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Abstract

We prove that for all but a certain number of abelian groups of order n the Davenport constant
is at most n

k + k − 1 for positive integers k ≤ 7. For groups of rank three we improve on the
existing bound involving the Alon-Dubiner constant.

1. Introduction

Let G be an abelian group of order n. A sequence of elements (not necessarily distinct) of
G is called a zero sum sequence of G if the sum of its components is 0. The zero-sum constant
ZS(G) of G is defined to be the smallest integer t such that every sequence of length t of G

contains a zero-sum subsequence of length n, while the Davenport constant D(G) is the smallest
integer d such that every sequence of length d of G contains a zero-sum subsequence.

The study of the zero-sum constant dates back to the Erdös-Ginzburg-Ziv theorem of 1961
[EGZ]. On the other hand Davenport in 1966 introduced D(G) as the maximum possible number
of prime ideals (with multiplicity) in the prime ideal decomposition of an irreducible element
of the ring of integers of an algebraic number field whose ideal class group is G. More recently,
Gao [G] proved that these two constants are closely related, i.e., ZS(G) = |G| + D(G) − 1. It
is thus enough to study any one of these constants.

Apart from their interest in zero sum problems of additive number theory and non-unique
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factorisations in algebraic number theory, these constants play an important role in graph
theory (see, e.g., [Ch]). However their determination is still an open problem.

We consider the cyclic decomposition of a group of rank r, i.e., G ∼ Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdr ,
where di divides di+1 . It is clear that M(G) = 1 +

∑r
i=1(di − 1) is a lower bound for D(G).

It was proved that D(G) = M(G) for p groups and for groups of rank 1 or 2, independently
by Olson [O] and Kruswijk [B1] and the equality is also known to hold for several other groups.
Olson and Baayen both conjectured that the equality holds for all finite abelian groups. The
conjecture however turned out to be false. Geroldinger and Schneider [GS] in 1992 in fact
showed that for all groups of rank greater than 3, there exist infinitely many cases where
D(G) > M(G).

As far as upper bounds are concerned, the Erdös-Ginzburg-Ziv theorem that asserts that for
a finite abelian group of order n, ZS(G) ≤ 2n− 1 [EGZ] has been improved. Alon, Bialostocki
and Caro [cited in OQ] proved that ZS(G) ≤ 3n/2 if G is non-cyclic. Caro improved this
bound to ZS(G) ≤ 4n/3 + 1 if G is neither cyclic nor of the form Z2 ⊕ Z2t. On excluding
Z3 ⊕ Z3t as well, Ordaz and Quiroz [OQ] tightened the bound to 5n/4 + 2. It is easy to see
that though it is true for k = 1, 2, 3 and 4 ; for a general positive integer k we cannot say that
D(G) ≤ n

k + (k − 1) whenever G is not of the form Zu ⊕ Zut, u < k.

On the other hand, Alford, Granville and Pomerance [AGP] in 1994 used the bound D(G) ≤
m(1+log n

m ), where m is the exponent of G, to prove the existence of infinitely many Carmichael
numbers.

In this paper, we combine the two types of upper bounds to prove that

Theorem. If G is an abelian group of order n and exponent m, then for k ≤ 7, its Davenport
constant D(G) ≤ n

k + (k − 1) whenever n
m ≥ k .

Thus when the ratio n
m is small, we get an improvement on the [AGP] bound.

We expect the above result to be true for all k ≤
√

n.

To study the Davenport constant, it is sometimes useful to use another constant Ds(G)
which is the smallest integer t such that every sequence of G with length t contains a zero sum
subsequence of length atmost s.

Olson calculated Dp(Zp ⊕ Zp) for a prime number p and used it to determine D(G) for the
rank 2 case. As yet, no precise result is known for Dp(Zr

p) for r ≥ 3. But Alon and Dubiner
[AD] proved a remarkable bound in 1995, i.e., Dp(Zr

p) ≤ c(r)p. In fact c(r) can be taken to
be (cr log r)rwhere c is an absolute constant. Dimitrov [D] used the Alon Dubiner constant
to prove that D(G) ≤ M(G)(Kr log r)r for an absolute constant K. In the general case we
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have only a slight improvement of Dimitrov’s result. It is for the rank 3 case that our result is
interesting.

Theorem. If G ∼ Za1 ⊕ Za1a2 ⊕ Za1a2a3 , we have

D(G) ≤ M(G)(1 +
K

a2a3
),

where K is a constant of the same order of magnitude as that obtained by Alon-Dubiner.

At the end we give an elementary proof of a result of Alon Dubiner that helped them obtain
the bound for Dp(Zr

p).

2. A General Bound

We first prove a lemma which would help us find bounds for the Davenport constant when
reasonable bounds can be found for Ds(G) and when D(Z3

s) can be calculated, for example
when s is a power of a prime.

Lemma 1. Let Ds(Z3
s) ≤ A , u = [ A−s

D(Z3
s) ], and let

h = ha,b =

{
D(Za ⊕ Zab), a '= 1

D(Zb) , a = 1.

Then, if h ≥ u + 1,
D(Zs ⊕ Zsa ⊕ Zsab) ≤ B(ha,b),

where B(ha,b) = (ha,b − u − 1)s + A.

Proof. Let S be a set of B(h) elements of Zs ⊕ Zsa ⊕ Zsab . Every sequence of length
atleast Ds(Zs ⊕ Zs ⊕ Zs) contains a zero sum subsequence of length atmost s. Thus B(h)
contains one zero sum subsequence of length atmost s. On removing this zero sum sequence,
we would still have more than Ds(Z3

s) elements left in B(h). Thus there exist disjoint subsets
A1, A2, · · ·Ah−u−1 in S such that |Aj | ≤ s and the sum of the elements of Aj is (0, 0, 0) in Z3

s.

If these sets are removed from B(h), we still have more than B(h) − (h − u − 1)s ≥ Ds(Z3
s)

elements from which we can extract another subset Ah−u disjoint from the others of length ≤ s

and still of sum (0, 0, 0) in Ds(Z3
s). Now

B(h) − (h − u)s ≥ A − s ≥ uD(Z3
p).

So we can extract u more subsets Ah−u+1, · · · , Ah disjoint from the rest the sum of whose
elements is still zero in Z3

s.
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Thus we have h disjoint subsets whose sum in Z3
s is (0, 0, 0), i.e., the sum is of the form

(ajs, bjs, cjs) . Suppose that a '= 1 and for j ≤ h let Cj = (bj , cj). Now ajs is 0 in Zs and
since we have taken the sum over h sets, there exists a subcollection of Cj whose sum is (0, 0)
in Za ⊕ Zab. The corresponding subcollection of Aj will suit our purpose in Zs ⊕ Zsa ⊕ Zsab.

If a = 1, we take Cj = (cj) and proceed as before. !

To get precise bounds it is often necessary to actually evaluate D(Z3
s) or at least find rea-

sonable bounds. This is possible for small values of s as follows :

Lemma 2. We have,

Ds( Zs ⊕ Zs ⊕ Zs) =






8, s = 2
17, s = 3
22, s = 4.

Proof. The first two assertions can be verified directly. We notice that any 9 distinct elements
in Z3

3 contain a zero sum subsequence. The third follows essentially from Harborth [H].

!

Sometimes we cannot find an effective bound for D(Z3
s) but we might be able to use the

following weaker bound which can be proved in the same way as Lemma 1.

Lemma 3. We have D(Zr−1
sa ⊕ Zsat) ≤ D(Zr

sa)t.

Theorem 1. If G is an abelian group of order n and exponent m, then for every positive
integer k ≤ 7, its Davenport constant D(G) is atmost n

k + (k − 1) whenever n
m ≥ k .

Proof. We notice that the exceptions to the bounds stated in the theorems of Erdös-Ginzburg-
Ziv [EGZ], Alon-Bialostocki-Caro [ABC], Caro [C] and Ordaz-Quiroz [OZ] can be reformulated
as the cases where n

m ≥ k to assert our result for k = 1, 2, 3 and 4, respectively.

It is known [AGP] that
D(G) ≤ m(1 + log

n

m
)

and the condition m(1 + log n
m ) ≤ n

k + k − 1 is satisfied whenever n
m ≥ 31 for k = 7. Thus it

suffices to examine the groups where n
m ≤ 31 .

Case 1 : rank(G) ≥ 5.

We notice that for a group of rank greater than 5, n
m is always greater than 31. Let

G ∼ Za1 ⊕ Za1a2 ⊕ Za1a2a3 ⊕ Za1a2a3a4 ⊕ Za1a2a3a4a5 .

Here n = a5
1a

4
2a

3
3a

2
4a5, and m = a1a2a3a4a5. Since a1 ≥ 2, n

m ≤ 31 only when a1 = 2, a2 =



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A03 5

a3 = a4 = 1. Now, a result of [OQ] says that for any abelian group K,

D(Z2 ⊕ Z2 ⊕ Z2 ⊕ K) ≤ 2D(K) + 3.

Taking K to be Z2 ⊕ Z2t, we get D(G) ≤ 4t + 5 ≤ 32
k t + k − 1 for k = 5, 6, 7.

Case 2 : rank(G) = 4.

The condition n
m = a3

1a
2
2a3 < 31 is satisfied only by groups of rank 4 of the form

G1 ∼ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2t,

G2 ∼ Z2 ⊕ Z2 ⊕ Z4 ⊕ Z4t,

G3 ∼ Z2 ⊕ Z2 ⊕ Z6 ⊕ Z6t,

and
G4 ∼ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3t.

However, the first case satisfies the stronger condition of the Baayen-Olson conjecture, i.e.,
D(G) = M(G). This was proved for odd t [B2]. For even t it follows from the fact that in this
case

G1 = H ⊕ Zpku,

H being a p-group and pk ≥ M(H), a case that satisfies the BO conjecture [vE].

For G2 we split it as a sum of two groups H and K and use the estimate (see eg [C]),

D(H + K) ≤ (D(H) − 1)|K| + D(K).

We take H to be Z2⊕Z4⊕Z4t. Then D(H) = M(H) (see [vE]). Thus D(G2) ≤ 8t+8 which
is less than n

k + k − 1 for all t when k = 5 and for t > 1 when k = 6, 7. But for t = 1 we have a
p-group.

The same argument works for G3. For G4 we use Lemma 3 and get

D(G4) ≤ 9t ≤ 81
7

t + 6

for k = 7. Since n
m = 27 the inequality is already satisfied by the AGP bound for k = 5, 6.

Case 3 : rank(G) = 3.

Since a2
1a2 ≥ 31 ensures that D(G) ≤ n

k + k − 1, and n
m ≥ k we are left with the cases

G5 ∼ Z2 ⊕ Z2u ⊕ Z2ut, 1 < u < 8 , G6 ∼ Z3 ⊕ Z3v ⊕ Z3vt, v = 1, 2, 3 ; G7 ∼ Z4 ⊕ Z4 ⊕ Z4t and
G8 ∼ Z5 ⊕ Z5 ⊕ Z5t.
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Now G5 satisfies the BO conjecture. This follows from the fact that u has no prime divisor
greater than 11, which is a sufficient condition from a result of van Emde Boas [vE].

With s = 3, a = 1, b = t in Lemmas 1 and 2, we obtain, for k = 5 or 6 that

D(Z3 ⊕ Z3 ⊕ Z3t) ≤ 3t + 8 ≤ 27
k

t + k − 1,

whenever t ≥ 2.

When t = 1, we have a p-group and the BO conjecture is satisfied.

For k = 7 we know that for Z3 ⊕ Z3 ⊕ Z6 the BO condition is realized [vEK] and we are
within the claimed bound. The same is true for the cases v = 2, 3 in G6 [vE]. For G7 we use
Lemmas 1 and 2 with s = 4, a = 1, b = t to obtain

D(G7) ≤ 4t + 27 ≤ 64
7

t + 6

for t > 4, k = 7. Lemma 3 gives the desired bound for k = 5 or 6 , t ≤ 3, k = 7 in G7 as well as
for all cases of G8.

Case 4 : rank(G) = 2.

It is well known that D(G) = a1 + a1a2 − 1 and the inequation

a1 + a1a2 − 1 ≤ a2
1a2

k
+ k − 1

is always true for a1 = n
m ≥ k. !

Remark. This bound is tight, since D(Zk ⊕ Zkt) = kt + k − 1.

Conjecture. We believe that Theorem 1 is true for all k ≤
√

n. Notice that this is a weaker
claim than the Narkiewicz-Śliwa conjecture that D(G) ≤ M(G) + r − 1 for a group of rank r.

3. Rank 3 Case

We now use the Alon-Dubiner theorem for improving the existing bound for the Davenport
constant when the rank of the group is 3 which is [D]

D(G) ≤ K3M(G),

where K3 is a constant of the same order of magnitude as that of Alon-Dubiner, and M(G) =
a1a2a3 + a1a2 + a1 − 2. Our method also gives a minor improvement for the higher rank cases.
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We state a Lemma which can be seen as a generalisation of Olson’s result for the rank 2
case.

Lemma 5. Let d be a divisor of a and let

h =






D(Za/d ⊕ Zab/d ⊕ Zabc/d) , a '= d

D(Zb ⊕ Zbc) , a = p, b '= 1

D(Zc) , a = d, b = 1, c '= 1.

Then
D(Za ⊕ Zab ⊕ Zabc) ≤ B(h),

where B(h) = (h − u − 1)d + A, and A and u are as defined in Lemma 1.

Proof. Same as that of Lemma 1. !

Theorem 2. Let G ∼ Za1 ⊕ Za1a2 ⊕ Za1a2a3 . Then

D(G) ≤ a1a2a3 + a1a2 + Ka1,

where K is a constant of the same order of magnitude as that of Alon-Dubiner.

Proof. We use Lemma 3 above and the Alon Dubiner bound,

Dp(Zp
r) ≤ c(r)p,

where c(r) is a constant. In particular, for r = 3, we write Dp(Zp
3) ≤ (K +3)p with (K +3)p ≥

7p − 4. Thus hp + Kp ≥ hp + 4p − 4.

For fixed a2, a3 we write h(a1) = D(Za1 ⊕ Za1a2 ⊕ Za1a2a3).

Using Lemma 3 we see that if p divides a1,

h(a1) ≤ h((a1/p) + K)p.

Let a1 = p1p2 · · · pt with pi ≥ pi+1. Thus

h(p1p2 · · · pt) ≤ h((p2 · · · pt) + K)p.

Repeating the above process we get

h(a1) ≤ a1h(1) + K(p1p2 · · · pt + p1p2 · · · pt−1 + · · · + p1)

But

p1p2 · · · pt + p1p2 · · · pt−1 + · · · + p1 = a1(1 +
1
pt

+
1

ptpt−1
+ · · · + 1

ptpt−1 · · · p2
) ≤ 2a1.
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This gives D(Za1 ⊕ Za1a2 ⊕ Za1a2a3) ≤ a1D(Za2 ⊕ Za2a3) + 2Ka1, i.e.,

D(Za1 ⊕ Za1a2 ⊕ Za1a2a3) ≤ a1a2a3 + a1a2 + (2K − 1)a1.

!

Remark. For the case of a general r we get D(G) ≤ M(G)(1 + Kr
ar−1ar

) and the improvement
from the existing bound comes into the picture only when ar−1 and ar are large.

The proof of Theorem 2 uses an inequality of [Proposition 2.4,AD]. Here we give a slightly
improved constant for the inequality. The proof goes along the same lines as [AD] but uses no
graph theory. We include it here for the sake of completion.

Theorem 3. Let A be a subset of Zd
p such that no hyperplane contains more than | A | /4W

elements of A. Then for all subsets Y of Zd
p containing at most pd/2 elements, there is an

element a ∈ A such that
| (a + Y )\Y | ≥ W

5p
| Y | .

Proof. If possible, let there exist no such a. Then L(a) = |(a + Y )\Y | ≤ W
5p |Y | for all a ∈ A.

Since L(ja) ≤ jL(a), we get L(ja) ≤ jW
5p | Y | for all j ≤ p/W .

This gives

M(ja) = L(ja) + L(−ja) ≤ 2jW
5p

| Y | .

Let J = [ p
W ]. Then

S =
∑

a

∑

1≤j≤J

M(ja) ≤ J(J + 1)
W

5p
|Y ||A|.

On the other hand we shall get a lower bound for S. For any b define

T (b) =
1
|G|

∑

x

(1 − lb̄.x̄)|
∑

y

lx̄.ȳ|2,

where for notational convenience we write l for e
2iπ
p and G for the group Zd

p.

Then
T (b) =

1
|G|

∑

x

(1 − lb̄.x̄)
∑

y1,y2

lx̄.(ȳ1−ȳ2).

=
1
|G|

∑

y1,y2

(
∑

x

lx̄.(ȳ1−ȳ2) −
∑

x

lx̄.(ȳ1−ȳ2−b̄)).
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= B − D.

Clearly B = |Y | and D is the number of solutions of the equation ȳ1 − ȳ2 = b̄ which is the
same as (b + Y ) ∩ Y.

Thus, B − D = |(b + Y )\Y | = L(b). Thus,

M(ja) = L(ja) + L(−ja) = T (ja) + T (−ja) =
∑

x

(2 − ljā.x̄ − l−jā.x̄)|
∑

y

lx̄.ȳ|2

=
4
|G|

∑

x

sin2(
π

p
jā.x̄)|

∑

y

lx̄.ȳ|2.

Then
S =

4
|G|

∑

x#=0

∑

a

∑

j

sin2(
π

p
jā.x̄)|

∑

y

lx̄.ȳ|2

≥ 4
|G|

∑

x#=0

R|
∑

y

lx̄.ȳ|2,

where R is a minorization of
∑

a

∑
j sin2(π

p jā.x̄) for x '= 0.

We then have
S ≥ 4R

|G|
∑

x∈G

|
∑

y

lx̄.ȳ|2 − 4R
|G|

∑

x=0

|
∑

y

lx̄.ȳ|2

≥ 4R|Y |− 4R
|G| |Y |2 ≥ 2R|Y |,

since |Y | ≤ |G|
2 . On the other hand, to get a lower bound for R we note that the least value is

obtained by taking jā.x̄ as small as possible. Thus the condition that no hyperplane contains
more than |A|

4W elements implies that ā.x̄ ≥ W for atleast |A|
2 values of a. Considering only

these values, we have R ≥ |A||J|
8 and S ≥ |A||J|

4 |Y |. This gives a contradiction. !
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