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Abstract. A fairly long-standing conjecture is that the Davenport constant of a group G D

Zn1
˚ � � � ˚ Znk

with n1 j � � � j nk is 1C
Pk
iD1.ni � 1/. This conjecture is false in general,

but it remains to know for which groups it is true. By using inductive methods we prove that

for two fixed integers k and ` it is possible to decide whether the conjecture is satisfied for all

groups of the form Z`
k

˚ Zn with n co-prime to k.

We also prove the conjecture for groups of the form Z3 ˚ Z3n ˚ Z3n; where n is co-prime

to 6, assuming a conjecture about the maximal zero-sum free sets in Z2n.
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1 Introduction and Results

Let G be a finite abelian group written additively, and a1; : : : ; ak a sequence of ele-

ments inG. We say that this sequence contains a zero-sum if there is some non-empty

subsequence 1 � i1 < i2 < � � � < i` � k satisfying ai1 C � � � C ai` D 0; otherwise it

is called zero-sum free. Denote by D.G/ the least integer k such that every sequence

of length k contains a zero-sum. This number is usually called Davenport’s constant,

since the question of whether zero-sums exist was studied by Davenport in the con-

text of algebraic number theory (where G is the class group of some number field,

the elements ai are given ideal classes from which one wants to construct a principal

ideal). This line of research was continued in the study of domains with non-unique

factorisation, for an overview see [12]. Among applications, Brüdern and Godinho

[6] discovered that the existence of zero-sums can be used to simplify p-adic forms,

which led to considerable progress towards Artin’s conjecture on p-adic forms.

To avoid cumbersome notation we shall from now on always talk about multi-sets

instead of sequences; in the sequel all sets are multi-sets unless stated otherwise. We

shall write the multiplicity of an element as its exponent, e.g. ¹an; bmº is a multi-set

containing n C m elements, n of which are equal to a, and m are equal to b. We

believe that the imprecision implied by the non-standard use of equality is more than

outweighed by easier readability.
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One approach to bound D.G/ is the so called inductive method, which runs as

follows: IfN < G is a subgroup and n an integer such that every sequence of length n

inG=N contains a system ofD.N/ disjoint zero-sums, thenD.G/ � n. Indeed, given

a multi-set in G, each zero-sum of its image in G=N defines an element in N , and

choosing a zero-sum among these elements defines a zero-sum in G. Unfortunately,

in general this method does not give the exact value for D.G/. For example, for

G D Z23 ˚ Z3n, Delorme, Ordaz and Quiroz showed that D.G/ � 3n C 5, which

is 1 more than the exact value. The sub-optimality of this method stems from the

fact that in general we have many ways to choose a system of disjoint zero-sums in

G=N , and it suffices to show that one of these systems yields a zero-sum in N . If the

structure of all zero-sum free subsets in N of size close to D.N/ is sufficiently well

understood one can use this information to choose an appropriate system of subsets

in G=N . In this way one can show that for groups of the form G D Z23 ˚ Z3n we

always haveD.G/ D 3nC4 (confer [4]), the corresponding lower bound being given

by the multiset ¹.1; 0; 0/2; .0; 1; 0/2; .0; 0; 1/3n�1º. In fact, this example immediately

generalises to arbitrary finite groups: If G D Zn1
˚ � � � ˚ Znk

with n1 j � � � j nk , then

D.G/ � M.G/ WD 1C
Pk
iD1.ni � 1/. The conjecture that D.G/ D M.G/, which

we shall refer to as the main conjecture, is proven for groups of rank 2, and fails for

infinitely many groups of rank � 4. It is not yet known whether it holds true for all

groups of rank 3.

In this article we generalise the improved inductive method to other sequences of

groups. We first give a decidability result. Suppose k; ` 2 N are fixed. Then one

can check the main conjecture for all groups of the form G WD Z`
k

˚ Zn at once

(in a finite amount of time), where n runs through all numbers co-prime to k. Note

that G Š Z`�1
k

˚ Zkn, so M.G/ D .` � 1/ � .k � 1/ C kn. Moreover, if the main

conjecture does fail for some of the groups Z`
k

˚ Zn, then we give a description of

the set of numbers n where it fails.

It turns out that the same proof actually yields a bit more: if the main conjecture

happens to be false forG one can ask about the differenceD.G/�M.G/. Our results

not only apply to the set of those n where the main conjecture fails, but also to set of

such n where D.G/ �M.G/ > ı for any fixed ı. Here is the precise statement:

Theorem 1. Suppose k � 2, ` � 1 and ı are three integers. Let N be the set of

integers n co-prime to k such thatD.Z`
k

˚ Zn/ > knC ı. Then either N is finite, or

there exists an integer d > 0 and a set T of divisors of d containing 1 such that N

differs from the set

N
0 WD ¹x 2 N W .x; d/ 2 T º

only in finitely many elements.

In addition, there is an algorithm which, given k, ` and ı, prints out N if the latter

is finite. Otherwise its output is d , T and the set of elements in which N and N
0

differ.
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Choosing ı D .` � 1/ � .k � 1/ yields:

Corollary 2. Suppose k � 2; ` � 1 are two integers. Let N be the set of integers n

co-prime to k such that the main conjecture fails for Z`
k

˚ Zn. Then N has the form

described in Theorem 1, and there is an algorithm which, given k and `, describes N

as above.

In theory, this means that a computer can be programmed to prove statements of the

form “the main conjecture is true for Z`
k

˚ Zn for all n co-prime to k”. However, the

reader should be aware that the existence of an algorithm often sounds better than it

is: a straight-forward application of our algorithm would require astronomical running

time even for very small k and ` (see constants appearing in Proposition 11). Still,

we believe that by combining computer search with manual arguments one can prove

the main conjecture for certain series of groups. In fact, in [4] the methods of this

theorem have been explicitly applied to prove the main conjecture in the case k D 3,

` D 3.

In the theorem, we mention that the set T of divisors contains 1. This is helpful to

get a statement of the form “if there is a counter-example to the main conjecture, then

there is a small one”; indeed, Proposition 11 is such a statement.

The proof of Theorem 1 makes much use of the simple structure of Zn where there

is essentially one single example of a large zero-sum free set. In our next theorem,

we would like to replace Zn by a larger group. However, for non-cyclic groups the

structure of maximal zero-sum free sets is less clear and there are essentially different

possibilities for such sets. Due to this complication, we can only deal with groups of

rank 2. Though the structure of maximal zero-sum free sets is not known, there is a

plausible conjecture concerning these sets. We say that an integer n satisfies property

B if every zero-sum free subset A � Z2n of cardinality 2n � 2 contains an element a

with multiplicity � n � 2.

Conjecture 3. Every integer n satisfies property B .

This conjecture is known to hold in several cases.

Proposition 4. (1) If n and m satisfy property B , then so does nm.

(2) All prime numbers up to 23 satisfy property B .

The first statement is essentially due to Gao, Geroldinger and Grynkiewicz [11],

the second is proven in [3].

Theorem 5. Let n be an integer co-prime to 6 such thatB.n/ holds true. ThenD.Z3˚

Z23n/ D 6nC 1.

We remark that even the simplest case dealt by this theorem, that is Z3˚ Z215, was

till now undecided.
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Although we tried to prove as much as possible by hand, the proof of this theo-

rem needs a lemma on subsets of Z33 which we could only prove by massive case

distinction, which has been done by our computer.

2 Auxiliary Results

For an abelian group G, we denote by Dm.G/ the minimal n such that any subset of

G of cardinality n contains m disjoint zero-sums.

Lemma 6. The following both statements hold:

(1) For integers k and `, there exists a constant c.k; `/ such that Dm.Z
`
k
/ � kmC

c.k; `/.

(2) We have Dm.Z
2
3/ D 3mC 2:

Proof. (1) Given a multi-set A � Z`
k

, form as many zero-sums as possible which are

of the form ¹akº for some a 2 Z`
k

. For each a 2 Z`
k

, there are at most k � 1 copies

of a in A which we can not use in this way, so c.k; `/ WD .k � 1/ � k` is certainly

sufficient.

(2) It is easy to check that every subset of 5 elements contains a zero-sum, and that

every subset of 7 elements contains a zero-sum of length � 3. Our claim now follows

by induction on m.

Lemma 7. Let k; ` be integers, A 2 Zk�` a matrix, b 2 Zk a vector. Then either (a)

there exists an integer d and a set T of divisors of d including 1, such that the system

Ax D b is solvable in Zn if and only if .d; n/ 2 T or (b) there exists a finite set of

integers N , such that the above system is solvable if and only if n 2 N .

If all entries in A are of modulus � M , and all entries of b are of modulus

� N , then in case (a) d � min.k; `/ŠMmin.k;`/, and there is a polynomial p, in-

dependent of k, `, M and N , such that in case (b), every element x 2 N satisfies

x � N2p.k` logM/.

Proof. Computing the Smith normal form of the matrix A, we see that there exist

invertible matrices P;Q over Z, such thatD WD PAQ�1 has non-zero entries at most

on the diagonal di i , i � k, and these entries satisfy di i j diC1;iC1. Since every matrix

invertible over Z is also invertible over Zn, the equation Ax D b is solvable in Zn if

and only if the equation Dx D b0 is solvable, where b0 D Pb. A necessary condition

for solvability is that in every row containing only zeros inD, the corresponding entry

of b0 vanishes, that is, n j b0
j for every j such that j > m, where m is the greatest

integer such that dmm ¤ 0. If one of these b0
j does not vanish, then there are at most

finitely many n for which the equation is solvable, and our claim is true. If all these

b0
j equal zero, the system is equivalent to the system di ixi D b0

i , which is solvable if
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and only if .n; di i / j b0
i . We take d to be dmm. Since di i j d for each i � m, the set

of n for which the system is solvable is of the form ¹n W .n; d/ 2 T º for some set T .

Moreover .n; d/ D 1 implies .n; di i / j b0
i , so 1 2 T .

For the numerical bounds note that d equals the greatest common divisor of all

m � m sub-determinants of A. Since the Q-rank of A equals m, there exists a

non-vanishing sub-determinant, containing only entries � M , which is therefore

� mŠMm � min.k; `/ŠMmin.k;`/.

The entries in the set N are bounded by the entries in Pb, which in turn are

bounded by kN times the entries of P . A general estimate for the entries of such

transformation matrices was obtained by Kannan and Bachem [13, Theorem 5]. They

found a polynomial algorithm which takes an `0 � `0-matrix A with integral entries,

transforms it into Smith normal form PAQ�1, and returns the transformation matri-

ces P andQ. To apply this to our case, we enlarge our A to a square matrix by adding

zeros (i.e., `0 D max.k; `/). Then the size of the input data is .`0/2 logM , so the size

of the output data – and in particular the number of digits of the entries of P and Q

– is bounded by p.`0 logM/ for some polynomial p. After possibly changing p, this

yields the claim.

Corollary 8. Consider the system Ax D b as in the previous lemma, set m WD

min.k; `/, and suppose that there are infinitely many n such that this system is solv-

able in Zn. Then for each z � z0 D max
�

21;
m log.mM/

log2

�

the system is solvable for

some n 2 Œz; 2z�.

Proof. If the system has infinitely many solutions, then there exists an integer d �

mŠMm such that the system is solvable in Zn whenever .n; d/ D 1. If the system is

unsolvable for all n 2 Œz; 2z�, then in particular d is divisible by all prime numbers in

this interval. Since for z � 21, the product of all prime numbers in Œz; 2z� is � 2z ,

our claim follows.

The following result is essentially due to Bovey, Erdős and Niven [5].

Lemma 9. Let A � Zn be a zero-sum free multi-set containing N elements, where

N � 2n=3. Then there exists an element a of Zn, which occurs in A with multiplicity

greater than 2N � n. Moreover, a is a generator of Zn.

Proof. The statement on the multiplicity is [5]. Now suppose that a is not a generator

of Zn, and let H be the subgroup generated by a. Denote by m the multiplicity of

a. Among .Zn W H/ elements of Zn=H we can choose a zero-sum, that is, among

the N � m elements of A n ¹amº we can choose a system of b N�m
.ZnWH/

c disjoint sets,

each one adding up to an element in H . Since A is zero-sum free, we cannot obtain

jH j elements in this way, that is, m C b N�m
.ZnWH/

c � jH j � 1, which implies .Zn W

H/m C N � m < n. Since m � 2N � n C 1, and .Zn W H/ � 2, we obtain

3N C 1 < 2n, contradicting N � 2n=3.
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Corollary 10. Let A � Zn be a subset with jAj � 3n=4. Then A is zero-sum free if

and only if 0 … A and there exists some invertible ˛ 2 Z�
n , such that

P

a2A �.˛ � a/ �

n � 1, where � W Zn ! N is the map sending x to the least non-negative residue

contained in the class x.

Proof. Obviously, if 0 … A and
P

a2A �.˛�a/ � n�1, thenA is zero-sum free. Hence,

we now assume that A is zero-sum free and bound the sum. In view of Lemma 9 we

may assume without loss that A contains the element 1 with multiplicity m > n=2. If

A contains an element in the interval Œn=2; n�, this element can be combined with a

certain multiple of 1 to get a zero-sum. Let x1; : : : ; xk be the list of all elements in A

different from 1. Either
P
�.xi / � n �m � 1, which is consistent with our claim, or

there is a least ` such that s D
P`
iD1 �.xi / > n �m � 1. Since no single xi satisfies

�.xi / > n=2, we have s 2 Œn � m; n � 1�, hence, s can be combined with a certain

multiple of 1 to get a zero-sum, which is a contradiction.

3 Proof of Theorem 1

Proof of Theorem 1. Let k and ` be fixed once and for all. We want to describe the set

of n co-prime to k such that D.Z`
k

˚ Zn/ > knC ı holds. More precisely, it suffices

to describe this set for n sufficiently big, as long as the bound on n is computable.

By definition, D.Z`
k

˚ Zn/ > knC ı holds if and only if there exists a zero-sum

free set A � Z`
k

˚ Zn of cardinality kn C ı. Such a set A can be described by its

projection A onto Z`
k

and the multi-function f W A ! Zn such that .a; f .a// 2 A

is the preimage of a 2 A. Using this description, the existence of a set A as above is

equivalent to the existence of a set A � Z`
k

of cardinality knC ı and a multi-function

f W A ! Zn (call .A; f / a “candidate”) such that the following condition holds:

For any zero-sum Z � A, the sum
P

a2Z f .a/ is not equal to zero. (�)

The sum
P

a2Z f .a/ will often simply be called the “Zn-sum of Z”. Moreover, we

will use the following terminology: A “constant” is a value which only depends on

k, ` and ı (but not on n); “bounded” means bounded by a constant (in the sense just

described), and “almost all” means that the number of exceptions is bounded.

Here is the main part of the proof. We initially skip the proofs of the two following

steps:

(1) Suppose .A; f / is a candidate and .Zi /i�m is a system of m disjoint zero-

sum subsets of A (for some m 2 N). From this we can form the multi-set B WD

B..Zi /i / WD ¹
P

a2Zi
f .a/ W 1 � i � mº � Zn. If .A; f / satisfies (�), then B has to

be zero-sum free.

We will find a constant cdefect such that for m WD n � cdefect, we also have the

converse: .A; f / satisfies (�) if and only if for all systems .Zi /i�m ofm D n�cdefect
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disjoint zero-sum subsets ofA, the corresponding setB..Zi /i / is zero-sum free. From

now on, we fix m like this.

(2) We will show that if a candidate .A
0
; f 0/ satisfying (�) exists, then there does

already exist a candidate .A; f / of a particular form. Candidates of this form will

be called “main candidates”, and they are defined as follows. We will fix a suitable

constant cvar. .A; f / is a main candidate if there exists an element a0 2 Zl
k

such that

there are at least jAj � cvar occurrences of a0 in A with f .a0/ D 1
k

. Note that 1
k

does make sense as k and n are co-prime. (Right now, we could as well have written

f .a0/ D 1 instead of f .a0/ D 1
k

, but later, 1
k

will be more handy.)

The remainder of the proof goes as follows:

(3) A “datum for a main candidate” is a tuple .a0; .aj /j ; .fj /j /, where a0 2 Z`
k

,

.aj /j 2 .Z`
k
/cvar , and .fj /j 2 .Z`n/

cvar . Such a datum yields a main candidate .A; f /

in the following way: A D A0[A?, where A0 WD ¹a
knCı�cvar

0 º and A? WD ¹aj W 1 �

j � cvarº, f .a0/ D 1
k

for each a0 2 A0, and f .aj / D fj for aj 2 A?. Each main

candidate can be described by such a datum.

Only the .fj /j part of such a datum depends on n. Our goal now is to verify that

after fixing a0 and .aj /j , whether (�) holds for the corresponding main candidate

depends on .fj /j in a simple way: we will construct systems of linear equations over

Z such that (�) holds if and only if the tuple .fj /j is a solution of one of these systems

modulo n. Then the theorem will follow using Lemma 7.

(4) Fix a datum .a0; .aj /j ; .fj /j / and the corresponding main candidate .A; f / as

in step (3). We claim that to check whether .A; f / satisfies (�), it suffices to consider

systems .Zi /i�m where for any i > cvar, we have Zi D ¹ak0º. Indeed, suppose

that .Zi /i�m is an arbitrary system of m disjoint zero-sums and that B..Zi /i / does

contain a zero-sum; denote by J the set of indices such that this zero-sum consists

of the Zn-sums of the sets Zj , j 2 J . We will modify .Zi /i�m until it satisfies the

condition of the claim, keeping the zero-sum intact.

By renumbering the sets Zi , we may suppose Zi � A0 for i > cvar; in particular,

Zi D ¹a
rik
0 º for some integers ri . Now we replace each of these sets Zi by its

subset ¹ak0º. To compensate for this in the zero-sum, we have to find an i0 2 J with

i0 � cvar; then we can repair the zero-sum by adding to Zi0 all the elements which

we removed from Zi , i 2 J , i > cvar.

Suppose that such an i0 does not exist. Then our zero-sum is
P

i2J

P

a2Zi
f .a/ D

P

i2J jZi j
1
k

D
P

i2J ri . However, this can not be zero in Zn, as
P

i>cvar
ri �

knCı�cvar

k
< n; for the last inequality, we suppose without loss cvar > ı.

(5) From now on, we only consider systems .Zi /i�m as in step (4), i.e., with Zi D

¹ak0º for i > cvar. These are in bijection to the systems .Zi /i�cvar
of cvar disjoint
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zero-sums of A n ¹a
k.m�cvar/
0 º D A? [ ¹a

kcdefectCıC.k�1/cvar

0 º DW A??. We see that

the set B WD B..Zi /i�m/ � Zn corresponding to such a system is of the form

¹b1; : : : ; bcvar
; 1m�cvarº, where bi D

P

a2Zi
f .a/. This sum equals

P

¹j Waj 2Zi º fj C
1
k
zi where zi D jZi \ .A?? n A?/j.

(6) Suppose m � 3
4
n, i.e., n � 4cdefect. Then we can apply Corollary 10 to the set

B and get that it is zero-sum free if and only if bi ¤ 0 for all i � cvar and there

exists some ˛ 2 Z�
n such that

P

b2B �.˛ � b/ < n (with � W Zn ! N defined as in

Corollary 10). Supposing m� cvar � n=2, we get that only ˛ D 1 is possible, and the

condition becomes
Pcvar

iD1 �.bi / < n � .m � cvar/ D cdefect C cvar.

(7) This can be reformulated as follows: Set C0 WD ¹.ci /i�cvar
2 Zcvar W ci �

1 and
Pcvar

iD1 ci < cdefect C cvarº (note that C0 does not depend on n), and denote

by � W Zcvar � Z
cvar
n the projection. Then B is zero-sum free if and only if .bi /i D

�..ci /i / for some .ci /i 2 C0. Moreover, we rewrite the equation bi D �.ci / as
P

¹j Waj 2Zi º kfj D �.kci � zi /.

(8) Putting all this together, we have: For sufficiently large n, there exists a pair

.A; f / satisfying (�) if and only if:

Ex. main cand. s. th.
‚ …„ ƒ

_

a02Z
`
k

.aj /j 2.Z`
k
/cvar

9.fj /j 2 Zcvar
n

for all relevant
zero-sum systems
‚ …„ ƒ

^

.Zi /i system
of cvar disjoint

zero-sums in A??

B is zero-sum free
‚ …„ ƒ

_

.ci /i 2C0

^

1�i�cvar

X

¹j Waj 2Zi º

kfj D �.kci � zi / :

We used big conjunctions
V

and disjunctions
W

as notation for some of the universal

and existential quantifiers to emphasise that their range is finite and independent of n.

Putting this formula into disjunctive normal form and moving the existential quan-

tifier inside the
W

, we get that there exists a pair .A; f / satisfying (�) if and only if at

least one of a finite number of systems of linear equations (with coefficients in Z not

depending on n) has a solution in Zn.

By Lemma 7, each system either contributes only finitely many integers n such

that .A; f / satisfies (�), or the contributed set has the form ¹n W .n; d/ 2 T º for some

integer d and some set T of divisors of d containing 1. The union of sets of this form

again has this form, so the first part of the theorem is proven.

Concerning the algorithm it is enough to find computable bounds for the following:

a bound n0 such that the above formula holds for all n � n0; a bound n1 such that if

the system of equations is solvable modulo n only for finitely many n, then these n are

at most n1; a bound d0 such that if the system of equations is solvable for infinitely

many n, then d � d0.

Clearly, all bounds which appear in this proof are computable, so we do get this

result. In Section 3.1, we will even determine such bounds explicitly.



Inductive Methods and Zero-Sum Free Sequences 9

Now let us fill in the two remaining steps.

(1) LetA � Z`
k

be of cardinality knCı, and supposeZ � A is any zero-sum subset.

We will construct a large system .Zi /i of disjoint zero-sums in A such that Z can be

written as union of some of these zero-sums Zi . This then implies the first step: if

B..Zi /i / is zero-sum free, then in particular the sum
P

a2Z f .a/ is not zero.

By Lemma 6 we can find at least b jZj�c.k;`/
k

c disjoint zero-sums in Z and at least

b jAnZj�c.k;`/
k

c disjoint zero-sums in A n Z. We may suppose that Z is the union of

the zero-sums we found inside. Together, we get b jZj�c.k;`/
k

c C b jAnZj�c.k;`/
k

c �

b jAj�2c.k;`/
k

c � 1 DW m DW n � cdefect disjoint zero-sums in A. Note that cdefect does

not depend on n.

The second step requires some more work, so we decompose it into several sub-

steps. We suppose that .A; f / is a candidate satisfying (�). In the first four substeps,

we prove some properties of .A; f /; in the last substep, we use this to construct an-

other candidate .A
0
; f 0/ which will be a main candidate satisfying (�).

(2.1) Claim: There is a constant cmore such that in any system .Zi /i of m disjoint

zero-sums of A, at most cmore sets Zi have more than k elements.

Let .Zi /i be given and let r be the number of sets with more than k elements.

Together, these sets have at least r.k C 1/ elements. Remove these big sets from our

system and instead use Lemma 6 to repartition them into disjoint zero-sums. After

that, we have a new system .Z0
i /i consisting of m� r old sets and b r.kC1/�c.k;`/

k
c D

r C b r�c.k;`/
k

c new ones. By (�), B..Z0
i /i / does not contain a zero-sum, so this new

system consists of at most n � 1 sets; this implies m C b r�c.k;`/
k

c � n � 1, i.e.,

r < cdefectk C c.k; `/ DW cmore.

(2.2) Claim: Suppose that n is sufficiently large. Then for any system .Zi /i of m

disjoint zero-sums in A, almost all elements of the sum-set B WD B..Zi /i / are equal

to one single element b 2 Zn which generates Zn.

This follows from Lemma 9. We need jBj D n � cdefect � 2
3
n, i.e., n � 3cdefect.

And we get an element b with multiplicity at least 2jBj � nC 1 D m� cdefect C 1 DW

m � cws (ws = wrong sum).

(2.3) Claim: If n � 0, then the prevalent value b in B..Zi /i / is the same for any

system .Zi /i of m disjoint zero-sums of A.

Suppose .Zi /i and .Z0
i /i are two different systems of disjoint zero-sums, and de-

note the prevalent values of B..Zi /i / and B..Z0
i /i / by b and b0 respectively. We

choose cws C 1 of the sets Zi which all have cardinality at most k and all have Zn-

sum b. This is possible if m � cmore C 2cws C 1. Without loss, our chosen sets are

Z1; : : : ; ZcwsC1.
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Now we do the same for .Z0
i /i , i.e., we choose Z0

1; : : : ; Z
0
cwsC1

to have at most

k elements each and to have Zn-sum-values b0. But in addition, we want that these

sets Z0
j (for j � cws C 1) are disjoint from the sets Zi (for i � cws C 1). Each

set Zi can intersect at most k of the sets Z0
j , so the additional condition forbids

at most k � .cws C 1/ of the m sets Zj . Therefore we can find our desired sets if

m � cmore C 2cws C 1C k � .cws C 1/.

Now we use Lemma 6 to complete our chosen sets .Zi /i�cwsC1 and .Z0
i /i�cwsC1

to a system ofm disjoint zero-sum sets. By (2.2), there is a prevalent value b00 for this

system, which leaves out at most cws sets. This implies that both b and b0 are equal

to b00.

Without loss, we will now suppose that the prevalent Zn-value of any m disjoint

zero-sums is 1.

(2.4) Claim: There exists a constant cvar such that for at most cvar of the elements

a 2 A, we have f .a/ ¤ 1
k

. In fact we will choose cvar such that even a slightly

stronger statement holds: for each a 2 Z`
k

, let ra be number of copies of a in A with

f .a/ D 1
k

. Then
P

a2Z
`
k
k � b ra

k
c � jAj � cvar.

Let us call a subset Z � A “neat” if it is of the form ¹akº for some a 2 Z`
k

.

We construct a system .Zi /i of m disjoint zero-sums with lots of neat sets in the

following way: for each element a 2 Z`
k

which appears with multiplicity � in A, we

form b�
k

c disjoint sets of the form ¹akº. If we get more than m sets in this way, we

choose m of them. If we get less than m sets, then we use Lemma 6 on the remainder

of A to complete our system .Zi /i . Denote by � the number of neat sets in .Zi /i .

The minimal value of � is attained if the multiplicity in A of each a 2 Z`
k

is

congruent k � 1 modulo k. So we get � � min¹m; 1
k
.jAj � .k � 1/ � k`/º DW m� cnn

(nn = not neat; note that cnn is constant).

Among all systems of m disjoint zero-sums in A which have � neat sets, now

choose a system .Zi /i where the number of neat sets Zi with Zn-sum equal to 1 is

minimal. At most cws sets have not sum 1 and at most cnn are not neat, so even in this

minimal choice we get at least m� cnn � cws neat sets with sum 1. We fix this system

.Zi /i for the remainder of step (2.4).

Choose a 2 Z`
k

, and let Na be the union of all neat sets Zi of the form ¹akº with

Zn-sum 1. We claim that if there are at least two such neat sets, then f is constant

on Na; in particular this implies that the value of f on Na is 1
k

. Suppose f is not

constant on Na. Then there are two elements a1; a2 2 Na with f .a1/ ¤ f .a2/which

belong to two different neat setsZi1 ,Zi2 . Modify the system .Zi /i by exchanging a1
and a2. Then Zi1 and Zi2 do not have sum 1 anymore, so the new system contradicts

the assumption that the old one had a minimal number of neat sets with sum 1.

Doing the above construction for all a 2 Z`
k

yields the claim: The union N WD
S

a2Z
`
k

Na contains all neat sets Zi with Zn-sum 1, so it has cardinality at least
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k.m� cnn � cws/. On the other hand, if f is not constant equal to 1
k

on a set Na, then

jNaj D k, and this can happen for at most k` � 1 of these sets. Thus f is equal to 1
k

on at least k.m � cnn � cws/ � k.k` � 1/ DW jAj � cvar elements. As these elements

are contributed in groups of k, we also get the slightly stronger statement mentioned

at the beginning of this step.

(2.5) Claim: There is a main candidate .A
0
; f 0/ satisfying (�) (still assuming that

.A; f / is an arbitrary candidate satisfying (�)).

Recall that .A
0
; f 0/ is a main candidate if there is an element a0 2 Z`

k
such that A

0

contains at least jA
0
j � cvar copies a of a0 which moreover satisfy f 0.a/ D 1

k
.

We construct .A
0
; f 0/ out of .A; f / in the following way. As before, for a 2 Z`

k

let ra be number of copies of a in A with f .a/ D 1
k

. Choose a0 2 Z`
k

such that

ra0
is maximal; in particular ra0

� jAj�cvar

k` . Let .A
0
; f 0/ be equal to .A; f / with the

following modification: For each a 2 Z`
k

, replace k�b ra

k
c copies a0 2 A of a satisfying

f .a0/ D 1
k

by the same number of copies a00 of a0, and set f 0.a00/ D 1
k

on these

copies. Denote by � the bijection from A to A
0

which describes these replacements.

Step (2.4) ensures that .A
0
; f 0/ is a main candidate; it remains to show that it

satisfies (�). To this end, for any zero-sum Z0 � A
0
, we construct a zero-sum Z � A

which has the same Zn-sum as Z0. As .A; f / satisfies (�), this Zn-sum is not equal

to zero, so .A
0
; f 0/ satisfies (�), too.

So suppose a zero-sum Z0 � A
0

is given. Consider the set M � A
0

of copies

a0 of a0 with f 0.a0/ D 1
k

, and for a 2 Z`
k

define the subset Ma WD ¹a0 2 M W

��1.a0/ is a copy of aº. As jMaj is a multiple of k for any a ¤ a0, and assuming

jMa0
j D ra0

� k � 1, in Z0 we may replace elements of M by other elements of

M such that jMa \ Z0j is a multiple of k for any a ¤ a0. (This changes neither the

sum nor the Zn-sum of Z0.) Now take Z WD ��1.Z0/. As elements are moved by

groups of k, Z has the same sum as Z0 (i.e., zero), and as f 0 ı� D f , it has the same

Zn-sum.

3.1 Computation of the Bounds

The proof of Theorem 1 actually gives a little more than just decidability. In fact, for

each k, ` and ı, there is a computable constant n0, such that D.Z`
k

˚ Zn/ � ı C kn

holds true for all integers n co-prime to k if and only if it holds true for all integers

n � n0 which are co-prime to k. In this subsection we compute an upper bound for

n0 (Proposition 11). Unfortunately, D.G/ is computable only for very small groups

G, while the value for n0 obtained in this subsection is rather large. However, we

still believe that the algorithm given above can be performed for several small values

of k and `, in particular if one does some manual improvements using the explicit

knowledge of k and `.



12 G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta

We now compute all bounds appearing in the proof of Theorem 1.

A bound for Lemma 6: Denote by Dk.Z`
k
/ the least integer n such that every

multi-set consisting of n elements in Z`
k

contains a zero-sum of length � k. Then

c.k; `/ � Dk.Z`
k
/�k, since every multi-set containing k.m�1/CDk.Z`

k
/ elements

contains a system of m disjoint zero-sums each of length � k. For Dk.Z`
k
/ we have

the trivial bound k`C1, but also the estimate Dk.Z`
k
/ � .256` log `/` � k due to

Alon and Dubiner [1]. For specific values of k and `, great improvements on both

bounds are possible; it is probably at this point that our estimates can be improved

most easily. To avoid some awkward expressions in the sequel, we shall express all

constants occurring in the proof of Theorem 1 explicitly in terms of k, `, ı and c.k; `/,

and give an explicit estimate using only the bound c.k; `/ � k`C1. (For the explicit

estimates, we use that we may suppose k � 2, ` � 3, ı � 2.)

Step (1): cdefect D 1C d2c.k;`/�ı
k

e � 3k`.

Step (2.1): cmore D k � cdefect C c.k; `/ � 4k`C1.

Step (2.2): cws D cdefect � 1 � 3k`.

Step (2.2) needs n � 3cdefect. So n � 9k` suffices.

Step (2.3) needs n � cdefect C cmore C 2cws C 1C k � .cws C 1/. So n � 12k`C1

suffices.

Step (2.4): cnn D max¹0; .k � 1/ � k`�1 � 1
k
ı � cdefectº. The proof of Theorem 1

allows us to assume cdefect D 3k`, which yields cnn D 0. (However, using

more careful estimates for c.k; `/ could yield non-zero values for cnn.)

Step (2.4): cvar D ı C k.cdefect C cnn C cws C k` � 1/ � 7k`C1 C ı.

Step (2.5) needs knCı�cvar

k` � k � 1. So n � 8k` suffices.

Step (4) needs cvar > ı, which is certainly the case.

Step (6) needs n � 4cdefect. So n � 12k` suffices.

Step (6) also needsm�cvar � n=2, i.e., n � 2.cdefect Ccvar/. Here n � 17k`C1C

2ı suffices. This is the largest bound on n of the proof.

Concerning the systems of equations, we get:

Step (7): The coefficients of the equations are all equal to k.

Step (7): The absolute values of the right-hand sides of the equations are bounded

by max.k.cdefect C cvar/; jA?? n A?j/ D k.cdefect C cvar/ � 9k`C2 C kı.

Step (8): The number of variables in each system of equations is cvar � 7k`C1Cı.

Step (8): The left-hand side of any equation is of the form
P

j kfj , where the sum

runs over a subset of ¹1; : : : ; cvarº; thus we may suppose that each system of

equation consists of at most 2cvar � 27k
`C1Cı equations.

Hence, we can apply Lemma 7 and Corollary 8 to obtain the following.
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Proposition 11. There exists a constant c such that the following holds true. Suppose

that k; `; ı are integers such that there exists some n, co-prime to k, satisfyingD.Z`
k
˚

Zn/ > ı C kn. Denote by N the set of these n, and let n1 be minimum of N .

Then we have n1 � 22
c.k`C1Cı/

. Moreover, if N is infinite, then we have n1 �

6`.7k`C1 C ı/ log kı.

Proof. Using the estimates above and Lemma 7, in the case that N is finite, we obtain

the bound

n1 � .9k`C2 C kı/2p
�

27k`C1Cı � .7k`C1Cı/ � logk
�

� 22
c.k`C1Cı/

;

and our claim follows in this case. If N is infinite, we additionally use Corollary 8 to

find that the systems of linear equations are solvable for an n 2 Œz; 2z�, provided that

z � max.z0; 21/, where

z0 � 1
log2

cvar log.cvark/

� 1
log2

.7k`C1 C ı/ log.7k`C2 C ık/

� 3`.7k`C1 C ı/ log kı;

where we used the fact that we may suppose ` � 3, ı � 2. Hence, n1 � 2z0. To be

sure to get an element of N in Œz; 2z�, we moreover need z � 17k`C1 C 2ı, which

is less than the bound just computed. Thus there exists some n 2 N which is at most

two times our bound; this was our claim.

Note that the smallest case of interest would be k D 4; ` D 3; ı D 6, that is,

checking D.Z24 ˚ Z4n/ D 4n C 6 for all odd n up to 3375 would imply that this

equation has only finitely many counter-examples. Unfortunately, even the case n D 3

has not yet been decided, although it is within reach of modern computers.

4 Proof of Theorem 5

In this section we prove that B.n/ implies D.Z3 ˚ Z23n/ D 6nC 1 if n is co-prime

to 6. We suggest that before reading the following lemmas, the reader goes directly to

the main proof and starts reading it to get the main idea.

4.1 Lemmas Needed in the Proof

Lemma 12. Among 17 arbitrary elements in Z33 there is a zero-sum of length at most

3, and among nine distinct elements there is a zero-sum of length at most 3. Moreover,

up to linear equivalence, there is precisely one set of eight distinct elements without

zero-sums of length at most 3, which is given as ¹x; y; z; xC y; xC y C z; xC 2y C

z; 2x C z; y C 2zº.
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Proof. The second part is [4, Lemma 1 (ii)], the first part is folklore (and follows

immediately from the second part).

Lemma 13. Suppose that n � 5 is an integer having property B , and B is a subset of

Z2n with either 2n� 3 or 2n� 4 points. Then, with one exception, there always exists

a group homomorphism F W Z2n ! Zn such that:

(1) In the case jBj D 2n � 3: For any c with B [ ¹cº zero-sum free, we have

F.c/ D 1.

(2) In the case jBj D 2n � 4: For any c1; c2 with B [ ¹c1; c2º zero-sum free, we

have F.ci / 2 ¹0; 1º, and at least one of F.c1/ and F.c2/ is equal to 1.

The exception is B D ¹bn�2
1 ; bn�2

2 º, where b1 and b2 generate Z2n.

Proof. Every completion of B to a zero-sum free set contains an element b with mul-

tiplicity n�2 or n�1 such that all other elements of the completion are contained in a

co-set of hbi which is a generator of Z2n=hbi. We will call an element of B important

if it could get such an element after completion; i.e., an element b 2 B is important if

its multiplicity is at least n� 3 in the first case or n� 4 in the second case, if its order

is n and if all other elements of B are contained in a co-set of hbi which is a generator

of Z2n=hbi. We may suppose that B contains at least one important element. We will

do case distinctions between the different possibilities for the important elements of

B . But before we start, let us have a closer look at what can happen if B contains two

different important elements, say b1 and b2.

First note that these two elements generate Z2n, as (by the importance of b1) b2
lies in a co-set of hb1i generating Z2n=hb1i. Now b2 determines the co-set of hb1i

and vice versa, so all elements of B other than b1 and b2 lie in both b2 C hb1i and

b1 C hb2i; we get B D ¹b
m1

1 ; b
m2

2 ; .b1 C b2/
jBj�m1�m2º. In particular, B contains

no third important element.

First consider the case jBj D 2n � 3. We distinguish the following cases:

� B contains only one important element b. Then the other elements of B define

a co-set L of hbi, and all elements c completing B either are equal to b or lie in

L. If b has multiplicity n � 1, then c D b is impossible, so choose F such that

F.L/ D 1. If b has multiplicity n�2, then there are only two possibilities for c:

c D b and one other possibility on L (such that the sum of c and the elements

of B \ L is equal to b). Choose F to be 1 on these two possibilities. If b has

multiplicity n � 3, then only c D b is possible.

In the remaining cases, B contains two important elements, so B D ¹b
m1

1 ; b
m2

2 ; .b1C

b2/
m3º for some m1; m2; m3 satisfying and m1 C m2 C m3 D 2n � 3. We may

suppose m1 � m2.

� m1 D n � 1: All completions of B lie in b2 C hb1i.
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� m1 D m2 D n � 2, m3 D 1: There are two possible completions: c D b1 and

c D b2.

� m1 D n�2,m2 D n�3,m3 D 2: There are two possible completions: c D b1
and c D b2 � b1.

� m1 D m2 D n � 3, m3 D 3: There is no possible completion.

Now consider the case jBj D 2n � 4. We distinguish the following cases:

� B contains only one important element b. Then the other elements of B define

a co-set L of hbi, and for all completions ¹c1; c2º, both ci lie in L [ ¹bº. If the

multiplicity of b in B is n� 1 or n� 2, we can take F to be the function which

is 1 on L (and 0 on b). Otherwise at least one of the ci is equal to b and the

other one either es equal to b, too, or it lies on L and is determined by B . So a

function F exists.

Again, in the remaining cases B D ¹b
m1

1 ; b
m2

2 ; .b1 C b2/
m3º with m1 � m2 and

m1 Cm2 Cm3 D 2n � 4.

� m1 D m2 D n � 2, m3 D 0: This is the exception mentioned in the statement

of the lemma.

� m1 D n � 2, m2 � n � 3: There are three types of completions: c1 D b1 and

c2 2 b2 C hb1i; c1 D c2 D b2; both ci lie in b2 C hb1i with some condition

on c1 C c2. (Note that in the case m2 D n � 3, we have m3 D 1 and c1 D b2
implies c2 D b1.) So the function F which maps b2 C hb1i to 1 does the job.

� m1 D m2 D n � 3, m3 D 2: There are four possible completions: ¹b21º, ¹b22º,

¹b1; b2 � b1º and ¹b2; b1 � b2º. Take F to map b1 and b2 to 1.

� m1 D n � 3, n2 D n � 4, m3 D 3: There are two possible completions: ¹b21º

and ¹b1; b2 � 2b1º. (Note that ¹b22º does not work.) Take F to map b1 and

b2 � 2b1 to 1.

� m1 D m2 D n � 4, m3 D 4: No completion is possible.

We will need the following refined version of part 2 of Lemma 13:

Lemma 14. Suppose that n � 5 is an odd integer having property B . Suppose further

that B is a subset of Z2n with 2n � 4 points. Let C be the set of two-element-sets

¹c1; c2º � Z2n such that B [ ¹c1; c2º is zero-sum free. Then, up to an automorphism

of Z2n, C is a subset of one of the following sets:

(1) C1 D
®

¹.x1; 1/; .x2; 1/º W x1; x2 2 Zn
¯

.

(2) C2 D C 0
2 [ C 00

2 with C 0
2 D

®

¹.1; 0/; .x; 1/º; ¹.x; 1/; .1 � x; 1/º W x 2 Zn
¯

and

C 00
2 D

®

¹.0; 1/; .1; y/º; ¹.1; y/; .1; 1 � y/º W y 2 Zn
¯

.

(3) C3 D C 0
3 [ C 00

3 with C 0
3 D

®

¹.1; 0/2º; ¹.1; 0/; .�1; 1/º
¯

and

C 00
3 D

®

¹.0; 1/2º; ¹.0; 1/; .1;�1/º
¯

.
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Proof. As in the proof of Lemma 13, we consider the different possibilities for the

important elements. If B contains only one important element, we can suppose that

it is .1; 0/ and that the other elements of B have y-coordinate one; we denote the

multiplicity of .1; 0/ by m1. If there are two important elements, we suppose that

B D ¹.1; 0/m1 ; .0; 1/m2 ; .1; 1/m3º with m1 � m2.

� One important element, m1 D n � 1: C D C1.

� One important element, m1 D n � 2: apply an automorphism of Z2n fixing

.1; 0/ and mapping the sum of those n� 2 elements of B with y-coordinate one

to .0;�2/. Then C D C 0
2 � C2.

� One important element, m1 D n � 3: apply an automorphism fixing .1; 0/ and

mapping the sum of those n�1 elements of B with y-coordinate one to .2;�1/.

Then C D C 0
3 � C3.

� One important element, m1 D n � 4: C D
®

¹.1; 0/2º
¯

� C3.

� Two important elements, m1 D m2 D n � 2;m3 D 0: C D C2.

� Two important elements, m1 D n� 2;m2 D n� 3;m3 D 1: apply an automor-

phism fixing .1; 0/ and mapping .0; 1/ to .1
2
; 1/. Then C D C 0

2 � C2.

� Two important elements, m1 D n� 2;m2 D n� 4;m3 D 2: apply an automor-

phism fixing .1; 0/ and mapping .0; 1/ to .1; 1/. Then C D C 0
2 � C2.

� Two important elements, m1 D m2 D n � 3;m3 D 2: C D C3.

� Two important elements, m1 D n� 3;m2 D n� 4;m3 D 3: apply an automor-

phism fixing .1; 0/ and mapping .0; 1/ to .1; 1/. Then C D C 0
3 � C3.

� Two important elements, m1 D m2 D n � 4;m3 D 4: C D ;.

In addition, we will need the following two lemmas:

Lemma 15. Suppose n is an integer co-prime to 6 and A � Z33 has ten elements.

Suppose further that A has no zero-sum of length � 3 and A has no two disjoint zero-

sums. Then there is no multi-function g W A ! Zn (i.e., function which may take

different values on different copies of an element a 2 A) such that for every zero-sum

Z � A we have
P

z2Z g.z/ D 1.

Proof. If we would require g to be a real (i.e., single-valued) function, then this would

be [4, Theorem 1]. So the only thing we have to check is that the existence of a multi-

function g implies the existence of a real function g0 with the same properties.

Define g0 by taking for g0.a/ the mean value of the values of g.a/. Note first that

the maximal multiplicity of points in A is 2 (as A does not contain a zero-sum of

length 3), so g can have at most two values at any point. In particular the mean value

makes sense (because 2 − n).
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Now consider any point a where g has two different values. The modification does

not change
P

z2Z g.z/ if Z does not contain a or if Z contains both copies of a.

However, no zero-sumZ can contain only one copy of a, for otherwise, we would get

two different values for
P

z2Z g.z/, which contradicts
P

z2Z g.z/ D 1.

Lemma 16. Suppose n is an integer co-prime to 6, A � Z33 has thirteen elements,

and f W A ! Z2n is a multi-function. Suppose further that A has no zero-sum of

length � 3 and A has no three disjoint zero-sums. Let C be the set of two-element-

sets ¹
P

z2Z1
f .z/;

P

z2Z2
f .z/º, where Z1 and Z2 are two disjoint zero-sums in A.

Then C is not a subset of any of the three sets C1, C2 or C3 of Lemma 14.

Proof. This has been verified by our computer. For details on how this has been done

see Section 5.

Note that concerning C1, this is just an unnecessarily complicated way of saying

that there is no function g W A ! Zn which sends to 1 any zero-sum of A which is

disjoint to another zero-sum.

4.2 The Proof Itself

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Suppose n is co-prime to 6, B.n/ holds true, G D Z3 ˚ Z23n,

and A � G is a multi-set of M.G/ D 6n C 1 elements. Suppose A contains no

zero-sum. We have to get to a contradiction.

Let A be the projection of A onto Z33, and let f W A ! Z2n be the multi-function

such that .a; f .a// is the preimage of a 2 Z33 in A under the projection.

We remove zero-sums of length � 3 from A as long as possible, ending in a set

A
�

with less than 17 points (by Lemma 12). Denote by B the multi-set in Z2n cor-

responding to the removed zero-sums: for each removed zero-sum Z � A, put the

element
P

z2Z f .z/ into B . As A is zero-sum free, so is B . The strategy in the

remainder of the proof is to consider zero-sums Z 2 A
�

and their corresponding el-

ements c D
P

z2Z f .z/ in Z2n. If we find such a c such that B [ ¹cº does contain

a zero-sum, we have our desired contradiction. When using this strategy, we may

assume that while passing from A to A
�

we never removed zero-sums of length < 3;

otherwise A
�

only gets bigger and the proof gets easier.

Hence jA
�
j has the form 3i C 1 and jBj D 2n� i . As B has no zero-sum, we have

jBj � 2n � 2, so i � 2 and jA
�
j � 7. If jA

�
j D 7, then A

�
itself still contains a

zero-sum, so this is not possible either. Therefore A
�

consists of 10, 13 or 16 points.

Suppose first that we end with jA
�
j D 16. Then we have 16 points without a

zero-sum of length � 3. As nine distinct points would contain such a zero-sum (by

Lemma 12) there are precisely eight points taken twice. Since the only configuration

of eight distinct points without a zero-sum of length 3 is the one given in Lemma 12,

we find that A
�

equals this set with each point taken twice. But this set contains four
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disjoint zero-sums: ¹x; y; .x C y/2º, ¹x; z2; 2x C zº, ¹y; x C y C z; .x C 2y C z/2º

and ¹xCyCz; 2xCz; .yC2z/2º. So we can enlarge B to a set with 2n�1 elements,

which is a contradiction.

Next, suppose that jA
�
j D 10. Then B consists of 2n � 3 points in Z2n, and each

zero-sum Z in A
�

yields an element c D
P

z2Z f .z/ of Z2n such that B [ ¹cº is

zero-sum free. Since n satisfies property B (and is � 5), we can apply Lemma 13 and

obtain a linear function F W Z2n ! Zn such that for every c as above F.c/ D 1. But

now g WD F ı f is a contradiction to Lemma 15.

Finally, consider the case jA
�
j D 13. Then B consists of 2n � 4 points in Z2n.

We check that A
�

and f contradict Lemma 16. It is clear that A
�

does not contain a

zero-sum of length � 3 and that A
�

does not contain three disjoint zero-sums.

Denote by C the set of two-element-sets ¹
P

z2Z1
f .z/;

P

z2Z2
f .z/º, where Z1

and Z2 are two disjoint zero-sums in A
�

. Each ¹c1; c2º 2 C completes B to a zero-

sum free subset of Z2n, so by Lemma 14, C is a subset of one of the three sets Ci
mentioned in that lemma. This is exactly what we need to get a contradiction to

Lemma 16.

5 Computer Proof of Lemma 16

Recall the statement of the lemma: we are given an integer n co-prime to 6, a set

A � Z33 consisting of 13 elements, and a multi-function f W A ! Z2n. We suppose

that A has no zero-sum of length � 3 and no three disjoint zero-sums. We let C be

the set of two-element-sets ¹
P

z2Z1
f .z/;

P

z2Z2
f .z/º, where Z1 and Z2 are two

disjoint zero-sums in A. The statement is that C is not a subset of any of the three sets

C1, C2 or C3 of Lemma 14:

C1 D
®

¹.x1; 1/; .x2; 1/º W x1; x2 2 Zn
¯

;

C2 D
®

¹.1; 0/; .x; 1/º; ¹.x; 1/; .1 � x; 1/º W x 2 Zn
¯

[
®

¹.0; 1/; .1; y/º; ¹.1; y/; .1; 1 � y/º W y 2 Zn
¯

;

C3 D
®

¹.1; 0/2º; ¹.1; 0/; .�1; 1/º; ¹.0; 1/2º; ¹.0; 1/; .1;�1/º
¯

:

The program is divided into two parts. First find all possible multi-sets A (up to

automorphism of Z23), regardless of the function f , and then, for each fixed set A and

each i 2 ¹1; 2; 3º, find all possible functions f W A ! Z2n such that C � Ci . If no

such f is found, then the lemma is proven.

5.1 Finding All Multi-Sets A

The program recursively tries every possibility for A by starting with an empty set

and successively adding elements. After adding an element, it checks right away if A

still fulfils the above conditions before adding more elements.
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To save some time, symmetry is exploited a bit. For example, if A contains exactly

two elements of multiplicity 2, then we can suppose that A contains .1; 0; 0/ and

.0; 1; 0/ with multiplicity 2 and .0; 0; 1/ with multiplicity 1.

As we do not exploit symmetry completely (this would be too complicated), the

program finds a lot of solutions which are the same up to automorphism, so we need

an algorithm to check whether there is an automorphism turning one multi-set into

another one. It turns out that all solutions A do contain a basis of Z23 of elements of

order two, so it is enough to try those automorphisms which map this basis of one of

the sets to elements of order two of the other set.

The program finds the following 15 multi-sets. The three 3 � 3-grids represent the

three planes of the cube Z33; the element .0; 0; 0/ is the lower left corner of the left-

most plane. The numbers in the grids indicate the multiplicity of that element; empty

squares mean that the element is not contained in the set.

2
2

1 2

2

2 2
2
2

2 2

2

1 2 1
2
2

2

2

2 2

1
2
2

2 2

2

2 2
2
2

2

2

1 2 2
2
2

1

2

2 2

2
2
2

2

2

2 1 2
2
2

1 2

2

2 2
2
2

2 2

2

1

2
2

2

2

2 2
1 2 1

2

2 2
1

2

1
2 2
2

2 2

2

1

2 2
2

1 2
1

2

1
2 2
2

1 1
2

2

1 2
2
2

2 2
1

2

5.2 Finding All Functions f W A ! Z
2
n

Now fix a set A as above and fix C WD C1, C WD C2 or C WD C3. We have to check

that there is no function f W A ! Z2n such that for any pair of disjoint zero-sums Z1
and Z2 in A, the pair ¹

P

z2Z1
f .z/;

P

z2Z2
f .z/º is contained in C .

This can be reformulated as follows. From A, we define the following graph G D

.V;E/: the vertices V are the zero-sums Z � A such that there does exist a second

zero-sumZ0 � Awhich is disjoint fromZ, and the edgesE are the pairsZ1; Z2 2 V

which are disjoint. The set C defines another graph G0 D .V 0; E 0/: V 0 consists of all

elements which appear in some pair inC , andE 0 D C , i.e., the edges are just the pairs

contained in C . Any function f W A ! Z2n satisfying the above condition defines a

graph homomorphism � W G ! G0, and a graph homomorphism � W G ! G0 yields

a function f if and only if the following system of linear equations L� has a solution

in Zn: we have two variables xi and yi (i 2 ¹1; : : : ; 13º) for the two coordinates of
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each f .ai /; ai 2 A, and for each vertex zero-sum Z D ¹ai1 ; : : : ; aik º 2 V we have

the two equations given by
Pk
jD1 f .aij / D �.Z/.

The idea of the algorithm is to try every graph homomorphism � and to check that

the corresponding system of linear equations L� has no solution for any n co-prime

to 6. But before we can do that, we have to replace G0 by a simpler graph G00; in

particular, we need G00 to be independent of n.

To simplify G0, we merge some of the points which differ only in one coordinate.

Then f also defines a graph homomorphism W G ! G00, but does not completely

determine � W G ! G0. In particular, if we only know  (and not �), we only get a

subset L of the equations L� . We do not ensure that these equations L are enough

to prove the existence of f ; we only need that if the equations have no solution, then

no f exists.

In the case of C1, the graph homomorphism argument is overkill (as already noted

directly after Lemma 14), but let us formulate it anyway so that we can treat all three

cases similarly.

� Case C3: No simplification necessary; G00 D G0.

� CaseC1: Merge all points ofG0 to one single point inG00 with a loop edge. Each

zero-sum Z 2 V mapped to that point (i.e., all Z 2 V ) yields one equation in

L saying that the sum of the y-coordinates is equal to one.

� Case C2: Merge all points .1; y/ for y � 2 into one point and all points .x; 1/

for x � 2 into one point. So G00 looks like this:

.1;� 2/

.0; 1/ .1; 1/ .� 2; 1/

.1; 0/

Zero-sums which get mapped to .1; 0/, .0; 1/ or .1; 1/ still yield two equations

in L . Zero-sums which get mapped to .1;� 2/ or .� 2; 1/ yield only one

equation saying that the sum of the x-coordinates resp. y-coordinates is equal

to 1. In addition, we get equations for each edge which is mapped to the loop at

.1;� 2/ (and, analogously, at .� 2; 1/): if .1; y1/ and .1; y2/ were connected

in G0, then y1 C y2 D 1. So if Z1; Z2 2 V are connected and are both mapped

to .1;� 2/, then the sum of the y-coordinates of all points in Z1 [ Z2 is equal

to 1.

Now our graph G00 is of reasonable size and we can iterate through every possible

homomorphism  W G ! G00. This is done by recursively fixing images  .Z/ for

zero-sums Z 2 V . After an image is fixed, the algorithm first checks whether the

equations we already have do already yield a contradiction before going on.
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The only thing left to describe is how to check whether a system of linear equations

has no solution in Zn for any n co-prime to 6. This could be done using the Smith

normal form as in the proof of Lemma 7, but this would probably be too slow. Instead,

we use the following method, which proves in sufficiently many cases that no solution

exists. (Note that we do not need an if-and-only-if algorithm.)

We apply Gaussian elimination over Z to our system of equations and then consider

only the equations of the form “a D 0” for a ¤ 0 which we get. Each such equation

is interpreted as a condition on n, namely “n divides a”. If, taking all these equations

together, we get that n has only prime factors 2 and 3, then we have a contradiction.

The algorithm takes about one second in the case C1, 70 minutes in the case C2,

and 5 minutes in the case C3 (for all 15 sets A together).

One more practical remark: When recursively trying all possible maps  W G !

G00, we use a slightly intelligent method to choose which  .Z/ to fix next: if there is

a Z 2 V for which there is only one possible image left, we take that one; otherwise,

we take a Z 2 V with maximal degree.
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