,(ok)nk"’pAan_s + R(s),

n>1 prRk

where R(s) is holomorphic in s > 6, and A denotes the difference operator.
Using Laurent expansion, we have for every N the asymptotic formula

N
AkJrlnfs — Zai(s)nfsfkfifl + O(nisiki}viz)
=0
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where the coeflicients a; are polynomials of degree i+ k4 1. Inserting this expres-
sion in the previous formula, we obtain

N

D(s)=2_ > Cgk)”pis(z ai(s)n”""t + O(n*N’l)).

n>1,cR: i=0

Choosing N sufficiently large, the error term yields a function holomorphic in
Rs > 6, and collecting all terms coming from one zero p which are independent
of n into one polynomial, we obtain

D(s)= Y Py(s)((s —p—1) + R*(s), (3)

.
peR;,

where R*(s) is holomorphic in ®s > § — 1, and P, is a polynomial of degree
< N+k with coefficients < cf;k) < |p|7*+M  We claim that this series is absolutely
and uniformly converging in each domain of the form D = {s : Rs > 0 + ¢,
|Ss| < T}, apart from the poles of ¢ occurring explicitly. To prove this, we first
have to estimate |P,(s)|. The bounds for the degree and the coefficients imply

|[Pp(s)] < Car, v (1 + |s]) V¥ [ p 7FHM,

Since we only care about convergence, we may neglect finitely many terms. Thus
we restrict our considerations to zeros p with |Sp| > T2, that is, [p| > |s]?.
1-Rs

Finally, the functional equation for ¢ implies ((s) < (14| s|™@x(—=:0+€) and
we obtain

Rs—p+1

Py()¢(p — ) < (L4 |p)) TFHM (1 4 [ @ smax (=04 (1 - [s])) VHE
< (1 + |p|)—k+M+ N;k+max(w,0)+e

< (L+1ph77,
provided that

Rs—p+1

k> 4420+ 2M + 2N + max(——;

) 0)

Hence, the terms belonging to p are of order O((1 + [p|)7¢"2), whereas their
number up to some constant 1" is of order O(T°¢), hence, the series (3) converges
absolutely and uniformly in D. Hence, it represents a function holomorphic in
Rs > 0, with the exception of the discrete set of poles contained in Rj,. Since for
sufficiently large real part the right hand side of (3) represents D(s), we deduce
that this representation yields a meromorphic continuation of D to the half-plane
Rs > 0. ]

Corollary 2. Let a,, be a sequence of complex numbers such that the generating
Dirichlet-series has a natural boundary at Rs = oy,. Then there does not exist an
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explicit formula of the form (2). In particular, for any sequence «;,3;, 1 < i < k
and any € > 0 we have

Az) = Zaixﬁi + Q(z7h 7).

In general, even if D(s) is meromorphic in the entire plane we cannot expect
to obtain an explicit formula, since the integral taken over the shifted path of
integration need not converge. For example, for the Dirichlet-divisor problem we
have an Q-estimate of size z'/*, whereas the corresponding Dirichlet-series C%(s)
is meromorphic on C. However, we can obtain explicit formulae after attaching a
sufficiently smooth weight function. To do so, we need some bounds on the growth
of the Dirichlet-series in question.

Lemma 2. Let W € Z[X,Y] be a polynomial with W (0,0) = 1 and not conta-
ining the monomial X . Let D(s) =[], W (p~t,p—*%) be the associated Dirichlet-ser-
ies, and let o, be the abscissa of obvious meromorphic continuation, and let ¢ > o,
be a real number.

1) There exists a p(o) such that D(s) is the quotient of two functions f1, fa,
both of which are holomorphic in the half-plane s > o, up to a bounded number
of poles on the real axis, and satisfy |f;(o + it)| < [t|*(?) for [t| > 1.

2) The number of poles of D in the domain Rs > o, |Ss| < T is bounded
above by ¢, T logT .

3) There is some p*(c), such that for every ¢ > 0 and T sufficiently large
there exists a path «y : [0,1] — C consisting of horizontal and vertical lines only,
which is contained in the strip ¢ < Rs < o + €, has length < (2 + €T'), such that
Sv(0) = =T, Sy(1) =T, and |D(s)| < e*" @2 T op all of ~.

Note that the third statement is an adaptation of a result due to Turdn (7,
Appendix G].
Proof. For each ¢ > o0,, there exists a finite product of the form D*(s) =
H::1 C(axs + bg)~, such that D(s) = D*(s)R(s) with R(s) holomorphic and
bounded in the half-plane s > o. Collecting terms with ¢, > 0 in f;, and terms
with ¢, < 0 in fa, the first statement follows from the fact that {(s) grows only
polynomially in each strip of bounded width. Moreover, the number of poles of
D* in the region Rs > o, |s| < T is bounded above by some multiple of the
number of zeros of ((s) in the domain s > 0, |Js| < T'maxy, ax, which implies
the second assertion. For the third note that for each s with s > o we have

D mp

= O(log T

5 () = 3 1+ 0(log 1),
P

where the sum runs over all poles and zeros of D*(s) with |3(p — s)| <, and m,

is the (signed) multiplicity of the pole p. The same argument when used to prove

the second assertion also yields that for |T'| > 2 the number of poles and zeros p
of D* with T < Sp < T +1is < ¢,|T], hence, there is some o’ € [0,0 + €], such
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that there is no pole or zero p of D with T < Sp < T+1 and |[Rp—0'| < ﬁ.

Hence, on this line segment, we have ‘% < log? T. Choosing T in such a way
that D* has no poles or zeros in the half-strip s > o, |T — Ss| < m, we
find that there exists a path = as desired such that each point on « can be linked
to a point in the half plane of absolute convergence of D by a path of length <« 1,
such that ‘D—*l < log? T on this path. Hence, we deduce D(s) < e* (?) log” T o
. |

Now we give an example. In [4] we found a bijection between right cosets
of 2t x 2t symplectic matrices and submodules of finite index of Z?* which are
equal to their duals and which we call polarised. The counting function obtained
corresponds to the p-adic zeta function of Weil-Igusa and occurs, for example, in

[5].
Theorem 5. Denote by a,, the number of polarised submodules of Z° of order
n. Then we have for every € > 0

A(z) = Z ane” ™% = 1273 + cox® + 32/ + Zapx% + O3, (4)

n=1 P

where p runs over all zeros of (, and the coefficients ci, ca, c3, and «, are
numerically computable constants. More precisely, we have ¢; = 2.830..., co =
1.168..., and c3 = 0.1037.... Moreover, the error term cannot be improved to
O(z*/3¢) for any fixed € > 0.

Proof. The generating function for a, has the form [4]

Z(s/3) = C(s)¢(s — 3)C(s — 5)C(s — 6) [ (14947 + 927+ %~ 4= 4 )

p

= G(8)C(s = 3)0(s 55— 0) S —

1—s 2—s 3—s 5—2s
« H (1 Iy +pT T Ap 4D )
p 1 _|_p4—s

and in [5] it was proved that Rs = % is the natural boundary for the above.

The product over primes converges absolutely and uniformly in every half-plane
Rs > % + €. Hence, Z(s) has simple poles at 7/3, 2 and 5/3, poles at the zeros
of ((6s — 8), and no other singularities in the half plane fs > 4/3. Applying the

Mellin transform
34100

e V= / L(s)y’ ds
3—i00
we obtain
1 3+ioco
A(z) = 3 Z(s)'(s)x® ds.
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For o and ¢ > 0 fixed, we have I'(¢ + it) < e~ (379%. We now choose a path as
in Lemma 2, and shift the integration to this path. Due to the rapid decrease of
I', we find that for 7' = log® = the integral on the new path is bounded above by
x*/3%¢  Hence, we obtain the formula

Az) = Z I(p)alress—pZ(s) + O(z/3+€),
Rp>4/34¢€

where p runs over 7/3, 2, 5/3, and all complex numbers 4/3+ p/6, where p runs
over all non-trivial zeros of (.

To compute the values of c1, ca, c3, we only have to compute the residuum of
Z(s) at these points, which does not pose any problems, since the Euler products
involved converge rather fast. We obtain the residue 2.377, —1.168,0.1149, respec-
tively, which yields the constants mentioned in the Theorem. Using Mathematica,
CPU-time for these computations was about 30 seconds.

In view of [5], Z(s) has a natural boundary on the line $s = 4/3, hence,
the proof of the Q-result runs parallel to the proof of Theorem 4. [ |

Having an explicit formula, we can use standard methods to draw conclusions
from it. For example, we have the following.

Corollary 3. Define A(x) as above. Then we have

log @
N T
A(x) = c12™® + coa? + c32°/% + O (2%/2 “Tosi0sm)277F7)

and
Az) = 1273 4 cpa? + csz®3 4 Qs (x17/1276)

Proof. Note that apart from the poles at 7/3,2,5/3 and 3/2 all singularities of
D(s) in the half-plane Rs > 4/3 come from zeros of ((6s—8), hence, for a certain
constant ¢ we have for all p occurring in (4) the relation Rp < %— W )
Since I'(s) decreases exponentially fast on each line parallel to the imaginary axis,
we see that the contribution of a single zero is at most

3_ c , 3 —¢ log =
Ijl}axe 1022/3% T o= T« ghe Uoglosn)?/3Fe
>3

moreover, the contribution of zeros with imaginary part > log®T is negligible.

Hence, the contribution of all zeros of ((6s— 8) and the error term in (4) together
log x

give an error term of order z3e “Oorlog /37 , and our claim follows.
The Q-estimate follows from a standard application of Turan’s theory of
powersums, confer [7, Chapter 47]. [ ]

Of course, these computations did not make use of the natural boundary of
Z , however, the existence of a natural boundary implies that there is a limit to
what can be achieved by complex analytic means.
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