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We prove a general Tura� n�Kubilius inequality and use it to derive that the num-
ber {(S) of divisors of an integer r_r matrix S verifies {(S)=(Log |S| )Log 2+o(1) for
all but o(X ) matrices of determinant �X. This is in sharp contrast with the average
order which is �

� |S| ;r&1 (Log |S| )#r for ;r that are >1 as soon as r�4 and some
non-negative #r . We further extract a fairly large set of matrices over which the
normal order is much closer to the average order. � 1998 Academic Press

I. INTRODUCTION

In 1934�1936, Tura� n devised a simple but powerful process of obtaining
normal orders for some additive functions of integers, a process which was
later (1956�1964) extended by Kubilius to every additive function of
integers and which is now called the Tura� n�Kubilius inequality (A classical
introduction on this subject may be found in [El].) The simplicity of this
proof enables one to extend it to different situations: Horadam [Ho]
for instance extended it to some additive functions over a set of regular
Beurling generalized integers, while Hinz [Hi] recently extended it to
additive functions of integer ideals of a number field. In Section III we
describe a general setting which covers these three applications as well as
the two new ones that have in fact been the starting point of this paper.
The hypotheses are expected to be wide enough to cover most results of
this kind. Note, however, that our proof resembles Tura� n's.

Our first aim is to study the distribution of the number of divisors of
non-singular integer r_r matrices, where r�2. We denote the set of such
matrices by Invr . Since the number of divisors of S, which we shall denote
by {(S), depends only on the Smith Normal Form (SNF) of S we study the
distribution of the values of {(S) when S ranges over all SNF matrices with
determinant atmost X, where X is a large enough real parameter. We recall
that the cardinality of such a set is asymptotic to C(r) X (cf. [B1]) where
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C(r) is defined in (1.3) (cf. [BN, N2, Ne] for the general theory of
arithmetical functions over integer matrices). We use the notation |M| for
the determinant of a matrix M and (n, m)=1 to mean that the two integers
m and n are coprime. We have shown in [BR1] that

X;r&1<<
1
X

:

|S|�X
S SNF

{(S)<<X ;r&1 Log#r X, (1.1)

where #r�0 and ;r is given by

;r=([r2�4]+1)�r, (1.2)

and [n] denotes the integer part of n. In fact, in [BW2] it is shown that
1�X � {(S)=C$(r) X;r&1(Log X )#r (1+o(1)) where C$(r) is an effective
constant; #2=2, #3=4, #2k=1, and #2k+1=2 if k�2.

In particular, we have ;2=;3=1, ;4=5�4, and ;5=7�5. The question
then naturally arises as to whether this average value properly reflects the
behavior of most S or whether it is influenced by a minority of summands
in (1.1). It turns out that the second case is the correct one. We first show
here that

Theorem 1.

:

|S|�X
S SNF

|Log {(S)&(Log 2) Log Log X|2<<X Log Log X.

In particular, we have {(S)=(Log |S| ) (1+o(1)) Log 2 for all but o(X ) SNF
matrices of determinant �X. This result is similar to the classical result of
Hardy and Ramanujan which is of course the case r=1 of the above
theorem. We first have to express the value of Log { in terms of its value
over SNF matrices whose determinant is a power of a prime. A generic
matrix satisfying these properties will be denoted by P. Using the
interpretation in terms of abelian groups developed in [BR2], we show
that

Log {(M )= :
P � S

Log {(P),

where we use M � S to say that there exists N # Invr such that
SNF(N)=SNF(M) and N & S (i.e., N | S and ( |N|, |S|�|N| )=1). The next
step consists in counting properly the number of M in SNF such that
P � M which we do in Lemma 2.2. This approach extends to any additive
arithmetical function over matrices. Note finally that in [B3], the
first named author has given an exact expression of {(S) but that this

60 BHOWMIK AND RAMARE�



expression is too complicated to understand the normal value of Log {. To
explain further we need some definitions.

Put

\r(m)= `
r

k=1

`
p | m

(1& p&k), C(r)= `
r

k=2

`
p�2

(1& p&k)&1. (1.3)

Define further

t(b)= :
c3

cc3
3 } } } cr

r=b

1, (1.4)

so that the number of SNF matrices of determinant n is given by 1 C t(n).
A function f of non-singular integer r_r matrices is said to be additive if
f (A) depends only on the SNF of A and if f (AB)= f (A)+ f (B) whenever
( |A| , |B| )=1. We then have

Theorem 2. Let f be an additive function. We have

:

|S|�X
S SNF

| f (S)&M( f, X )| 2<<XD( f, X ),

with

M( f, X )= :
|P|�X

f (P)
|P|

\r( |P| ), and

D( f, X )= :
|P|�X

| f (P)|2

|P|
\r( |P| ),

where P denotes an r_r matrix in SNF whose determinant is a power of an
integer prime. Moreover the constant implied in the Vinogradoff symbol
depends at most on r and not on f.

In particular f may depend on X.
In the case of integers, the study of the normal order of Log { is usually

replaced by the study of the omega functions by using the bounds
2|(n)�{(n)�20(n). It is possible to get an analog for | by defining |(M )
to be the number of matrices P of prime-power determinant such that
P & M. It is then also the number of factors in any decomposition of
M=P1 } } } Pk where the Pj 's are determinant-wise coprime matrices of
prime power determinant. A little reflection later we see that

|(M)= :
P � M

1
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and hence Theorem 2 readily gives its normal order to be tLog Log X
while its average order is also seen to be tLog Log X (on application of
Lemma 2.2). It is however not obvious to connect | and { and our primary
aim being the investigation of { we prefer to study Log { rather than |.
Note, moreover, that |(M )=|( |M| ) so that this function carries no
further information than that already in the determinant.

Since the average order of {(S) does not reflect its normal behavior we
seek subsets of Invr where its normal value is large (or more precisely
where the normal value of Log { is large). Note that this phenomenon has
been a classical field of investigation in the case r=1 and that the case
r=2 is dealt with in [BW1].

Let M # Invr . We say that M has total rank r if each of the matrices P
with prime power determinant and such that P � M corresponds to an
abelian group of rank r and not less (M=Id is accepted). Summations
with a V as a superscript are restricted to matrices of total rank r. We
further denote by g(n) the number of SNF matrices of determinant n and
total rank r. We define

:
n�1

g(n)
ns =`(rs) :

n�1

t*(n)
ns , (1.5)

and

C*(r)=:
n

t*(n)
n1�r , \r*(m)= `

p | m \ :
u�0

t*( pu) p&u�r+
&1

. (1.6)

(An explanation of these formulae as well as proofs of the convergence of
the above series may be found in the course of Section II.) We show in
Lemma 2.3 that the number of matrices of determinant less than X and
total rank r is asymptotic to C*(r) X1�r. We can then make precise
Theorem 2 in

Theorem 3. Let f be an additive function. We have

:*

|S|�X
S SNF

| f (S)&M*( f, X )|2<<X1�rD*( f, X ),

with

M*(F, X )= :*
|P| �X

f (P)
|P|

\r*( |P| ), and

D*( f, X )= :
|P| �X

| f (P)| 2

|P|
\r*( |P| ),
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where P denotes an r_r matrice in SNF whose determinant is a power of an
integer prime. Moreover the constant implied in the Vinogradoff symbol
depends at most on r and not on f.

Using this result for Log({(S)�|S|[r2�4]�r) we shall get

Theorem 4. With !=Log 2 if r is even and !=0 if r is odd, we have

:*

|S| �X
S SNF }Log {(S)&

[r2�4]
r

Log |S|&! Log Log X }
2

<<X1�r(! Log Log X+1).

This result is sharp since it yields

X[r2�4]�r+1�r<< :*
|S| �X

{(S)� :
|S|�X

{(S)<<X ([r2�4]+1)�r(Log X )#r. (1.7)

II. AUXILIARY LEMMAS

We shall require the number hr(n) of HNF having determinant n. Its
associated Dirichlet series is given by (cf. [B1, B2])

:
n�1

hr(n) n&s= `
r

k=1

`(s+k&1). (2.1)

Lemma 2.1. For X>0, we have �c2
2c3

3 } } } cr
r�X 1�r! X 1�2�2.

Proof. Put

2j (X)= :
c j

j c
j+1
j+1

} } } cr
r�X

1 (2� j�r).

A simple recursion shows that 2j (X )�(r !�j !) X1�j. Taking j=2 yields the
result. See [B2] for an asymptotic evaluation of 22(X ). K

Lemma 2.2. For M # Invr and X>0, we put

N(M, X )= :

|S| �X, M � S
S SNF

1.

We have N(M, X)=C(r) X\r(m)�m+O(X 1�2m&1�22|(m)) with m=|M|.
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Proof. We first prove that

N(M, X )= :

(n, m)=1
n�X�m

:
ab=n

t(b). (2.2)

To do so note that the number of S in SNF with determinant �X and
such that M � S is equal to the number of finite abelian groups G of rank
�r, cardinality �X, which admit a subgroup H isomorphic to the abelian
group associated with M and such that ( |H|, |G|�|H| )=1. Note that
|H|=m. Such a subgroup is a direct summand of G and thus the number
we seek is the number of finite abelian groups G$ of rank �r, cardinality
�X�m, and coprime with m, which we now convert into the number of
SNF S of determinant �X�m and coprime with m, thus proving the
claimed formula.

We now evaluate N(M, X ) by using

:

(n, m)=1
n�Y

1=
,(m)

m
Y+O(2|(m)) (2.3)

and Lemma 2.1. K

Lemma 2.2 enables one to carry out usual evaluations like sieving
processes. We shall first concentrate on a Tura� n�Kubilius inequality.

Denoting by k(n) the squarefree kernel of n, we check that g(n)=0 if
k(n)r |3 n and that g(n)=1 C t(n�k(n)r) if k(n)r|n, thus getting

:
n�1

g(n)
ns = `

p�2
\1+

1
prs `

r

i=1

(1&1�pis)&1+=`(rs) :
n�1

t*(n)
ns , (2.4)

where t*(n) is the multiplicative function defined over the powers of the
prime p by t*( pu)=0 if u�r, t*( pu)=t( pu&r) if r<u<2r, and t*( pu)=
t( pu&r)&t( pu&2r) if 2r�u. We verify that t*�0. Note further that t( pu)�
ur&1, that t*( pr+1)=0, and that t*( pr+2)=1 if r�2 and 0 if r=2, so that

:
n�1

t*(n) n&1�(r+1)<<1,

which by Rankin's method yields

:
n�Y

t*(n)<<Y1�(r+1) (Y>0).

Define

C*(r)=:
n

t*(n)
n1�r , \r*(m)= `

p | m \ :
u�0

t*( pu) p&u�r+
&1

. (2.5)
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Lemma 2.3. For M # Invr of total rank r and X>0, we put

N*(M, X )= :*

|S|�X, M � S
S SNF

1.

We have N*(M, X )=C*(r) \r*(m)(X�m)1�r+O(2|(m)(X�m)1�(r+1)) with
m=|M|.

Proof. Arguing as in Lemma 2.2, we find that

N*(M, X)= :*

( |S| , m)=1
|S| �X�m

1,

We complete the proof easily. K

Lemma 2.4. Let P denote an SNF-matrix whose determinant is a power
of a prime p. For X�3, we have

:
|P|�X

1<<X�Log X.

Proof. We have

:
|P|�X

1= :
pa�X

1 V t( pa)� :
p�X

1+ :

a�2
pa�X

ar&1<<X�Log X. K

Lemma 2.5. Let P denote an SNF-matrix whose determinant is a power
of a prime p. We have

:*
|P|�X

1<<X1�r�Log X.

Proof. We have

:*
|P|�X

1� :
pa�X

g( pa)� :

a�r
pa�X

g( pa)<<X 1�r�Log X. K

We finally recall the following lemma from [BW2]:

Lemma 2.6. Let P=diag( p f1, ..., p f1+ } } } + fr). Then

c( f1 , ..., fr) p'( f1, ..., fr)�{(P)�p'( f1, ..., fr) \c( f1 , ..., fr)+
1
p

d( f1 , ..., fr)+
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with

{
'( f1 , ..., fr)= :

r

j=1
_(r& j+1)2

4 & fj ,

c( f1 , ..., fr)=( fr+1)( fr&2+1) } } } ( fr&2[r�2]+1),
d( f1 , ..., fr)=1+(rf1+(r&1) f2+ } } } + fr)

r&1.

III. A GENERAL TURA� N�KUBILIUS INEQUALITY

We prove a Tura� n�Kubilius inequality in a general setting in order to
derive Theorems 4.1 and 4.3 without having to do the same proof twice.
Moreover it also yields the usual Tura� n�Kubilius inequality over integers
or over algebraic number fields. It also works for Beurling numbers if some
regularity assumptions are made to ensure (H0) and (H1) below.

Let X�3 be a real number. Let P be a set which will be considered as
a set of primes. Let S be a set which will be considered as a set of integers.
Let /� be a relation from P to S such that for any S # S, the number
of P # P such that P/�S is finite. Let & be an equivalence relation over
P such that P1

/�S and P2
/�S implies P1 &3 P2 , for P1 , P2 # P and

S # S. Let | } | be a function from P ? S (disjoint union) to ]0, +�[ such
that the number of points P in P (resp. in S) such that |P|�X is finite
and such that Pi /�S for i+1, ..., k implies |P1 | } } } |Pk |�|S| if the Pi are
all distinct. We now make regularity assumptions on the system
(P, S, /� , | } |, X).

There exist a non-negative function $ over P and non-negative real
numbers _, c1 , ..., c6 , : and ; such that 1�:�;�0 and

N(X )= :
|S|�X

1�_X:+c7X ;, (H0)

N(P, X )= :

P/�S
|S|�X

1=_$(P)(X�|P| ):+O*(c5$(P)(X�|P| );), (H1)

N(P1 , P2 , X )= :

P2
/�S

|S|�X
P1

/�S

1�_$(P1) $(P2) \ X
|P1 | |P2 |+

:

+c6$(P1) $(P2) \ X
|P1 | |P2 |+

;

, (H2)

:
|P|�X

$(P) |P|&:�c2 Log Log X, (H3)
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:
|P|�X

$(P) |P|&2;+:�c3X 2(:&;)�Log X, (H4)

:

|P1| |P2|�X
P1&3 P2

$(P1) $(P2)( |P1 | |P2 | ):&2;

�c4 X2(:&;)(Log Log X)�Log X. (H5)

Now let f be a function over P. We extend it into a function over S by
putting

f (S)= :
P/�S

f (P).

We define further

M( f, X )= :
|P|�X

$(P) f (P)
|P|: , D( f, X)= :

|P|�X

= :
|P|�X

$(P) | f (P)| 2

|P|: .

Then we have

Theorem 3.1. � |S|�X | f (S)&M( f, X)| 2�2(_+=) X:D( f, X ), where

==c5+(c6c1�2
4 +2c5 - c3c2 ) - (Log Log X )�Log X

+c7 c2X;&: Log Log X.

Note that M( f, X )2�D( f, X ) c2 Log Log X. In case M( f, X) is much
greater than D( f, X )1�2 and N(X ) �� X :, this theorem tells us that
f (S)tM( f, X ) for almost all S�X.

Proof. Since X is fixed throughout the proof, we abbreviate M( f, X )
and D( f, X ) as M( f ) and D( f ). We further call 2( f ) the LHS in
Theorem 3.1. We first assume f to be non-negative. Then

2( f )= :
|S|�X

f (S)2&2M( f ) :
|S|�X

f (S)+M( f )2 N(X ).

We study each of these three terms separately.

:
|S|�X

f (S)2= :

P1&3 P2

|P1|, |P2|�X

f (P1) f (P2) N(P1 , P2 , X )

+ :
|P| �X

f (P)2 N(P, X ),
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and using (H0) and (H1), we find that the above expression is

�_X: :

P1 &3 P2

|P1|, |P2| �X

$(P1) f (P1) $(P2) f (P2)
|P1 | : |P2 |:

+c6X ; :

P1 &3 P2

|P1| |P2| �X

$(P1) f (P1) $(P2) f (P2)
|P1 | ; |P2 |;

+_X: :
|P|�X

$(P) f (P)2

|P|: +c5 X; :
|P|�X

$(P) f (P)2

|P|; ,

�_X:M( f )2+(_+c5) X:D( f )

+c6D( f ) X; \ :

P1&3 P2

|P1| |P2|�X

$(P1) $(P2)
( |P1 | |P2 | )2;&:+

1�2

,

which is now less than

_X:M( f )2+(_+c5+c6 c1�2
4 - (Log Log X )�Log X) X :D( f ).

We also have

:
|S| �X

f (S)�_X: :
|P| �X

$(P) f (P)
|P| : &c5X; :

|P|�X

$(P) f (P)
|P| ; ,

�_M( f )&c5 D( f )1�2 \X2; :
|P|�X

$(P)
|P|2;&:+

1�2

,

�_M( f )&c5 D( f )1�2 X:
- c3 �Log X.

Furthermore M( f )2�c2 D( f )Log Log X, and thus

2( f )�(_+c5+c6c1�2
4 - (Log Log X )�Log X) X:D( f )

+2c5X:D( f ) - c3 c2(Log Log X )�Log X

+c7 c2X :D( f ) X;&: Log Log X

which is what was to be proved. If f is real valued, we write it as a
difference of two non-negative functions and use (x+ y)2�x2+ y2. If f is
complex-valued, we split it into real and imaginary parts. K

We note here that the first term in the definition of = in Theorem 3.1
(this term is equal to c5) does not appear when working with integers due
to the inequality �d | n�X 1�X�d which has no error term. We could have
introduced such a refinement but since the constant = is not optimal even
in the case of integers it seems superfluous.
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We can of course replace (H1) and (H2) by L2-average bounds of the
shape

:
|P|�X

|N(P, X )&_$(P)(X�|P| ):| 2<<X :

and similarly for N(P1 , P2 , X).
We now comment on (H3) and (H4). We have made these three assump-

tions because we wanted to allow all the constants and f to depend on X.
However, the hypothesis

:
|P| �t

1�c(X ) t:�Log t (2�t�X ) (H6)

is sufficient if ;<: and easier to verify. We recall rapidly how to derive
(H3), (H4), and (H5) from it. Define h(n) to be the number of P # P such
that |P|=n. By partial summation, (H6) implies

:
n�t

h(n) n&:<<c(X ) Log Log(2t) (2�t�X ),

where the implied constant depends only on :. Similarly we get

:
n�t

h(n) n&2;+:<<c(X ) t2(:&;)�Log t (2�t�X ).

Moreover by using the Dirichlet hyperbola principle we get

:
nm�t

h(n) h(m)<<c(X) t:(Log Log(2t))�Log t (2�t�X )

and using the previous inequality with h changed into h C h and c(X ) into
c(X ) Log Log(2X), we get (H5).

IV. TURA� N�KUBILIUS INEQUALITIES FOR INTEGER
MATRICES: PROOF OF THEOREMS 1�4

Throughout this part P denotes an integer matrix in SNF whose deter-
minant is a power of a prime. Let f be a complex-valued additive function,
i.e., a function which verifies f (AB)= f (A)+ f (B) whenever ( |A|, |B| )=1.
We further assume that f is arithmetical, meaning that f (A)= f (SNF A).
For an additive arithmetical function, we have

f (A)= :
P � A

f (P).
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To prove such a decomposition, the simplest way is to interpret it in terms
of abelian groups, following [BR2]. The above equality says that f (A)
equals the sum of the values of f on each p-component. Each of these
p-components corresponds uniquely to a subgroup of G(A) and thus to a
divisor of A in HNF, which in turn corresponds to a unique SNF matrix
P with P � A. We put

M( f, X)= :
|P|�X

f (P)
|P|

\r( |P| ), D( f, X )= :
|P|�X

| f (P)|2

|P|
\r( |P| ).

Using Lemmas 2.2, 2.4, and Theorem 3.1 with :=1 and ;=1�2 we readily
get Theorem 2.

Since Log {(S) is an additive arithmetical function, we deduce
Theorem 1 from it provided we estimate the mean and the dispersion
which we do below.

Proof of Theorem 1. We evaluate the mean and the dispersion by using
Lemma 2.6 (Proposition 5 of [BR1] would be enough) which yields

Log {(P)<<Log |P|.

We thus get

M(Log {, X )=(Log 2) Log Log X+O(1) (4.1)

and

D(Log {, X )=(Log 2)2 Log Log X+O(1). (4.2)

We replace M(Log {, X ) by (Log 2) Log Log X by using (x+ y)2�
x2+ y2. K

We then use Theorem 3.1 but with SNF matrices of total rank r to
deduce Theorem 3. The hypotheses (H1), (H2), and (H6) are dealt with in
Lemmas 2.3 and 2.5.

It remains to prove Theorem 4. Since f (S)=Log {(S)&([r2�4]�r)
Log |S| is an additive arithmetical function, we only have to evaluate its
mean and dispersion.

Proof of Theorem 4. We evaluate the mean and the dispersion by using
Lemma 2.6. We first discard the contribution of the P's such that
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rf1+ } } } + fr�r+1 (notations of Lemma 2.6). Indeed their contribution
to the mean is not more than

:

f1�1

prf1+ } } } +fr�X
rf1+ } } } + fr�r+1

_('( f1 , ..., fr)+([r2�4]�r)( fr1+ } } } + fr)) Log p
+Log(c( f1 , ..., fr)+(1�p) d( f1 , ..., fr)) &

prf1+ } } } + fr)�r

where we sum over p and f1 , ..., fr�0. This sum is clearly O(1). The same
holds for the dispersion. We are thus left with the contribution of matrices
diag( p, ..., p) for which we have '=[r2�4], c=1 if r is odd, and c=2 if r
is even and d=1+rr&1. The contribution to the mean is thus

{ :
p�X 1�r

Log 2
p

+O(1) if r is even
(4.3)

O(1) if r is odd.

The dispersion is computed in a similar way. K
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