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1 Introduction and organization of this text

Matrix functions are useful tools not only in applied mathematics and scienti�c computing,
but also in various other �elds like control theory, elecromagnetism or the research on complex
networks like social networks. Over the last decade one can observe a very important research
activity in the �eld of matrix functions f(A) or f(A)b with A ∈ Cn×n with spectrum σ(A), and
b ∈ Cn, using tools both from numerical linear algebra and approximation theory. As an example,
for f(z) = 1/z we solve a system of linear equations, but also f(z) = exp(z), f(z) = log(z) and
other functions play an important role in applications, such as the solution of a system of ODEs
obtained for instance through a discretization in the spacial variable of a partial di�erential
equation.

1.1 Organization of this text

One fascinating aspect of matrix functions is that it combines several �elds of research

• Basic de�nitions and applications : �2, �3

• Links between norms of matrix functions and norms of functions : �4

• Polynomial and rational approximation of a function of a real or complex variable : �5, �6

• Algorithmic aspects from numerical linear algebra : �5, �7, �8.

This text has been extracted from some lecture notes of a lecture at the University of Lille.
Those who want to have a quick look should scan through the basic de�nitions and properties



of �2, and maybe have a quick look at the applications mentioned in �3. The rest of the text
is written for those readers who desire a more detailed introduction to matrix functions before
coming to the spring school, and only �2 is required to read any of the other above-mentioned
three parts. The interested readers might want to try to solve some of the suggested exercises,
have a look at proofs (which are included only if they help for understanding), and/or use one
of the references below for further reading.

Here is a more detailed summary: In �2 we give a proper de�nition of matrix functions based
on the Jordan normal form and some other formulations trough matrix polynomials and the
Cauchy formula, together with elementary properties of matrix functions. A small number of
applications for particular matrix functions are enumerated in �3.
One method for computing approximately f(A) is to compute g(A) for a "simpler" function g
"close" to f . We give in �4 some general tools to relate ‖f(A)− g(A)‖ to the supremum of f − g
on some subset of the complex plane. This enables us to construct in �5 "good" polynomial and
rational approximants of f and f(A). In �6 we give (in french) some tools for best polynomial
or rational approximation of analytic functions in the complex plane. This section on complex
approximation is probably far more advanced compared to the rest of the text, and can be
omitted without any harm.
In what follows we shortly expose two di�erent linear algebra techniques for computing matrix
functions. The direct Schur-Parlett method for computing matrix functions (exactly up to round-
ing errors) is exposed in �7. Finally, we give in �8 some basics on (rational) Krylov techniques
for approaching f(A)b, which will be further discussed in several lectures of the spring school.

1.2 Further reading

These lecture notes follow closely the reference [6]. An interested reader can also �nd some
complements in the books [12], [13] et [15] for general aspects on numerical linear algebra, [4] on
Krylov methods, [8] on rational approximation, [1] for aspects on linear control, and �nally [14]
for the pseudo spectrum.

2 Three ways of de�ning matrix functions

Whereas it is easy to de�ne the polynomial of a matrix or an entire function as the exponential,
things become more tricky for functions de�ned only on subsets of the complex plane. Following
[6, Section 1] we will here go through the Jordan normal form.

2.1. The Jordan normal form: Each A ∈ Cn×n is similar to a matrix in Jordan normal form
: ∃Z ∈ Cn×n invertible such that Z−1AZ = J = diag(J1, ..., Jp) block diagonal, with

Jk = Jmk(λk) =



λk 1 0 · · · 0

0 λk 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . λk 1
0 · · · · · · 0 λk


∈ Cmk×mk

called Jordan block and m1 + .... + mp = n. Thus σ(A) = {λ1, ..., λp}, where the λj are not
necessarily distinct. We call index m(λ) of an eigenvalue λ the size of the largest Jordan block
associated to λ.
Special case: if the index of all eigenvalues is equal to one (or m1 = ... = mp = 1) we say that
A is diagonalizable. Here the columns of Z are the corresponding eigenvectors.
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Special case: if A is hermitian (A = A∗) or normal (AA∗ = A∗A) then it is diagonalizable, and
one can chose a unitary Z (Z∗Z = In, in other words, an orthonormal basis of eigenvectors).

Notice that the number of blocks and their size as well as the index of each eigenvalue are
invariants of A, but by no means the Jordan normal form A = ZJZ−1 is unique.

2.2. De�nition of a function of a matrix: Let f be a function de�ned on the spectrum of A,
meaning that ∀λ ∈ σ(A) of index m(λ) we know f (j)(λ) for j = 0, 1, ...,m(λ)− 1. Then

f(A) = Z diag(f(J1), ..., f(Jp))Z
−1, f(Jm(λ)) =


f(λ)

0!
f ′(λ)

1! · · · f (m−1)(λ)
(m−1)!

0 f(λ)
0!

. . .
...

...
. . .

. . . f ′(λ)
1!

0 · · · 0 f(λ)
0!

 .

In particular, ifA is diagonalizable, Z−1AZ = diag(λ1, ..., λn), then f(A) = Z diag(f(λ1), ..., f(λn))Z−1.
Clearly, the drawback of De�nition 2.2 is that one could believe that the value of a function of a
matrix depends on the particular choice of the Jordan normal form. It will follow implicitly from
Corollary 2.5 below that this is not true. But, until then, let us always take the same normal
form for a given matrix A.

2.3. Lemma on elementary operations for matrix functions for the same matrix:

(a) (f + g)(A) = f(A) + g(A) (matrix sum).

(b) (f · g)(A) = f(A) · g(A) = g(A) · f(A) (matrix product).

(c) For f(z) = α ∈ C we have f(A) = αIn (matrix identity).

(d) If f(z) = 1
α−z for some α ∈ C\σ(A) then f(z) = (αIn−A)−1, the resolvent in α (matrix

inversion).

We get from 2.3 that polynomials of matrices are evaluated as expected

A0 = In, and for an integer ` > 0: A` = A ·A`−1 = A ·A · ... ·A︸ ︷︷ ︸
` times.

Thus for a rational function with poles 6∈ σ(A)

r(z) =
a0 + a1z + ...+ ajz

j

b0 + b1z + ...+ bkzk
= c

(z − x1)...(z − xj)
(z − y1)...(z − yk)

we get

r(A) = (a0In + a1A+ ...+ ajA
j)(b0In + b1A+ ...+ bkA

k)−1

= c(A− x1In)...(A− xjIn)(A− y1In)−1...(A− ykIn)−1

where we notice that any two factors permute. Thus the value of a polynomial or a rational
function of a matrix does not depend on the particular choice of the Jordan normal form.

2.4. Exercice :

(a) For the characteristic polynomial χ(λ) = det(λIn −A), show that χ(A) = 0(∈ Cn×n).

(b) Show that there exists a unique monic polynomial ψ of minimal degree such that ψ(A) =

0 (called minimal polynomial). Verify the formula ψ(z) =
∏s
j=1(z − λkj )

m(λkj )
with

λk1 , ..., λks the distinct eigenvalues of A.
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The following results shows that, for computing matrix functions, at least in theory it is su�cient
to know to evaluate a polynomial of a matrix.

2.5. Corollary on the representation through polynomials : If p interpolates f on σ(A)
(in the Hermite sense)

∀λ ∈ σ(A) ∀j = 0, 1, ...,m(λ)− 1 : f (j)(λ) = p(j)(λ)

then f(A) = p(A). There exists a unique such p (called the interpolation polynomial of (f,A))
with deg p < degψ and ψ the minimal polynomial of A.

2.6. Exercise :

(a) Show that f(A∗) = (f(A))∗ if f(z) = f(z).

(b) Show that f(XAX−1) = Xf(A))X−1.

(c) Show that if X permutes with A then also with f(A).

(d) Show that f( diag(A,B)) = diag(f(A), f(B)).

(e) Let A,B ∈ Cn×n, A invertible. Show that AB and BA have the same Jordan blocks.
Conclude that Af(BA) = f(AB)A (�rst for a polynomial f).

(f)∗ Let g be de�ned on the spectrum of A et suppose that f (j)(g(λ)) exists for all λ ∈ σ(A) et
j = 0, 1, ...,m(λ)− 1. Show that (f ◦ g)(A) = f(g(A)) (in comparing the size of the Jordan
blocks of A and g(A), replace f by an appropriate polynomial.).

2.7. Exercise : The DFT matrix of order n is de�ned by Fn = 1√
n

(exp(−2πi jkn ))j,k=0,1,...,n−1.

Show that Fn is unitary, complex symmetric, and that F 4
n = In. Deduce explicitly exp(πFn).

2.8. Exercise : Show that an upper block triangular matrix is factorizable as follows

M =

[
A C
0 B

]
=

[
I −X
0 I

] [
A 0
0 B

] [
I X
0 I

]
if and only if X is solution of the Sylvester equation AX −XB = C. In this case, show that

f(M) =

[
f(A) f(A)X −Xf(B)

0 f(B)

]
.

2.9. Exercise : Consider the following non degenerate bidiagonal matrix

M =


λ1 d1 0 0

0
. . .

. . . 0
...

. . .
. . . dn−1

0 · · · 0 λn


with dj 6= 0, and D = diag(1, d1, d1d2, ..., d1...dn−1). Show that

f(M) = D−1


f [λ1] f [λ1, λ2] · · · f [λ1, ..., λn]

0
. . .

. . .
...

...
. . . f [λn−1] f [λn−1, λn]

0 · · · 0 f [λn]

D
with f [λj , ..., λk] a divided di�erence.
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2.10. Exercise : For X ∈ Cn×r, Y ∈ Cr×n, Y X of rank r, α ∈ C, use the identity[
αIn X
0 αIr + Y X

] [
I 0
Y I

]
=

[
I 0
Y I

] [
αIn +XY X

0 αIr

]
for showing that

f(αIn +XY ) = f(α)In +X(Y X)−1[f(αIr + Y X)− f(α)Ir]Y,

and (In +XY )−1 = In −X(Ir + Y X)−1Y.

There is a last formula for computing matrix functions based on the Cauchy integral formula
which is particularly useful for error estimates, which can be generalized for functions of Hilbert
space operators.

2.11. Theorem on Cauchy formula : Let f be analytic on some open Ω ⊂ C, and Γ ⊂ Ω a
system of Jordan curves encircling each λ ∈ σ(A) exactly one time, with mathematically positive
orientation, then

f(A) =
1

2πi

∫
Γ
f(ζ)(ζIn −A)−1 dζ.

Proof. According to Lemma 2.3, it is su�cient to show this formula for a Jordan block. We
observe that

(ζIn − Jm(λ))−1 =


1

ζ−λ
1

(ζ−λ)2
· · · 1

(ζ−λ)m

0 1
ζ−λ

. . .
...

...
. . .

. . . 1
(ζ−λ)2

0 · · · 0 1
ζ−λ

 ,
and the claimed formula follows by comparing element by element using Cauchy's integral formula
for a function and its derivatives.

By comparing both integral representations, we also immediately obtain the following.

2.12. Corollary, series expansion : If f(z) =
∑∞

j=0 ajz
j admits a convergence radius R >

ρ(A) := max{|λ| : λ ∈ σ(A)} (the spectral radius of A), then f(A) =
∑∞

j=0 ajA
j (convergence in

norm, that is, ‖f(A)−
∑k

j=0 ajA
j‖ → 0 pour k →∞).

By replacing A by A−z0In, on may also obtain similar results for expansions around any z0 6= 0.

We should warn the reader that

no method exposed in �2 should be used like a black box procedure

for computing matrix functions for the following reasons:

• the size of a Jordan block is not stable under perturbations (unless the matrix is diagonal-
izable), thus De�nition 2.2 does not have a counterpart in �nite precision arithmetic,

• the approach 2.5 of evaluating P (A) for P the interpolation polynomial of (f,A) su�ers
from the same drawback even for clustering eigenvalues. In addition, one should know
how to e�ciently evaluate P (A) in a numerically stable manner, see �5. To �x ideas, for
diagonalizable A with distinct eigenvalues, A = Z diag(λ1, ..., λn)Z−1, Z = (y1, ..., yn),
Z−∗ = (ỹ1, ..., ỹn), we have that

P (z) =
n∑
j=1

`j(z)f(λj), `j(z) =
∏
k 6=j

z − λk
λj − λk

,

and thus `j(A) = Z diag(0, ..., 0, 1, 0, ..., 0)Z−1 = yj ỹ
∗
j , which gives exactly the formula

P (A) =
∑

j P (λj)yj ỹ
∗
j which we have seen already in 2.2,
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• The approach 2.12 seems to give us a "simple" method of computing exp(A), cos(A), cos(
√
A),

but it could be quite sensitive to �nite precision arithmetic and in particular cancellations,
see [10] and and the discussion at the end of [6, Section 4.2 and Section 4.3],

• If one wants to de�ne log(A),
√
A and similar multi-valued functions, one has �rst to choose

correctly in 2.11 the set Ω. For this type of functions, in general Ω = C\ (−∞, 0], and thus
one has to exclude matrices with eigenvalues < 0. Also, one should know how to select
the contour Γ... Subsequently, additional errors are introduced by applying quadrature
formulas, see, e.g., [5].

3 Motivation: some particular matrix functions and applications

A nice exposition about various applications of matrix functions for di�erent tasks of scienti�c
computing can be found in [6, Chapter 2], other examples will be given in the lectures of the
Lille spring school. The aim of this section is just to summarize some few basic ones.

3.1. Example: fractional powers
For γ ∈ R \ Z, one usually de�nes (the principal branch of) f(z) = zγ on Ω = C \ (−∞, 0] via
polar coordinates: if z = reiφ with r > 0, φ ∈ (−π, π) then f(z) = rγeiγφ = exp(γ(log(r) + iφ)),
implying that f is (single-valued and) analytic in Ω.
For −1 < γ < 0, the function f(z) = zγ admits a representation like a Markov function

f(z) =

∫ b

a

dµ(x)

z − x
, −∞ ≤ a < b ≤ ∞, µ a positive measure on [a, b],

here zγ = sin(|γ|)
π

∫ 0
−∞

|x|γ
z−xdx. E.g., z−1/2 =

∫ 0
−∞

1

π
√
|x|

dx
z−x , and z

1/2 could be considered as z

times the Markov function z−1/2.
Beside splitting techniques, another striking example for the usefulness of matrix square roots
A1/2 is to form a "geometric mean" between two hermitian positive de�nite (hpd) A,B of order
n: We de�ne X = A#B to be the unique solution of the matrix equation XA−1X = B, and get1

the formula A#B = B1/2(B−1/2AB−1/2)1/2B1/2. The geometric matrix mean is attractive for
its many (partly non-trivial) properties such as commutativity, or for instance the equivalence
being true for any hermitian X[

A X
X B

]
hpd ⇐⇒ A#B −X hpd.

See [6, Chapter 2.2] and the references therein for more details about matrix means, and [6,
Chapters 6-7] for commputational aspects for fractional powers of matrices.

3.2. Example: the logarithm
f(z) = log(z) is also de�ned (and analytic) on Ω = C\(−∞, 0] via polar coordinates: log(reiφ) =
log(r) + iφ, r > 0, φ ∈ (−π, π), and again we obtain a modi�cation of a Markov function

log(1 + z)

z
=

∫ −1

−∞

1

|x|
1

z − x
.

The logarithm can be helpful to compute determinants since

det(A) =

n∏
j=1

λj = exp(

n∑
j=1

log(λj)) = exp(trace(log(A))),

1This formula can be veri�ed by setting X = B1/2ZB1/2.
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but it does also occur in the study of certain (stationary) Markov chains of order n [6, Chap-
ter 2.3]: the entry (i, j) of a transition matrix P (t) does indicate the probability ∈ [0, 1] that an
object in state i at time s passes to the state j at time t+s (independent of s). As a consequence,
P (t) is stochastic, meaning that it contains only elements ∈ [0, 1], 1 ∈ σ(P (t)) is the largest eigen-
value, and the corresponding right eigenvector is (1, 1, ..., 1)T . Such a transition matrix has the
semi-group property P (t)P (s) = P (s+ t) for all s, t ≥ 0, implying that P (t) = exp(Qt), with2 the
generator Q = log(P (1)). For computational aspects for the matrix logarithm see [6, Chapter 11].

3.3. Example: The sign function
The sign function is de�ned on Ω = C \ (iR) by

sign(z) =

{
+1 if Re(z) > 0,
−1 if Re(z) < 0,

and thus sign(z) = z(z2)−1/2. If A is diagonalizable, with no imaginary eigenvalues, then f(A)
with f(z) = (1 + sign(z))/2 can be easily seen to be a projector onto the set generated by the
eigenvectors with eigenvalues Re(λ) > 0.
In QCD (lattice quantum chromodynamics) one requires to solve large sparse systems Ax = b
(via Krylov methods requiring an e�cient black box matrix-vector multiplication with A) where
A = diag(±1) − sign(H) and H a large sparse hermitian matrix, see [6, Chapter 2.7] and the
references therein. This a very prominent example where it is not feasible to compute or even to
store sign(H) in order to implement such a matrix-vector product.
The sign function is also useful for writing the solution of certain Syvester matrix equations
AX −XB = C in the unknown X: suppose that the eigenvalues of A (and of B) have a strictly
positive real part (and strictly negative, respectively), such that sign(A) = I, sign(B) = −I. Then
according to 2.8

sign

([
A C
0 B

])
=

[
I 2X
0 −I

]
.

We should mention that the above assuptions on A,B are common in linear control theory, in
particular in the the context B = −A∗ of Lyapunov equations. One may �nd in [6, Section 2.4] a
similar approch for the algebraic Riccati equation, and in [6, Chapter 5] more about computational
aspects for the matrix sign function.

3.4. Exercise:
Let A,B ∈ Cn×n, with σ(AB) having an empty intersection with (−∞, 0]. Then with C =
A(BA)−1/2 = (AB)1/2B−1

sign

([
0 A
B 0

])
=

[
0 C

C−1 0

]
.

3.5. Example: Systems of ordinary di�erential equations and the exponential func-
tion
Starting from a parabolic PDE (such as the heat equation)

∂

∂t
w(x, t) + Lw(x, t) = f(x, t), x ∈ Ω

plus (say, homogeneous) boundary conditions for all t and x ∈ ∂Ω plus initial conditions for t = 0
and x ∈ Ω, with L a space di�erential operator, we can obtain a system of ordinary di�erential
equations via a space discretization: given a �nite element linear space Vh of dimension n with
basis v1,h(x), v2,h(x), ..., vn,h(x), we look for wh(x, t) =

∑n
j=1 yj(t)vj,h(x) such that

∀v ∈ Vh : 〈 ∂
∂t
wh + Lwh − f, v〉 = 0, 〈wh(x, 0)− w(x, 0), v〉 = 0.

2For knowing the week transition it could be more e�cient to compute P (1/52) = P 1/52, see 3.1.
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Introducing the mass and sti�ness matrices3

M = (〈vj,h, vk,h〉)j,k, K = (〈Lvj,h, vk,h〉)j,k, Ff (t) = (〈f, vk,h〉)k, y(t) = (yj(t))j ,

we are left with the system Mẏ(t) +Ky(t) = Ff (t), My(0) = Fw(x,0). By de�nition, the sti�ness

matrix is hpd, and introducing the Cholesky decomposition M = CCT and the variable x(t) =
CT y(t), A = −C−1KC−T we are left with

ẋ(t) = Ax(t) + g(t), x(0) ∈ Rn given.

For g(t) = 0 (homogeneous �rst order di�erential equation with constant coe�cients) we �nd the
solution y(t) = exp(At)y(0), and for general g by variation of constants

x(t) = exp(At)x(0) +

∫ t

0
exp(A(t− s))g(s) ds.

In particular, if g(t) = g(0) does not depend on t, then (by expansion in series)

x(t) = exp(At)x(0) + tϕ1(At)g(0), ϕ1(z) :=
exp(z)− 1

z
.

For systems of ODE of second order we can either rewrite our problem as a �rst order system of
double size, or write the solution in terms of trigonometric functions.

3.6. Example: Link with linear control theory
A continuous stationary linear dynamic system with m entries and p outputs (short MIMO)
consists of �nding the output y ∈ C([0,+∞);Cp) corresponding to the input u ∈ C([0,+∞);Cm)
via

y(t) = Cx(t), ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

with the state variable x ∈ C([0,+∞);Cn), and thus C ∈ Cp×n, B ∈ Cn×m, A ∈ Cn×n. Compared
with the heat equation in 3.5, one would for instance like to know (approximately) the mean of
the temperature as a function of t depending on some part of the initial conditions.
Introducing the one-sided Laplace transform (any function de�ned on [0,∞) (the futur) is con-
tinued by 0 on (−∞, 0] (the past))

L(x)(s) =

∫ ∞
0

exp(−st)x(t) ds,

one observes by integration by parts that L(ẋ)(s) = sL(x)(s), and thus L(x)(s) = (sI −
A)−1BL(u)(s) or L(y)(s) = C(sI − A)−1BL(u)(s), with the p ×m�valued transfer function
Rn(s) = C(sI − A)−1B. For instance, in realistic simulations of integrated circuits via RLC
circuits one easily �nds that n ≥ 106, and thus one of the aims of linear control, called model
reduction, is to replace[

A B
C 0p×m

]
∈ C(n+p)×(n+m) by

[
Ã B̃

C̃ 0p×m

]
∈ C(ñ+p)×(ñ+m)

such that ñ� n, and the output ỹ(t) of the new system for the input u(t) is not too far from the
original output y(t). Applying the Plancherel equality we �nd that ‖L(y)‖L2(iR) = ‖y‖L2([0,+∞)),

and thus require that the di�erence of the two transfer functions Rn and R̃ñ should be small on
the imaginary axis (and, for physical reasons, with the eigenvalues of A, also all eigenvalues of
Ã should be in the left half plane).

3If as in the heat equation L = −∆ is the Laplacien then the sti�ness matrix K is hpd.
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We give one more ingredient, see the lecture of Paul Van Dooren: there exist numbers σ1 ≥ ... ≥
σn called Hankel singular values4 such that, for any choice of Ã, B̃, C̃ we have

sup
ζ∈iR
|Rn(ζ)− R̃ñ(ζ)| ≥ σñ,

and Glover (1984) showed that there is some construction for Ã, B̃, C̃ called balanced truncation
such that

sup
ζ∈iR
|Rn(ζ)− R̃ñ(ζ)| ≤ 2σñ + ...+ 2σn.

The drawback of this approach is that balanced truncation is quite costly and only feasible if n is
su�ciently small, and other approaches through rational Krylov spaces are much more interesting,
see again the lecture of Paul Van Dooren. In any case, the link with matrix functions is very
fruitful, for expressing for instance the energy of a linear dynamical system.

3.7. Example: the exponential and the Sylvester equation
Let σ(A), σ(−B) ⊂ {Re(z) < 0}, then the matrix-valued di�erential equation Ẏ (t) = AY (t) −
Y (t)B, Y (0) = C has the solution Y (t) = exp(At)C exp(−Bt). Notice that limt→∞ Y (t) = 0.
Thus setting X = −

∫∞
0 exp(At)C exp(−Bt) dt we �nd that

AX −XB = −
∫ ∞

0
Ẏ (t) dt = Y (0)− Y (∞) = C,

in other words, we have got an integral formula for the solution X of our Sylvester equation
AX −XB = C.
Notice also that

exp(sA)X −X exp(sB) =

∫ ∞
0

exp((s+ t)A)C exp(−tB) dt+

∫ ∞
0

exp(tA)C exp((s− t)B) dt

=

∫ s

0
exp(tA) exp((s− t)B) dt

which together with 2.8 shows that

exp

(
s

[
A C
0 C

])
=

[
exp(sA)

∫ s
0 exp(tA) exp((s− t)B) dt

0 exp(B)

]
.

4 The concept of K-spectral sets (Von Neumann, numerical
range, pseudo-spectrum)

For being able to approach f(A) by g(A) for a (rational or polynomial) function g "close" to f ,
the following notion is helpful.5

4.1. De�nition of K-spectral sets
A closed Ω ⊂ C is called K-spectral for a matrix A if there exists a numerical constant K such
that for each function f analytic in a neighborhood of Ω we have

‖f(A)‖ ≤ K ‖f‖Ω, with ‖f‖Ω := sup
z∈ω
|f(z)|.

4They are known to be the singular values of X the solution of the Sylvester equation AX +XA = BC.
5See also "C. Badea, B. Beckermann, Spectral sets, in: L. Hogben, Handbook of Linear Algebra, second edition

(2013)." and the references therein.
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Notice that necessarily σ(A) ⊂ Ω for any K-spectral set (since otherwise consider fa(z) = 1
z−a

for a→ λ ∈ σ(A) \ Ω).

4.2. Lemma: the spectrum is K-spectral:
Let A be diagonalizable, Z−1AZ being diagonal, then σ(A) is K-spectral for A with K =
cond(Z) = ‖Z‖ ‖Z−1‖.

From the example

f(z) = z, A =

[
0 1
0 0

]
, ‖f(A)‖ = 1, ‖f‖σ(A) = 0

we see that having a diagonalizable A is essential in 4.2. Here we could only give an upper bound
in terms of the derivatives of f , or otherwise one has to make Ω larger, which will be the object
of the subsequent considerations.
Before going further, notice that if φ is analytic in a neighborhood of Ω then Ω being K-spectral
for A implies that φ(Ω) is K-spectral for φ(A). Thus the following result allows to deal with
half planes or complements of open disks being images of a closed disk under a homographic
transformation.

4.3. Von Neumann's Theorem
The disk Ω = {z ∈ C : |z − ω| ≤ R} with R ≥ ‖A− ωI‖ is 1-spectral for A (e.g., the closed unit
disk D is 1-spectral for any matrix with ‖A‖ ≤ 1).

Proof. We follow [11, �154] and consider only the case R > ‖A − ωI‖ for su�ciently small R,
the general case following by passing to a limit. Let

U =
A− ωI
R

, g(z) = f(ω +Rz)

such that ‖U‖ < 1, g being analytic in D and f(A) = g(U). Then following 2.11

f(A) =
1

2πi

∫
|w|=1

g(w)(wI − U)−1dw =
1

2π

∫
|w|=1

g(w)(wI − U)−1w |dw|

=
1

2π

∫
|w|=1

g(w)
(1

2
I +

1

2
(wI + U)(wI − U)−1

)
|dw|

=
g(0)

2
+

1

2π

∫
|w|=1

g(w)
(1

2
(wI + U)(wI − U)−1

)
|dw|.

Similarly, by the residual theorem (or Neumann series)

1

2π

∫
|w|=1

g(w)
(1

2
(wI + U)(wI − U)−1

)∗
|dw|

1

2πi

∫
|w|=1

g(w)
(1

2
(I + wU∗)(I − wU∗)−1

) dw
w

=
g(0)

2
.

Thus

f(A) =
1

2π

∫
|w|=1

g(w)M(w) |dw|, M(w) = Re
(

(I + U/w)(I − U/w)−1
)
,

with M(w) hemitian positive de�nite since with y = (I − U/w)ỹ

y∗M(w)y = <(ỹ∗(I − U/w)∗(I + U/w)ỹ) = ỹ∗ỹ − ỹ∗U∗Uỹ ≥ ỹ∗ỹ(1− ‖U‖2) > 0.
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As a consequence, for any vectors x, y of norm 1 using twice Cauchy-Schwarz:

|x∗f(A)y| ≤ ‖g‖D
1

2π

∫
|w|=1

√
x∗M(w)x

√
y∗M(w)y |dw|

≤ ‖g‖D

√
1

2π

∫
|w|=1

x∗M(w)x |dw| 1

2π

∫
|w|=1

y∗M(w)y |dw| = ‖f‖Ω ‖x‖‖y‖ ≤ ‖g‖D,

as claimed above.

Using φ(z) = 1−z
1+z , Theorem 4.3 implies the following.

4.4. Corollary for half planes:
If A is semi-de�nite positive (i.e., Re(y∗Ay) ≥ 0 for all vectors y), then Ω = {Re(z) ≥ 0} is
1-spectral for A, in particular ‖ exp(−A)‖ ≤ 1.

Let us mention a recent generalization obtained by Michel Crouzeix in 2007.

4.5. De�nition of numerical range:
The numerical range (or �eld of values) [7] of a matrix A ∈ Cn×n is given by

W (A) =
{y∗Ay
y∗y

: y ∈ Cn \ {0}
}
.

It is not di�cult to verify that W (A) is a compact subset of {|z| ≤ ‖A‖} containing σ(A), and
that for diagonal (or normal) A we obtain for W (A) the convex hull of σ(A). Concerning our
preceding example,

A =

[
0 1
0 0

]
, W (A) =

D
2

being much smaller than D = {|z| ≤ ‖A‖}.

4.6. Lemma of convexity [9, Theorem V.3.1] :
W (A) is convex.

4.7. Crouzeix's Theorem :
The numerical range W (A) is K-spectral for A with K ≤ 11.08.
In particular, the disk centered at 0 with radius max{|z| : z ∈ W (A)} (called numerical radius)
is 2-spectral for A.

The above example

A =

[
0 1
0 0

]
, f(A) =

[
0 f ′(0)
0 0

]
, W (A) =

D
2

shows that the numerical range constant satis�es K ≥ 2, and it is conjectured by Crouzeix that
K = 2. This conjecture has been shown to be true for 2× 2 matrices in [2] where the numerical
range has the shape of a �lled ellipse.
Recall from Lemma 4.3 that for any normal matrix A we have that ‖f(A)‖ ≤ ‖f‖σ(A) ≤
‖f‖conv(σ(A)) = ‖f‖W (A). For non normal matrices, it is also possible to consider:

4.8. De�nition of the pseudo-spectrum
For ε > 0, let σε(A) = {z ∈ C : ‖(zI −A)−1‖ ≥ 1/ε.

Clearly, σε(A) increases with ε. One shows that σε(A) is compact, but not necessarily convex,
and even not necessarily connected, since

⋂
ε>0 σε(A) = σ(A).
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4.9. Theorem on equivalent representations of the pseudo-spectrum [14] :
The following statements are equivalent:

(i) z ∈ σε(A),

(ii) ∃y ∈ Cn, ‖y‖ = 1, and ‖(A− zI)y‖ ≤ ε,
(iii) ∃E ∈ Cn×n, ‖E‖ ≤ ε, and z ∈ σ(A+ E).

4.10. Exercise :
By establishing

‖(xI −A)−1 − (yI −A)−1‖ ≤ ‖(xI −A)−1‖2/(1− |x− y| ‖(xI −A)−1‖)

if |x− y| ‖(xI −A)−1‖ < 1, show that z 7→ ‖(zI −A)−1‖ is continuous in C \ σ(A). Deduce that
σε(A) is closed, with boundary ∂σε(A) = {z ∈ C : ‖(zI −A)−1‖ = 1/ε}.

Starting from the Cauchy formula 2.11 for matrix functions, the following result is immediate.

4.11. Corollary on the pseudo-spectrum [14] :
Any compact Ω containing the pseudo-spectrum σε(A) isK-spectral for A withK = length(∂Ω)/(2πε).

4.12. Exercise :
For ε > 0, show the following perturbation result⋃

‖E‖≤ε

W (A+ E) = {z ∈ C : dist(z,W (A)) ≤ ε}.

5 Polynomial and rational approximation

This section discusses some basic methods for computing f(A) for general (su�ciently smooth)
functions. We should warn the reader that for classical functions like the exponential or fractional
powers, particular methods have been developed (based for instance on a scaling and squaring
principle for the exponential) which quite often are more e�cient [6].
Considering the �ndings of �4, given a K-spectral set Ω for A and f analytic in Ω, one could
imagine to approach f(A) by p(A) with a polynomial p and ‖f(A)− p(A)‖ ≤ K ‖f − p‖Ω. Two
questions become however immediate:

Q1) how to evaluate p(A), and

Q2) how to �nd a suitable p such that the right-hand side ‖f − p‖Ω is small.

The answer to Q1) depends of course on the basis used to write down p, we could use for instance

the basis of monomials p(A) =
∑m

j=0 pjA
j . Writing M(n) for the complexity of multiplying

two matrices of order n (which of course also depends on the structure of these matrices), a
naive implementation would compute successively all powers of A through Aj+1 = AAj . Since
the powers could be computed on the �y, we arrive at a complexity of mM(n) and a storage
requirement of O(n2), and the same is true for a Horner type implementation.

5.1. Algorithm of Paterson and Stockmeyer
By adding coe�cients 0, suppose that m = rs− 1 for two natural integers r, s. Writing

p(A) =
r−1∑
j=0

Bj(A
s)j , Bj =

s−1∑
k=0

psj+kA
k,

the �rst one evaluated by a Horner-type scheme, we arrive at a total complexity of (r+ s)M(m)
(minimal for r ≈ s ≈

√
m), but we need to store also the s+ 1 matrices A1, ..., As.

12



One may show that there exists a constant c (depending not on n, p,A) such that, for the output
Xm of Algorithm 5.1 in �nite precision arithmetic

‖p(A)−Xm‖ ≤
cεn2

1− cεn
‖
∑
j

|pj ||A|j‖,

where ε is the machine precision, and where the absolute value in |A| is taken elementwise.
The simple example n = 1, p the mth partial sum of f(z) = exp(z) and A = (−5) shows
that the upper bound might be much larger as ‖f(A)‖ because of cancellations. Of course, for
scalar arguments, one may overcome this cancellation by computing inverses of partial sums of
(exp(−A)), but such a simple trick is no longer true for 2× 2 matrices.
The following exercise gives us an idea of the error in exact arithmetic for partial sums of Taylor
series.

5.2. Exercise
Let f be analytic in {|z| ≤ ρ(A)}, then

Em := f(A)−
m∑
j=0

f (j)(0)

j!
Aj =

∫ 1

0
f (m+1)(tA)

(1− t)m

m!
Am+1 dt.

Deduce that

‖Em‖ ≤
‖Am+1‖
(m+ 1)!

max
t∈[0,1]

‖f (m+1)(tA)‖.

Applying 5.1 and 5.2 with f(z) = cos(z) and odd m, it remains to give an upper bound for

maxt∈[0,1] ‖ cos(tA)‖, and ‖
∑(m−1)/2

j=0
|A|2j
2j! ‖, for instance in both cases ‖ cosh(|A|)‖ ≈ cosh(‖A‖).

Thus for obtaining a small relative error ‖ cos(A) − Xm‖/‖ cos(A)‖, we would desire that
cosh(‖A‖)/‖ cos(A)‖ is of moderate size, which is true as long as ‖A‖ ≤ 1, but not in gen-
eral. This clearly shows that it is preferable to apply several times the reduction formula
cos(A) = 2 cos2(A/2) − I before applying Taylor sums. Similar scaling arguments are true
for the exponential function, the logarithm, and fractional powers.

Instead of working with Taylor sums, we could also compute polynomial interpolants p of f in
some Newton basis. Here the ordering of the interpolation points x1, x2, ... is essential (Leja
ordering increases numerical stability). For evaluating p(A), we could use either a Horner-type
implementation or (in case of cyclically repeated interpolation points) a variant of 5.1. As we
will see later, an appropriate choice of the interpolation points depending on Ω will enable us to

give also an answer to question Q2) .

For evaluating R(A) for a rational function R = P/Q, degP,degQ ≤ m, one has at least three
possibilities:

• evaluate separately P (A) and Q(A) by the techniques in the beginning of the section,
requiring one inversion of complexity I(n), and about 2mM(n);

• evaluate at z = A the partial fraction decomposition which generically takes the form

R(z) = c0 +
m∑
j=1

cj
z − zj

,

here we have have a complexity of mI(n);

• expand R in a �nite continued fraction following the techniques below.
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5.3. Continued fractions
As for sums and products, studying an in�nite continued fraction

C = β0 +
α1

β1
+

α2

β2
+

α3

β3
+ ...

means that one has to study the convergence of the sequence of convergents

Cm = β0 +
α1

β1
+

α2

β2
+ ...+

αm
βm

=
Pm
Qm

which are computed by the initializations P−1 = 1, P0 = β0, Q−1 = 0, Q0 = 1, and the two forward
recurrencies {

Pm+1

Qm+1

}
= βm+1

{
Pm
Qm

}
+ αm+1

{
Pm−1

Qm−1

}
.

With one of the choices

(i) αm+1 = −Cm+1 − Cm
Cm − Cm−1

, βm+1 = 1− αm+1,

(ii) αm+1 =
PmQm+1 −QmPm+1

PmQm−1 −QmPm−1
, βm+1 =

Pm+1Qm−1 −Qm+1Pm−1

PmQm−1 −QmPm−1

one may construct a continued fraction with convergents Cm = Pm/Qm. However, a numerically

stable evaluation of a continued fraction is done backwards: we have Cm = C
(m)
0 , with

C(m)
m = βm, and for k = m− 1,m− 2, ..., 0: C

(m)
k = βk +

αk+1

C
(m)
k+1

.

Supposing that all αk, βk are polynomials of degree at most s, we can therefore compute the mth
convergent evaluated at A with a complexity of mI(n) + sM(n) (provided that we store some
powers of A).

5.4. Rational interpolants with prescribed poles:
For a polynomial Q and x1, ..., xm with Q(xj) 6= 0, we are looking for a polynomial P of de-
gree < m such that Rm,Q = P/Q interpolates f at the interpolation points x1, ..., xm (counting
multiplicities).
The following properties are true:

Lagrange formula: if x1, ..., xm are distinct then

Rm,Q(z) = B(z)
m∑
j=1

f(xj)

(z − xj)B′(xj)
, B(z) =

∏m
j=1(z − xj)
Q(z)

.

Link with polynomial interpolants and Cauchy formula: P = QRm,Q is interpolation
polynomial of Qf at x1, ..., xm (existence and uniqueness of Rm,Q), in particular

f(z)−Rm,Q(z) = B(z) [x1, ..., xm, z](Qf).

Hermite formula: If f is analytic in Ω0 ⊃ Ω and x1, ..., xm ∈ Int(Ω0) then

f(z)−Rm,Q(z) = B(z)
1

2πi

∫
∂Ω0

f(ζ)

B(ζ)

dζ

ζ − z

14



Choice of interpolation points: following the Hermite formula, we desire to �nd for �xed Q
a numerator of B such that ‖B‖Ω ‖1/B‖∂Ω0 is as small as possible. If we also optimize
the denominator, we are left with the third Zolotarev problem on the two sets Ω and ∂Ω0.
Thus, typically, the interpolation points lie in Ω whereas the poles of B should be close to
∂Ω0, i.e., the roots of Q simulate singularities of f .

Link with best rational approximation: Using the triangular inequality in the Lagrange for-
mula, we get using the classical Céa Lemma trick with the Lebesgue constant L that:

‖f −Rm,Q‖Ω ≤ (1 + L) min
p∈Pm−1

‖f − p

Q
‖Ω, L = ‖

m∑
j=1

∣∣∣ B(z)

(z − xj)B′(xj)

∣∣∣‖Ω.
Thus we could alternatively choose x1, ..., xm minimizing L which means that these inter-
polation points do represent "well" the continuous set Ω (and the denominator Q).

5.5. De�nition: Rational interpolants with free poles
Here for given x1, ..., x2m ∈ C one tries to �nd Rm = Pm/Qm with Pm ∈ Pm−1, Qm ∈ Pm \ {0},
such that fQm−Pm vanishes at x1, ..., x2m counting multiplicities. In general, Qm(xj) 6= 0, and
thus the rational function Rm interpolates f at x1, ..., x2m.
The following properties are true:

Existence and uniqueness: Polynomials Pm, Qm as above exist, the fraction Pm/Qm is unique
(but we may have unattainable points xj such that Rm(xj) 6= f(xj)).

Link with rational interpolants with �xed poles: for any Q ∈ Pm we have Rm = R2m,QQm .

Link with Padé approximants: if x1 = x2 = ... = x2m = 0 then the Rm are Padé approxi-
mants6 approximants of f of type [m− 1|m].

Link with continued fraction 5.3(ii): the βj are polynomials of degree 1, and the αk of degree
2 (with roots x2k−1, x2k).

The philosophy behind rational interpolants with free poles is that the poles �nd themselves the
singularities of the function. The most classical example is given for f(z) = log(z+ 1) where the
Padé approximants Rm converge uniformly on any compact subset of C \ (−∞,−1], the interval
(−∞,−1] containing all the poles [8]. This has to be compared with Taylor sums which only
converge on disks.

For a Markov function f(z) =
∫ b
a
dµ(x)
z−x (see �3) one can be much more precise: if {x1, ..., x2m} ⊂

C \ [a, b] is symmetric with respect to the real axis, then the denominators Qm ful�ll an orthog-
onality relation with varying weights, implying that all poles are simple and in (a, b), and all
residuals positive. One may deduce the so-called Markov theorem saying that if the interpola-
tion points remain bounded away from [a, b] then Rm → f uniformly on any compact subset
of C \ [α, β]. Moreover, in case x1 = x2 = ... ∈ (β,∞) one gets the a posteriori estimate that
maximum of f −Rm in a disk |z − x1| ≤ r < |β − z1| is attained in x1 − r.

6 Best approximants, Faber polynomials and the Faber trans-
form

Soit E ⊂ C un convexe compact et f analytique dans un voisinage de E. Dans ce chapitre on
cherche à minimiser ‖f − p‖E pour un polynôme de degré ≤ n (ou une fonction rationnelle à
numerateur de degré ≤ n et à pôles �xes).

6For many special functions, continued fractions with explicit coe�cients are known with convergents being
Padé approximants, see [8].
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Dans ce chapitre nous allons introduire en 6.3 une transformée dite de Faber associée à E qui
renvoie wj sur un polynôme Fj de degré j dit polynôme de Faber. Dans un premier temps nous
allons montrer en 6.6 que les sommes partielles de la serie de Faber sont assez proche des meilleurs
approximants polynomiaux de f sur E par rapport à la norme du sup sur E. Dans le cas particulier
du disque E = D, on retrouve alors le lien connu entre meilleure approximation polynomiale et
sommes de Taylor. En 6.7 nous explicitons ce résultat pour la classe des fonctions de Markov.
Ensuite nous allons établir en 6.8 un résultat similaire pour des meilleurs approximants rationnels
à pôles �xes. En complément du �4, nous concluons en 6.9 qu'il est possible de relier ‖(f−p)(A)‖
à la norme du max de F−1(f − p) sur D.

On note par φ : C \E 7→ C \D l'application de Riemann (l'unique bijection analytique conforme
véri�ant φ(∞) = ∞, φ′(∞) > 0 et ∀ z : φ′(z) 6= 0), et ψ = φ−1. L'ensemble de niveau ER pour
R > 1 est dé�ni par son complément EcR = {z 6∈ E : |φ(z)| > R}.

6.1. Dé�nition :
On dé�nit Fj(z) pour z ∈ int(E), |w| ≥ 1 (ou z ∈ E, |w| > 1) par la fonction génératrice

wψ′(w)

ψ(w)− z
=
∞∑
j=0

Fj(z)

wj
.

Pour l'exemple E = D, nous avons ψ(w) = w, et Fj(z) = zj . Pour l'exemple E = [−1, 1],
ψ(w) = 1

2(w + 1
w ), et F0(z) = 1 et pour j ≥ 1 : Fj(ψ(w)) = wj + 1

wj
= 2Tj(ψ(w)), avec Tj le

jième polynôme de Chebyshev.

6.2. Lemme :
Fj est un polynôme de degré j, F0(z) = 1, et pour j ≥ 1 : Fj(ψ(w)) − wj est analytique dans
|w| > 1 inclus ∞ et s'annule en ∞.

Proof. La série génératrice étant absolument convergente pour |w| = 1 + ε > 1, on obtient pour
k ∈ Z, z ∈ E

(∗) 1

2πi

∫
|w|=1

wk
wψ′(w)

ψ(w)− z
dw

w

=

∞∑
j=0

Fj(z)
1

2πi

∫
|w|=1+ε

wk−j
dw

w
=

{
Fk(z) k ≥ 0,
0 k < 0.

en particulier en écrivant φ(ζ)j−P (ζ) analytique en C\E et s'annulant en∞ avec P un polynôme
de degré j

Fj(z)− P (z) =
1

2πi

∫
∂E

(φ(ζ)j − P (ζ))
dζ

ζ − z
= 0

d'après le théorème de Cauchy.

Voici un résultat utilisant la convexité de E.

6.3. Dé�nition et Théorème :
Pour P polynôme et z ∈ int(E), soit

F(P )(z) =
1

2πi

∫
|w|=1

P (w) 2Re
( wψ′(w)

ψ(w)− z

)dw
w
.

(a) F(1)(z) = 2, et pour j ≥ 1 : F(wj)(z) = Fj(z).
(b) ‖F(P )‖E ≤ 2 ‖P‖D, en particulier ‖Fj‖E ≤ 2.
(c) F(P )(ψ(w))− P (w) est analytique dans |w| > 1 inclus ∞.
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Proof. Pour j ≥ 0

F(wj)(z) =
1

2π

∫
|w|=1

wj
wψ′(w)

ψ(w)− z
dw

iw
+

1

2π

∫
|w|=1

w−j
wψ′(w)

ψ(w)− z
dw

iw

ce qui d'après (∗) vaut 2 si j = 0, et Fj(z) pour j > 0, ce qui démontre (a). Pour une preuve de
la partie (b), notons d'abord que pour w = eit nous avons dw

iw = dt > 0. Aussi, on montre que
wψ′(w)/|wψ′(w)| nous donne la normale extérieure de E au point z = ψ(w). Donc par convexité
pour z ∈ int(E)

Re
( wψ′(w)

ψ(w)− z

)
> 0,

ce qui permet d'estimer

|F(P )(z)| ≤ ‖P‖D
2π

∫
|w|=1

∣∣∣2Re( wψ′(w)

ψ(w)− z

)dw
iw

∣∣∣ = ‖P‖DF(1) = 2 ‖P‖D.

6.4. Exercice :
En suivant le raisonnement de la preuve du théorème 4.3 de Neumann, montrer que W (A) ⊂ E
et p = F(P ) pour un polynôme P implique que ‖p(A)‖ ≤ 2 ‖P‖D, et en particulier ‖Fj(A)‖ ≤ 2.

6.5. Exercice :
Soit f analytique dans un voisinage de ER pour R > 1, alors avec

fj :=
1

2πi

∫
|w|=1

f(ψ(w))

wj
dw

w

dits coe�cients de Faber montrer que fj = O(R−j)j→∞, et que les sommes partielles de la somme
de Faber

∑∞
j=0 fjFj(z) convergent vers f uniformément dans E.

L'exo 6.5 nous permet d'étendre la dé�nition de F à tout P analytique dans un voisinage de D,
tout en gardant les propriétés 6.3(b),(c), et

F
(f0

2
+
∞∑
j=1

fjw
j
)

(z) =
∞∑
j=0

fjFj(z).

On a le résultat suivant concernant la meilleure approximation polynômiale de f sur E.

6.6. Corollaire :
Soit f analytique dans un voisinage de E, alors

|fm+1| ≤

√√√√ ∞∑
j=m+1

|fj |2 ≤ min
P∈Pm

‖f − P‖E ≤ ‖f −
m∑
j=0

fjFj‖E ≤ 2

∞∑
j=m+1

|fj |.

Ce corollaire 6.6 nous donne un encadrement précis et un "bon" approximant explicite si les
fj décroissent rapidement, voir l'exemple suivant. Notons que la première et troisième inégalité
sont évidentes, et la quatrième découle de l'estimation de ‖Fj‖E donnée dans 6.3(b). Une preuve
de la deuxième inégalité va nous demander un peu d'e�ort, elle découlera comme cas particulier
du théorème 6.8 ci-dessous.
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6.7. Corollaire :
Soit E symétrique par rapport à l'axe réelle, et [a, b] ⊂ R, à gauche de E (c'est-à-dire, b <
min{Re(z) : z ∈ E}), alors pour la fonction de Markov

f(z) =

∫ b

a

dµ(x)

z − x
,

pour j ≥ m+ 1 nous avons

|fj | ≤ |φ(b)|m+1−j | |fm+1|,
∞∑

j=m+1

|fj | ≤
2

|φ(b)|m+1
‖f‖E

(=⇒ l'estimation du 1.6.6 est précise à un facteur 2/(1− |φ(b)|−1) près).

Proof. D'après le théorème de Fubini nous avons

fj =
1

2πi

∫
|w|=1

∫ b

a

dµ(x)

ψ(w)− x
dw

wj+1
=

∫ b

a

∫ b

a
dµ(x)

1

2πi

∫
|w|=1

1

ψ(w)− x
dw

wj+1
.

L'intégrant de l'intégrale en w admet une seule singularité dans Dc ∪ {∞}, au point w = φ(x).
Donc, par le théorème des résidus en analyse complexe (ou tout simplement par le théorème
de Cauchy après changement de variables ζ = ψ(w) et changement d'orientation de la courbe
d'intégration),

1

2πi

∫
|w|=1

1

ψ(w)− x
dw

wj+1
= − 1

ψ′(φ(x))

1

φ(x)j+1
= − φ′(x)

φ(x)j+1
.

Par unicité de l'application de Riemann et symétrie de E, nous avons φ(z) = φ(z) pour tout
z 6∈ E, en particulier, φ(x) et φ′(x) 6= 0 sont réels pour x ∈ R \ E ⊃ [a, b]. Comme de plus
φ′(∞) > 0, φ(∞) = ∞, nous déduisons que φ′ > 0 dans R \ [a, b], et donc φ est croissant et
négatif sur [a, b], et 1/|φ| croit sur [a, b]. Donc

|fj | =
∣∣∣∫ b

a

φ′(x)

φ(x)j+1
dµ(x)

∣∣∣ =

∫ b

a

|φ′(x)|
|φ(x)|j+1

dµ(x) ≤ |φ(b)|m+1−j | |fm+1|.

Du théorème 3.1 de l'article [K. C. Toh and L. N. Trefethen, The Kreiss matrix theorem on a
general complex domain, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 145�165] on sait que, pour
tout domaine E simplement connexe pas forcement convexe,

∀z 6∈ E : dist(z,E)
|φ′(z)|
|φ(z)| − 1

∈ [
1

2
, 2].

Par conséquent,

∞∑
j=m+1

|fj | =
∫ b

a

|φ′(x)| dµ(x)

(1− |φ(x)|−1)|φ(x)|m+2
≤ 2

|φ(b)|m+1

∫ b

a

dµ(x)

dist(x,E)
=

2

|φ(b)|m+1
‖f‖E.

Nous allons maintenant démontrer un résultat similaire à 1.6.6 pour les fonctions rationnelles à
pôles prescrits. Pour w1, ..., wm ∈ C\D soit Q(w) =

∏m
j=1(1−w/wj), et q(z) =

∏m
j=1(z−ψ(wj)).

On va supposer dans la suite que les wj (et donc les zj = ψ(w)) soient distincts. Néanmoins, les
idées de preuve restent valables après des passages à la limite, par exemple w1 → w2, mais aussi
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w1 →∞ (et donc 1− w/w1 → 1, ce qui veut dire que Q sera de degré < m). En particulier, on
aura la situation du théorème 1.6.6 en faisant tendre tous les wj vers ∞.
Rappelons quelques petites éléments de la théorie des espaces de Hardy: on note

‖F‖2 :=

√
1

2π

∫
|w|=1

|F (w)|2 |dw|

pour une fonction F de carré intégrable sur le cercle d'unité. L'identité 1
2π

∫
|w|=1w

j−k|dw| = δj,k

plus la théorie des espaces H2 montre que

‖F‖2 =

√√√√ +∞∑
j=−∞

|Fj |2

si F est analytique dans la couronne 1− ε < |w| < 1 + ε et y admet alors un développement de
Laurent F (w) =

∑+∞
j=−∞ Fjw

j .

6.8. Théorème :
Soit f analytique dans un voisinage de E. Notons Rm = Pm/Q l'interpolant de F (w) = f0/2 +∑∞

j=1 fjw
j aux points 0 et 1/w1, ..., 1/wm, et

B(w) := w

m∏
j=1

w − 1/wj
1− w/wj

,
pm
q

:= F(
Pm
Q

), bj :=
1

2πi

∫
|u|=1

f(ψ(w))

B(u)

du

uj
.

Alors

|b1| ≤

√√√√ ∞∑
j=1

|bj |2 ≤ min
p∈Pm

‖f − p

q
‖E ≤ ‖f −

pm
q
‖E ≤ 2

∞∑
j=1

|bj |.

Avant de se lancer dans la preuve, notons que pour w1, ..., wm → ∞, B devient wm+1 et donc
bj = fj+m. Aussi, Pm/Q = Pm devient la somme partielle de F d'ordre m, donc le corollaire 6.6
est en e�et un cas limite du théorème 6.8.

Proof. Dans un premier temps, montrons que pm ∈ Pm, c'est-à-dire, pm/q est e�ectivement un
candidat pour notre problème de minimisation. En écrivant la décomposition en termes simples
et en utilisant la fonction génératrice des polynômes de Faber nous obtenons

F
(Pm(w)

Q(w)

)
(z) = F

(
c0 +

m∑
j=1

cj
w − wj

)
(z) = F

(
c0 −

m∑
j=1

cj
wj

∞∑
k=0

wk

wkj

)
(z)

= c0F(1)(z)−
m∑
j=1

cj
wj

∞∑
k=0

F(wk)(z)

wkj

= c0 +
Pm
Q

(0)−
m∑
j=1

cj
wj

wjψ
′(wj)

ψ(wj)− z
= c0 +

Pm
Q

(0)−
m∑
j=1

cjψ
′(wj)

z − ψ(wj)

étant clairement un élément de Pm/q. D'ailleurs, cette formule très explicite permet de construire
sur ordinateur pm/q sachant la décomposition en termes simples de Pm/Q.
On passe maintenant à une preuve de la troisième inégalité sachant que la deuxième est triviale.
Observons d'abord que F −Pm/Q est analytique dans un voisinage de |w| ≤ 1+ ε pour un ε > 0.
D'après la formule d'Hermite 5.4, nous obtenons pour |w| = 1 sachant que |B(w)| = 1∣∣∣F (w)− Pm

Q
(w)
∣∣∣ = |B(w)|

∣∣∣ 1

2πi

∫
|u|=1+ε

F (u)

B(u)

du

u− w

∣∣∣
=

∣∣∣ 1

2πi

∫
|u|=1+ε

f(ψ(u))

B(u)

du

u− w

∣∣∣ =
∣∣∣ ∞∑
j=1

bjw
j−1
∣∣∣ ≤ ∞∑

j=1

|bj |,
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où dans la deuxième égalité on a utilisé le fait que

u 7→ F (u)− f(ψ(u))

B(u)

1

u− w

est analytique dans |u| ≥ 1 + ε inclus ∞, voire 6.3(c), avec un double zéro en ∞. En utilisant
6.3(b), on en déduit que

‖f − pm
q
‖E = ‖F(F − Pm

Q
)‖E ≤ 2 ‖F − Pm

Q
‖D ≤ 2

∞∑
j=1

|bj |,

c'est-à-dire, il reste seulement la première inégalité à établir.
Pour tout p ∈ Pm nous pouvons écrire

(f − p

q
)(ψ(w)) = w(F̃ (w)− P

Q
(w)) +H(w), F̃ (w) =

∞∑
j=1

Fjw
j =

F (w)− F (0)

w
,

avec P ∈ Pm−1, et H analytique dans |u| > 1 d'après 6.3(c) (développer f − p/q en série de
Faber). Comme le terme à gauche du second membre est analytique dans un voisinage du disque,
et s'annule en 0, nous obtenons alors

‖f − p

q
‖2E = ‖(f − p

q
) ◦ ψ‖2∂D ≥ ‖(f −

p

q
) ◦ ψ‖22 = ‖F̃ − P

Q
‖22 + ‖H‖22.

Notons qu'il existe un polynôme P̃ ∈ Pm−1 de sorte que

Pm
Q
− F (0) =

Pm
Q
− Pm

Q
(0) = w

P̃

Q
et alors ‖F̃ − P̃

Q
‖22 = ‖F − Pm

Q
‖22 =

∞∑
j=1

|bj |2,

la dernière égalité découlant de la représentation intégrale de |F − P/Q| donnée ci-dessus. En
e�et, le lecteur véri�e aisément que P̃ /Q n'est rien que l'interpolant ∈ Pm−1/Q de F̃ aux points
1/w1, ..., 1/wm. En combinant ces deux chaînes d'inégalités, il est su�sant de démontrer que

‖F̃ − P̃

Q
‖2 = min

P∈Pm−1

‖F̃ − P

Q
‖2,

autrement dit, on connaît le meilleur approximant par rapport à la norme ‖ · ‖2 induite par un
produit scalaire

〈G,H〉 =
1

2π

∫
|w|=1

F (w)G(w)|dw| = 1

2πi

∫
|w|=1

F (w)G(w)
dw

w
,

dé�ni, disons, sur l'espace vectoriel des fonctions analytiques dans un voisinage �xe de D (c'est
en e�et le produit scalaire de l'espace plus grand H2 de Hardy). On sait minimiser au sens des
moindres carrés:

P̃

Q
(w) =

m∑
j=1

ej
w − wj

est meilleur approximant par rapport à ‖·‖2 de F̃ si et seulement si l'erreur F̃ − P̃
Q est orthogonal

à toute fonction dans Pm−1/Q, avec base 1/(w − w`), ` = 1, ...,m. Il faut et il su�t alors que[
〈F̃ , 1

w−w` 〉
]
`=1,...,m

=
[
〈 1
w−wj ,

1
w−w` 〉

]
`,j=1,...,m

[
cj
]
j=1,...,m

.
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Un petit calcul de résidus montre que

〈F̃ , 1

w − w`
〉 = −F (1/w`)/w`, 〈 1

w − wj
,

1

w − w`
〉 = − 1

1/w` − wj
/w`

et donc notre système est équivalent au fait que P̃ /Q interpole F̃ aux points 1/w1, ..., 1/wm,
comme désiré ci-dessus.

6.9. Exercise :
Avec les notations de 1.6.8, si W (A) ⊂ E alors

‖f(A)− pm(A)q(A)−1‖ ≤ ‖F − Pm/Q‖D ≤
∞∑
j=1

|bj |.

7 Direct computation : the Parlett-Schur approach

The Parlett method for computing f(A), implemented as funm under Matlab, can be summarized
as follows

1. compute the Schur normal form A = UTU∗ with unitary U and upper triangular T . We
then have f(A) = Uf(T )U∗ by 2.6(b);

2. introduce a block partition

T =


T1,1 T1,2 · · · T1,`

0 T2,2 · · · T2,`
...

. . .
. . .

...
0 · · · 0 T`,`


with square Tj,j ;

3. compute Fj,j = F (Tj,j) by some direct method (see �5, Taylor expansion, polynomial
interpolants, rational approximation of f);

4. then

f(T ) =


F1,1 F1,2 · · · F1,`

0 F2,2 · · · F2,`
...

. . .
. . .

...
0 · · · 0 F`,`


with the same block partition as T , where the blocks Fj,k for increasing j − k ≥ 1 are
obtained through the Sylvester equation in the unknown rectangular matrix Fj,k

Tj,jFj,k − Fj,kTk,k =
k−1∑
i=j

Fj,iTi,k −
k∑

i=j+1

Tj,iFi,k (1)

which itself follows from the identity Tf(T ) = f(T )T , see 2.6(c).

The aim of this section is to study more closely each of the above steps, see also [6, Chapter 4.6]
and [6, Chapter 9].
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7.1 De�ning and computing the Schur normal form

As a general reference we refer the reader to [3].

7.1. Lemma on existence of a Schur normal form
Any matrix A ∈ Cn×n can be factorized as A = UTU−1 with U, T ∈ Cn×n, U−1 = U∗ (unitary)
and T upper triangular.

Proof. By recurrence on n: we multiply A on the right with Q and on the left with Q−1 where
the unitary Q contains in its �rst column an eigenvector of A.

We notice that the set of diagonal elements of T concides with σ(T ) = σ(A). Also, with
A hermitian/normal, also T is hermitian/normal, implying that T must be diagonal (−→ for
normal A we get the Jordan normal form).
In general, such a Schur decomposition of A is not unique. Also, the technique employed in the
proof for constructing U should not be implemented on a computer as it is, since it requires many
eigenvector computations. Indeed, we can directly use the QR method (originally designed for
computing eigenvalues).

7.2. The QR method:
Starting from A0 = A and a sequence of µ0, µ1, ... ∈ C, we compute successively for k = 0, 1, 2, ...

Ak − µkI = QkRk (QR decomposition, Qk unitary, Rk upper triangular),

Ak+1 = RkQk + µkI.

Notice that Ak = Q∗k−1Ak−1Qk−1 = ... = U∗kAUk with unitary Uk = Qk−1...Q1Q0, that is, A
and Ak are similar. It is possible to show (at least for symmetric A and for a large choice of shift
parameters µk) that Ak → T upper triangular, and that Uk → U unitary, and thus we obtain
the Schur decomposition T = U∗AU . In practice it is observed that the convergence is quite
fast, such that after O(n) iterations one obtains an acceptable precision.
A basic (naive) implementation of 7.2 requires O(n3) arithmetic operations for each iteration,
which can be reduced to O(n2) provided A0 is already in upper Hessenberg form (i.e., the (j, k)
entry is zero for j > k + 1), as seen as follows. In the sequel of �7 we adapt matlab notation for
submatrices.
Recall that for all x ∈ Cn there exists w ∈ Cn of norm 1 such that H(w) = 1− 2ww∗ is unitary
(called Householder transformation) and that H(w)x = ‖x‖e1, with e1 the �rst canonical vector.
Recall also that the matrix mutiplication H(w)B = B − w(w∗B) can be implemented with a
complexity O(n2) by adding a multiple of w to each column of B (and similarly for BH(w)).

7.3. Reduction to Hessenberg form:
We just describe the �rst reduction, and apply the same procedure to all lower right submatrices:
let Hn−1 ∈ C(n−1)×(n−1) be a Householder transformation with Hn−1A(2 : n, 1) = αe1, then


1 0 · · · 0
0
.

.

. Hn−1

0

A


1 0 · · · 0
0
.

.

. Hn−1

0


∗

=


∗ ∗ · · · ∗
α
0
.

.

. ∗
0




1 0 · · · 0
0
.

.

. Hn−1

0

 =


∗ ∗ · · · ∗
α
0
.

.

. ∗
0

 .

Thus we get in complexity O(n3) an upper Hessenberg A0 = Q∗AQ with unitary

Q =

[
I1 0
0 Hn−1

] [
I2 0
0 Hn−2

]
...

[
In−2 0

0 H2

]
.
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7.4. Details for implementing the QR method:
Let us show by recurrence that if Ak is lower Hessenberg then also Ak+1, which will allow us
to deduce an implementation of the QR method with complexity O(n2) for each iteration (giving
an overall complexity of O(n3)). At step j ∈ 1, ..., n − 1 one constructs a Givens rotation Gj =
diag(Ij−1, Hj , In−1−j) with unitary Hj ∈ C2×2 such that

Hj(Gj−1...G1(Ak − µkI))(j : j + 1, j) = (αj , 0)T

for some αj > 0, and thus Gj−1...G1(Ak − µkI) is upper Hessenberg, the �rst j elements on the
�rst lower diagonal being equal to 0, but not yet the other ones. Thus setting

Q∗k = Gn−1...G1, Rk = Q∗k(Ak − µkI)

we have obtained our QR decomposition, with the updating formulas Uk+1 = QkG1...Gn−1 and
Ak+1 = µkI +RkQk = µkI +RkG

∗
n−1...G

∗
1. Since any multiplication with Gj on the left (or G∗j

on the right) consists of replacing only rows (columns) j and j + 1 by a linear combination of
both ones, the resulting matrix Ak+1 indeed has a Hessenberg structure, and one iteration has the
complexity O(n2).
In practice, one observes that there is an index γk (decreasing in k) such that

Ak(j + 1, j) are "small" for j = γk, γk + 1, ..., n− 1 but not for j = γk − 1

(where "small" could mean that |Ak(j+1, j)| ≤ τ(|Ak(j, j)|+ |Ak(j+1, j+1)|) with the tolerance
τ of order of a multiple of the machine precision). In this case one decides to make a "de�ation"
and continues to apply the QR decomposition only for the upper left submatrix of order γk, or,
equivalently (at least in exact arithmetic), does no longer use Gives factors Gj for j ≥ γk.
It remains to have a practical idea of how to choose the shift parameters µk (which strongly
in�uences the convergence behavior): common choices are the Rayleigh shift µk = Ak(γk, γk), the
Wilkinson shift where µk is the eigenvalue of Ak(γk−1 : γk, γk−1 : γk) the closest to Ak(γk, γk),
and �nally the "double shift implicit" where one uses both eigenvalues (here the implementation
is more complicated [3], but the advantage is that one can use real arithmetic for real data, with
the price to pay that there might be nontriangular 2× 2 blocks on the diagonal of T ).

As one expects from manipulating unitary matrices, it can be shown that the computation of
the Schur factorization through the QR method is backward stable.

7.2 Computing matrix functions through the Sylvester equation

We still have to discuss an e�cient and numerically stable way of solving (1). By simplifying
notation, consider the Sylvester equation AX−XB = C in the unknown X ∈ Cp×q, with square
upper triangular matrices A,B of order p and q, respectively. In our setting, p, q are small
compared to n, but p 6= q is possible.

7.5. Lemma on the solvability of the Sylvester equation:
The Sylvester equation AX − XB = C has a unique solution for all right-hand sides C if and
only if σ(A) ∩ σ(B) is empty.

Proof. If λ ∈ σ(A) ∩ σ(B) then by choosing as x a corresponding right-hand eigenvector of
A and as y∗ a corresponding left-hand eigenvector of B, we get for C = 0 the two solutions
X ∈ {0, xy∗}.
Conversely, we may assume by using if necessary the Schur decomposition that B is upper
triangular. Then for the jth column of AX −XB = C we get that

(A−B(j, j)I)X(:, j) = C(:, j)−
j−1∑
k=0

X(:, k)B(k, j).
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Since B(j, j) ∈ σ(B) and A − B(j, j)I is invertible by assumption on the spectra, this formula
allows to compute successively all columns of X.

In Parlett's approach (1), the data and in particular the matrix C in general are only available
up to some precision, since they are themselves results of �oating point operations. In order to
monitor the accumulation of rounding errors, one wishes that a small perturbation ∆C of the
right-hand side does not imply a large perturbation ∆X of the solution, i.e., with A(X+ ∆X)−
(X + ∆X)B = C + ∆C one wants to keep

‖∆X‖
‖∆C‖

=
‖∆X‖

‖A∆X −∆XB‖

of moderate size. This motivates heuristically the desire to have a quantity spread(A,B) :=
minY ‖AY − Y B‖/‖Y ‖ as large as possible, the criterion for our partitionning of T , see �7.3.
Unfortunately, we only dispose of upper bounds which we will be able to maximize. Indeed,
spread(A,B) ≤ dist(σ(A), σ(B)), which can be easily seen by considering Y = xy∗, with x right
eigenvectors of A, and y∗ left eigenvectors of B.

7.6. Exercice:
For normal A,B, show that spread(A,B) ≤ dist(σ(A), σ(B)) ≤

√
max (p, q)spread(A,B).

7.3 How to partition?

As we have seen in �7.2, the stability of the Parlett-Schur method depends on the fact whether
spread(Tj,j , Tk,k) is su�ciently large for all j 6= k. Let us stay here with the complex QR method
where T is upper triangular. In this case, we try to partition σ(A), the diagonal of T , in such a
way that dist(σ(Tj,j), σ(Tk,k)), the distance between the diagonal elements of Tj,j and those of
Tk,k becomes as large as possible for all j 6= k. In particular, two identical or "close" eigenvalues
should be in the same block.
It is easy to �nd a partition in classes F1, ..., F` of the discrete set σ(A) such that any two
members of two di�erent classes have a distance of at least δ, the threshold δ > 0 being �xed by
the users. For instance, one may �nd the connected components in an undirected graph where
two vertices = elements of σ(A) are connected by an edge if their distance is < δ.
By making the link between the QR method and the (block) power method, one may show that,
in general, |t1,1| ≤ |t2,2| ≤ ... ≤ |tn,n| for the diagonal elements of T , which makes it likely
that members of the same class are successive elements on the diagonal of T , simplifying the
partitioning of T .
However, it might be necessary to permute some diagonal elements of T (through simultaneous
permutations of rows and columns of T ) destroying the structure of T . It is su�cient to consider
the case of a permutation of the elements tj,j and tj+1,j+1: here one constructs a unitary Schur
factor Hj of order 2 (as in the proof of Lemma 7.1) such that

Hj

[
0 1
1 0

]
T (j : j + 1, j : j + 1)

[
0 1
1 0

]∗
H∗

j = Hj

[
tj+1,j+1 0
tj,j+1 tj,j

]
H∗

j =

[
tj+1,j+1 ∗

0 tj,j

]
.

Thus a similarity transformation with diag(Ij−1, Hj , In−j−1) will reestablish the correct shape
in complexity O(n), with an overall complexity of O(n3).

8 The Arnoldi (or Rayleigh-Ritz) approximation of f(A)b

In many applications A is large but sparse which makes it impossible to compute f(A) by some
direct method as that of �7. For approaching f(A)b we therefore require particular methods
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only based on a matrix-vector product for A, or perhaps on solving systems with some shifted
counterpart of A.
For a projection method, we dispose of an orthonormal basis v1, ..., vm of a linear subspace
Km ⊂ Cn, where we suppose for convenience that v1 = b/‖b‖ (in what follows we will suppose
without loss of generality that ‖b‖ = 1). The orthonormal basis will be arranged in a matrix
Vm = (v1, ..., vm) ∈ Cn×m. The Arnoldi (or Rayleigh-Ritz) approximant of f(A)b is given by the
expression

xm = Vmf(Am)V ∗mb, with Am := V ∗mAVm ∈ Cm×m.

Notice that V ∗mb = e1 the �rst canonical vector in Cm. Also, using 2.5 one easily checks that xm =
Vmf(Am)V ∗mVmV

∗
mb = f(VmV

∗
mAVmV

∗
m)VmV

∗
mb = f(VmV

∗
mA)b with the orthogonal projector

VmV
∗
m onto Km, but, in general, xm is di�erent7 from the projection of f(A)b onto Km. The

computational cost for xm becomes a�ordable as long asm is of moderate size: here one computes
(the �rst column of) f(Am) by some direct method, and needs to store Vm. However, we need
to insure that f is de�ned on σ(Am), for which it will be convenient to suppose in what follows
that f is de�ned in some neighborhood of W (A) (since W (Am) ⊂W (A)).

8.1. Polynomial Krylov spaces:
Consider Km = Km(A; b) = span{b, Ab,A2b, ..., Am−1b}, here supposed to be of dimension m.
Given an orthonormal basis v1, ..., vj of Kj ⊂ Kj+1, it will be therefore su�cient to �nd vj+1 ∈
Kj+1 of unit norm which is orthogonal to v1, ..., vj. This is accomplished by the Arnoldi method
[13], by making Avj orthogonal to v1, ..., vj and by normalizing. In other words,

hj+1,jvj+1 = Avj − h1,jv1 − ...− hj,jvj ,

which can be written in matrix form as AVm = Vm+1Hm with Hm ∈ C(m+1)×m having upper
Hessenberg structure. In particular,8

Am = V ∗mAVm = [Im, 0]Hm =: Hm.

8.2. Lemma: exactness property for polynomial Krylov
For all f ∈ Pm−1 we have that the Arnoldi approximation xm = Vmf(Am)V ∗mb coincides with
f(A)b.

Proof. It is su�cient to show this statement for fk(z) = zk, k = 0, 1, ...,m − 1, which will be
done by reccurence on k: since b ∈ Km, we have that Vmf0(Am)V ∗mb = VmV

∗
mb = f0(A)b.

By construction of Km, there holds fk(A) ∈ Km, and thus for k ≥ 1

fk(A)b = VmV
∗
mAfk−1(A)b = VmV

∗
mAVmfk−1(Am)V ∗mb = Vmfk(Am)V ∗mb.

A combination of 8.2 with 2.5 shows that the Arnoldi error f(A)b−xm is indeed an interpolation
error evaluated at A:

8.3. Corollary: Arnoldi error is interpolation error
Let pm−1 ∈ Pm−1 be an interpolant for (f,Am), then Vmf(Am)V ∗mb = pm−1(A)b.

7Taking f(z)=1/z leads to xm = VmA
−1
m V ∗n b or, equivalently, to the requirement that xm ∈ Km is such that its

residual b−Axm is orthogonal to Km, whereas VmV ∗mA−1b is the element of Km being closest to A−1b (minimal
error).

8We see from this formula that, for symmetric A, also Hm is symmetric, in other words, the above formula
becomes the Lanczos three term recurrence relation, since h1,j = ... = hj−2,j = 0, and hj−1,j = hj,j−1 has been
already computed in the iteration before. Because of potential rounding errors, it might be however suitable to
keep the above full orthogonalization procedure.
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At least for symmetric A (and thus Am) we can conclude that the Arnoldi error will be small if
the eigenvalues of Am (also called Ritz values) represent "well" the eigenvalues of A. Of course
in general there are not enough Ritz values to approach each eigenvalue of A, but for a small
Arnoldi error it could be su�cient to insure that the Lebesgue function of the Ritz values is not
too large on the eigenvalues, see below.
Let us consider a generalization.

8.4. Rational Krylov spaces:
Given some parameters z1, z2, z3, ... ∈ C ∪ {∞} with zj 6= 0 (otherwise translation), one de�nes

K̃m = Km(A, qm−1(A)−1b) =
{ p

qm−1
(A)b : p ∈ Pm−1

}
, qm(z) =

m∏
j=1

(1− z

zj
),

provided that qm−1(A) is invertible (which is for instance true if zj 6∈ W (A)). Notice that

K̃m = Km(A, b) for the parameters z1 = ... = zm−1 = ∞. We suppose as before that K̃m is of
dimension m, and denote by v1, ..., vm an orthogonal basis of K̃m.
In practice, one does not compute such a basis directly via 8.1 in forming the vector qm−1(A)−1b.
Following the original work of Ruhe, for computing vj+1 from the orthogonal basis of K̃j, one does
merely choose a continuation vector v ∈ Kj, orthogonalizes A(I −A/zj)−1v (obtained by solving
a system of linear equations) against v1, ..., vj, and normalizes. Because of the occurrence of the
resolvent, the link between the matrix of recurrence coe�cients and the matrix Am = V ∗mAVm is
more complicated, we omit details.

8.5. Lemma: exactness property for rational Krylov
For all f ∈ Pm−1/qm−1 we have that the rational Arnoldi approximation xm = Vmf(Am)V ∗mb
coincides with f(A)b.

Proof. Write c = qm−1(A)−1b, and let us denote by Ṽm the matrix having as columns an or-
thogonal basis of Km(A, c), and Ãm = Ṽ ∗mAṼm. Since we have two orthogonal bases of the same
space, there exists an unitary matrix U of order m such that Vm = ṼmU , showing that xm =
ṼmUf(U∗ÃmU)U∗Ṽ ∗mb = Ṽmf(Ãm)Ṽ ∗mb. Write more explicitly f = p/qm−1 with p ∈ Pm−1, we
get applying 8.2 that b = qm−1(A)c = Ṽmqm−1(Ã)Ṽ ∗mc and thus Ṽ ∗mb = qm−1(Ã)Ṽ ∗mc, implying
that

r(A)b = p(A)c = Ṽmp(Ãm)Ṽ ∗mc = Ṽmf(Ãm)qm−1(Ã)Ṽ ∗mc = xm.

8.6. Corollary: rational Arnoldi error is interpolation error
Let pm−1/qm−1 ∈ Pm−1/qm−1 be an interpolant for (f,Am), then Vmf(Am)V ∗mb = pm−1

qm−1
(A)b.

8.7. Remark: link with orthogonal rational functions
Consider the scalar product for rational functions9

〈P,Q〉 =
(
Q(A)b

)∗(
P (A)b

)
.

By construction,
∃ϕj ∈ Pj/qj , vj+1 = ϕj(A)b, 〈ϕj , ϕk〉 = δj,k,

and thus these rational functions ϕ0, ..., ϕm−1 are orthogonal rational functions (ORF). According
to 8.5 we know that ej+1 = V ∗mvj+1 = V ∗mVmϕ(Am)V ∗mb = ϕj(Am)e1.

9By the present assumptions, this "scalar product" is only positive de�nite on Pm−1/qm−1, but let us consider
a su�ciently small m.
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Let us introduce the auxiliary vectors ṽm+1 = ϕ̃m(A)b, ϕ̃m ∈ Pm/qm−1 by supposing that

v1, ..., vm, ṽm+1 is an orthonormal basis for the poles z1, z2, ..., zm−1, z̃m =∞.

We show below that the numerator ϕ̃mqm−1 is a non-trivial multiple of the characteristic polyno-
mial χ of Am which coincides with the minimal polynomial of Am. Hence the rational interpolant
in 8.6 is unique, and in addition we may use the theory of zeros of orthogonal rational functions
to learn more about10 how (rational) Ritz values approach eigenvalues of A.

Proof. Since χ/qm−1 ∈ Pm/qm−1 with orthonormal basis ϕ0, ..., ϕm−1, ϕ̃m, there exist c, c0, ..., cm−1 ∈
C such that

χ

qm−1
= cϕ̃m +

m−1∑
j=0

cjϕj .

Factorizing χ(z) = (z−a)χ̃(z) with χ̃ ∈ Pm−1, we may apply 8.5 and obtain for j ∈ {0, ...,m−1}

cj = 〈 χ

qm−1
, ϕj〉 = v∗j+1(A− aI)

χ̃

qm−1
(A)b

= e∗j+1V
∗
m(A− aI)Vm

χ̃

qm−1
(Am)e1 = e∗j+1

χ

qm−1
(Am)e1

and thus cj = 0 since χ(Am) = 0. Thus χ/qm−1 is a (non-trivial) multiple of ϕ̃m, as claimed
above. If the minimal polynomial of Am would be of degree < m, we could expand it as in the
�rst part of the proof, but now with c = 0, and the same argument shows that such a polynomial
must be trivial, a contradiction.
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