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Prologue

The main purpose of this lecture is to present a rigorous mathematical

theory for a class of methods, called O(N) methods, that are being

developed by computational physicists and chemists for the solution of the

electronic structure problem, which is fundamental to quantum chemistry,

solid state physics, biology, etc.

The theory is based on general results on the decay in the entries of

functions of sparse matrices. In particular, one needs to study the

asymptotic behavior of the off-diagonal matrix elements for N → ∞.

While this work is primarily theoretical, the theory can be used to

construct better algorithms for electronic structure computations. Some of

our techniques are already used in a code called FreeON developed by a

group headed by Matt Challacombe at Los Alamos National Laboratory.
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The Electronic Structure Problem

A fundamental problem in quantum chemistry and solid state physics is to

determine the electronic structure of (possibly large) atomic and molecular

systems.

The problem amounts to computing the ground state (smallest eigenvalue

and corresponding eigenfunction) of the many-body quantum-mechanical

Hamiltonian (Schrödinger operator), H.

Variationally, we want to minimize the Rayleigh quotient:

E0 = min
Ψ6=0

〈HΨ,Ψ〉
〈Ψ,Ψ〉

and Ψ0 = argminΨ6=0
〈HΨ,Ψ〉
〈Ψ,Ψ〉

where 〈·, ·〉 denotes the L2 inner product.
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The Electronic Structure Problem

In the Born-Oppenheimer approximation, the many-body Hamiltonian (in

atomic units) is given by

H =

N∑
i=1

−
1

2
∆i −

M∑
j=1

Zj

|xi − rj |
+

N∑
j 6=i

1

|xi − xj |


where N = number of electrons and M = number of nuclei in the system.

The operator H acts on a suitable subspace D(H) ⊂ L2(R3N), the

antisymmetrized tensor product of N copies of H1(R3):

D(H) = H1(R3) ∧ . . .∧ H1(R3) .

This is because electrons are Fermions and therefore subject to Pauli’s

Exclusion Principle. Hence, the wavefunction must be antisymmetric:

Ψ(x1, . . . ,xi , . . . ,xj , . . . ,xN) = −Ψ(x1, . . . ,xj , . . . ,xi , . . . ,xN).

NOTE: To simplify notation, spin is ignored here.
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The Electronic Structure Problem

Unless N is very small, the curse of dimensionality makes this problem

intractable.

In order to make the problem tractable various approximations have been

introduced, most notably:

Wavefunction methods (e.g., Hartree-Fock)

Density Functional Theory (e.g., Kohn-Sham; Nobel Prize, 1998)

Hybrid methods

In these approximations the original, linear eigenproblem HΨ = EΨ for the

many-electrons Hamiltonian is replaced by a nonlinear one-particle

eigenproblem of the form

F (ψi ) = λiψi , 〈ψi , ψj〉 = δij , 1 ≤ i , j ≤ N

where λ1 ≤ λ2 ≤ · · · ≤ λN . This problem is nonlinear because the operator

F depends nonlinearly on the ψi .
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The Electronic Structure Problem

Roughly speaking, in DFT the idea is to consider a single electron moving

in the electric field generated by the nuclei and by some average

distribution of the other electrons. Starting with an initial guess of the

charge density, a potential is formed and the corresponding one-particle

eigenproblem is solved; the resulting charge density is used to define the

new potential, and so on until the charge density no longer changes

appreciably.

More formally, DFT reformulates the problem so that the unknown

function is the electronic density

ρ(x) = N

∫
R3(N−1)

|Ψ(x,x2, . . . ,xN)|2dx2 · · · dxN ,

a scalar field on R3.

The function ρ minimizes a certain functional, the form of which is not

known explicitly.
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The Electronic Structure Problem

Various forms of the density functional have been proposed, the most

successful being the Kohn-Sham model:

IKS(ρ) = inf

{
TKS +

∫
R3

ρV dx +
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x − y|
dxdy + Exc(ρ)

}
,

where ρ(x) =
∑N

i=1 |ψi (x)|2, TKS = 1
2

∑N
i=1

∫
R3 |∇ψi |

2 dx is the kinetic

energy term, V denotes the Coulomb potential, and Exc denotes the

exchange term that takes into account the interaction between electrons.

The infimum above is taken over all functions ψi ∈ H1(R3) such that

〈ψi , ψj〉 = δij , where 1 ≤ i , j ≤ N and
∑N

i=1 |ψi (x)|2 = ρ.

This IKS is minimized with respect to ρ. Note that ρ, being the electron

density, must satisfy ρ > 0 and
∫

R3 ρ dx = N.
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The Electronic Structure Problem

The Euler–Lagrange equations for this variational problem are the

Kohn–Sham equations:

F (ρ)ψi = λiψi , 〈ψi , ψj〉 = δij (1 ≤ i , j ≤ N)

with

F (ρ) = −
1

2
∆+ U(x, ρ)

where U denotes a (complicated) potential, and ρ =
∑N

i=1 |ψi (x)|2.

Hence, the original intractable linear eigenvalue problem for the

many-body Hamiltonian is reduced to a tractable nonlinear eigenvalue

problem for a single-particle Hamiltonian.
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The Electronic Structure Problem

The nonlinear problem can be solved by a ‘self-consistent field’ (SCF)

iteration, leading to a sequence of linear eigenproblems

F (k)ψ
(k)
i = λ

(k)
i ψ

(k)
i , 〈ψ(k)

i , ψ
(k)
j 〉 = δij , k = 1, 2, . . .

(1 ≤ i , j ≤ N), where each F (k) = −1
2∆+ U(k) is a one-electron linearized

Hamiltonian:

U(k) = U(k)(x, ρ(k−1)), ρ(k−1) =

N∑
i=1

|ψ
(k−1)
i (x)|2.

Solution of each of the (discretized) linear eigenproblems above leads

to a typical O(N3) cost per SCF iteration. However, the actual

eigenpairs (ψ
(k)
i , λ

(k)
i ) are unnecessary, and diagonalization of the

one-particle Hamiltonians can be avoided!
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The Electronic Structure Problem

The individual eigenfunctions ψi are not needed. All one needs is the

orthogonal projector P onto the occupied subspace

Vocc = span{ψ1, . . . , ψN }

corresponding to the N lowest eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN .

At the kth SCF cycle, an approximation to the orthogonal projector P(k)

onto the occupied subspace V
(k)
occ needs to be computed.

All quantities of interest in electronic structure theory can be computed

from P. For example, the expected value for the total energy of the

system can be computed once P is known, as are the forces.

Higher moments of observables can also be computed once P is known.
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Density matrices

P is called the density operator of the system (von Neumann, 1927). For

systems in equilibrium, [H,P] = 0 and P is a function of the Hamiltonian:

P = f (H).

Density operators are sometimes normalized so that Tr(P) = 1.

In practice, the operators are replaced by matrices by Rayleigh-Ritz

projection onto a finite-dimensional subspace spanned by a set of basis

functions {φi }
Nb
i=1, where Nb is a multiple of N. Typically, N = C · Ne

where C ≥ 2 is a moderate integer when linear combinations of GTOs

(Gaussian-type orbitals) are used.

In some codes, plane waves are used. Finite difference and finite element

(“real space”) methods, while also used, are less popular.
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Density matrices

The Gramian matrix S = (Sij) where Sij = 〈φi , φj〉 is called the overlap

matrix in electronic structure. It is dense, but its entries fall off very

rapidly for increasing separation. In the case of GTOs:

|Sij | ≈ e−|i−j |2 , 1 ≤ i , j ≤ Nb .

Neglecting tiny entries leads to banded overlap matrices.

The density matrix P is the S-orthogonal projector onto the occupied

subspace. It is convenient to make a change of basis, from non-orthogonal

to orthogonal.

Trasforming the Hamiltonian H to an orthogonal basis means performing a

congruence trasformation: Ĥ = ZHZT , where Z is such that ZZT = S−1.

Common choices for Z are the inverse Cholesky factor of S or the inverse

square root S−1/2. This can be done efficiently (AINV algorithm).
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Example: Hamiltonian for C52H106, AO basis.
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Example: Hamiltonian for C52H106, orthogonal basis
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Density matrices

Summarizing, in electronic structure theory we need to compute P, the

spectral projector onto the subspace spanned by the N lowest

eigenfunctions of H (occupied states):

P = ψ1 ⊗ψ1 + · · ·+ψN ⊗ψN = |ψ1〉〈ψ1| + · · ·+ |ψN〉〈ψN |

where N is the number of electrons and Hψi = λi ψi , i = 1, . . . ,N.

Note that we can write P = f (H) where f is the step function

f (x) =


1 if x < µ
1
2 if x = µ

0 if x > µ

with λN < µ < λN+1 (µ is the “Fermi level”).
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O(N) methods

Physicists have observed that the entries of the density matrix P decay

away from the main diagonal. The decay rate is algebraic for metallic

systems, and exponential (or faster) for insulators and semiconductors.

Hence, the density matrix is localized.

This property has been called nearsightedness by W. Kohn.

This property implies that in the thermodynamic limit (N → ∞ while

keeping the particle density constant) the number of entries Pij with

|Pij | > ε grows only linearly with N, for any prescribed ε > 0.

For insulators and semiconductors, this makes O(N) methods possible.
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Example: Density matrix for C52H106, orthogonal basis
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Example: Density matrix for H = −1
2∆+ V , random V ,

finite differences (2D lattice), N = 10
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O(N) methods

The fact that P is very nearly sparse allows the development of O(N)

approximation methods. Popular methods include

1 Chebyshev expansion: P = f (H) ≈ c0
2 +

∑n
k=1 ckTk(H)

2 Rational expansions based on contour integration:

P =
1

2πi

∫
Γ
(zI − H)−1dz ≈

q∑
k=1

wk(zk I − H)−1

3 Density matrix minimization:

Tr(PH) = min, subject to P = P∗ = P2 and rank(P) = N

4 Etc. (see C. Le Bris, Acta Numerica, 2005; Bowler & Miyazaki, 2011)

All these methods can achieve O(N) scaling by exploiting “sparsity.”
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A mathematical foundation for O(N) methods

In literature one finds no rigorously proved, general results on the decay

behavior in P. Decay estimates are either non-rigorous (at least for a

mathematician!), or valid only for very special cases.

Goal: To establish rigorous estimates for the rate of decay in the

off-diagonal entries of P in the form of upper bounds on the entries of the

density matrix, in the thermodynamic limit N → ∞.

Ideally, these bounds can be used to provide cut-off rules, that is, to decide

which entries in P need not be computed, given a prescribed error

tolerance.

To achieve this goal we first need to find an appropriate formalization for

the type of problems encountered by physicists.

The main tool used in our analysis, besides linear algebra, is classical

approximation theory.
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A mathematical foundation for O(N) methods

Let C be a fixed positive integer and let Nb := C · N, where N → ∞. We

think of C as the number of basis functions per electron while N is the

number of electrons.

We call a sequence of discrete Hamiltonians a sequence of matrices {HN }

of order Nb, such that

1 The matrices HN have spectra uniformly bounded w.r.t. N: up to

shifting and scaling, we can assume σ(HN) ⊂ [−1, 1] for all N.

2 The HN are banded, with uniformly bounded bandwidth as N → ∞.

More generally, the HN are sparse with maximum number of nonzeros

per row bounded w.r.t. N.

These assumptions model the fact that the Hamiltonians have finite

interaction range, which remains bounded in the thermodynamic limit

N → ∞.
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A mathematical foundation for O(N) methods

Next, let H be a Hamiltonian of order Nb. Denote the eigenvalues of H as

−1 ≤ λ1 ≤ . . . ≤ λN < λN+1 ≤ . . . ≤ λNb
≤ 1 .

The spectral gap is then γN = λN+1 − λN . In quantum chemistry this is

known as the HOMO-LUMO gap, in solid state physics as the band gap.

Two cases are possible:

1 There exists γ > 0 such that γN ≥ γ for all N.

2 infN γN = 0.

The first case corresponds to insulators and semiconductors, the second

one to metallic systems.
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Example: Spectrum of the Hamiltonian for C52H106.
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Exponential decay in the density matrix for gapped systems

Theorem

Let {HN } be a sequence of discrete Hamiltonians of size Nb = C · N, with

C constant and N → ∞. Let PN denote the spectral projector onto the N

occupied states associated with HN . If there exists γ > 0 such that the

gaps γN ≥ γ for all N, then there exists constants K and α such that

|[PN ]ij | ≤ K e−αdN (i ,j) (1 ≤ i , j ≤ N),

where dN(i , j) denotes the geodetic distance between node i and node j in

the graph GN associated with HN . The constants K and α depend only on

the gap γ (not on N) and are easily computable.

Note: The graph GN = (VN ,EN) is the graph with Nb vertices such that

there is an edge (i , j) ∈ EN if and only if [HN ]ij 6= 0.
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Exponential decay in the density matrix for gapped systems

Sketch of the proof. There are a few steps involved:

1 Recall that PN = f (HN) where f is a step function. For gapped

systems, f can be approximated arbitrarily well in the sup norm by an

analytic function, for example, the Fermi-Dirac function fFD .

2 Use best approximation polynomials to approximate fFD (in the sup

norm).

3 By Bernstein’s Theorem, for any analytic function g defined on a

neighborhood of [−1, 1], the best nth degree polynomial error satisfies

En(g) := ‖pn − g‖∞ ≤ c · e−ξ n

for suitable constants c and ξ which depend only on g .

4 Apply Bernstein’s result to g = fFD , compute the decay constants,

and use the spectral theorem to go from scalars to matrices.
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Analytic approximations of the step function

If µ (the “Fermi level”) is in the gap, λN < µ < λN+1, the step function

can be approximated by the Fermi-Dirac function: f (x) = limβ→∞ fFD(x),

where

fFD(x) =
1

1 + e
β(x−µ)

.

Here β can be interpreted as an inverse temperature.

Other approximations of the step function are also in use, such as

f (x) = lim
β→∞

[
1

2
+

1

π
tan−1(βπ(x − µ))

]
,

f (x) = lim
β→∞ erfc (−β(x − µ)) ,

or

f (x) = lim
β→∞ [1 + tanh(β((x − µ))] .
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Fermi-Dirac approximation of step function (µ = 0)
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Fermi-Dirac approximation of step function

The actual choice of β in the Fermi-Dirac function is dictated by the size

of the gap γ and by the approximation error.

What is important is that for any prescribed error, there is a maximum

value of β that achieves the error for all N, provided the system has

non-vanishing gap.

On the other hand, for γ → 0 we have β → ∞ and the bounds blow up.

This happens for metals (at zero temperature).

There is still decay in the density matrix, but it may be algebraic rather

than exponential. Simple examples show it can be as slow as O(|i − j |−1).

In practice, γ is either known experimentally or can be estimated by

computing the eigenvalues of a moderate-size Hamiltonian.
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Dependence of decay rate on the spectral gap and on the
temperature

In the physics literature, there has been some controversy on the precise

dependence of the inverse correlation length α in the decay estimate

|[PN ]ij | ≤ c · e−α dN (i ,j)

on the spectral gap γ (for insulators) and on the electronic temperature T

(for metals at positive temperature).

Our theory gives the following results:

1 α = cγ+ O(γ3), for γ → 0+ and T = 0;

2 α = πκBT + O(T 3), for T → 0+ (indep. of γ).

These asymptotics are in agreement with experimental and numerical

results, as well as with physical intuition.
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Decay bounds for the Fermi-Dirac approximation

Assume that H is m-banded and has spectrum in [−1, 1], then∣∣∣∣∣
[(

I + e
β(H−µI )

)−1
]

ij

∣∣∣∣∣ ≤ Ke−α|i−j | ≡ K λ
|i−j|

m .

Note that K , λ depend only on β. In turn, β depends on γ and on the

desired accuracy.

We have

γ → 0+ ⇒ λ → 1−

and

γ → 1 ⇒ λ → 0.872.

We choose β and m̂ so as to guarantee an accuracy ‖P − f (H)‖2 < 10−6.

We can regard γ−1 as the condition number of the problem.
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Computed bandwidth for approximations of P

f (x) =
1

1 + e
β(x−µ)
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Density matrix, Ne = 30, relative gap γ = 0.6
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Density matrix, Ne = 30, relative gap γ = 0.2
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Density matrix, Ne = 30, relative gap γ = 0.0001
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Overview

1 The electronic structure problem

2 Density matrices

3 O(N) methods

4 A mathematical foundation for O(N) methods

5 O(N) approximation of functions of sparse matrices

6 A few numerical experiments

7 Some open problems
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Decay in analytic functions of sparse matrices

Our approach can be used to establish exponential decay bounds for

arbitrary analytic functions of sparse matrices.

Sparsity pattern of a 2n × 2n Hamiltonian matrix A and decay in eA.
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Decay for logarithm of a sparse matrix

Sparsity pattern of H = mesh3e1 (from NASA) and decay in log(H).
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Here H is symmetric positive definite.
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Sufficient conditions for O(N) approximation of f (H)

Let {HN} be a sequence of N ×N Hermitian matrices such that there

is a closed interval I with the property that σ(HN) ⊂ I for all N

Assume that {HN} has bandwidth m independent of N

Let f be a function analytic on a neighborhood of I such that the

spectra σ(HN) remain bounded away from any singularities of f as

N → ∞
Then for all N and for any ε > 0 there is a matrix B of bandwidth m̂

independent of N such that ‖f (HN) − B‖2 < ε

The result can be extended to general sparsity patterns of {HN}
(independent of N)

Generalizations to non-normal matrices are possible, e.g., using

Crouzeix’s theorem.
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Approximation of f (H) by Chebyshev polynomials

Algorithm (Goedecker & Colombo, 1994) More

We compute approximations of f (H) using Chebyshev polynomials

The degree of the polynomial can be estimated a priori

The coefficients of the polynomial can be pre-computed (indep. of N)

Estimates for the extreme eigenvalues of H are required

The polynomial expansion is combined with a procedure that a priori

determines a bandwidth or sparsity pattern for f (H) outside which

the elements are so small that they can be neglected

Cost

This method is multiplication-rich; the matrices are kept sparse

throughout the computation, hence O(N) arithmetic and storage

requirements. Matrix polynomials can be efficiently evaluated by the

Paterson-Stockmeyer algorithm.
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Chebyshev expansion of Fermi-Dirac function

The bandwidth was computed prior to the calculation to be ≈ 20; here H

is tridiagonal (1D Anderson model).

Table: Results for f (x) = 1
1+e

(β(x−µ))

µ = 2, β = 2.13 µ = 0.5, β = 1.84

N error k m̂ error k m̂

100 9e−06 18 20 6e−06 18 22

200 4e−06 19 20 9e−06 18 22

300 4e−06 19 20 5e−06 20 22

400 6e−06 19 20 8e−06 20 22

500 8e−06 19 20 8e−06 20 22

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Computation of Fermi-Dirac function
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The O(N) behavior of Chebyshev’s approximation to the Fermi–Dirac

function f (H) = (exp(β(H − µI )) + I )−1.
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Chebyshev expansion of entropy-like function

Some results for H = HN tridiagonal, SPD, f (x) = x log (x)

H log (H) Tr[H log (H)]

N rel. error error m̂ k

100 5e−07 3e−04 20 9

200 6e−07 8e−04 20 9

300 1e−07 3e−04 20 10

500 2e−07 5e−04 20 10

In the Table, m̂ is the estimated bandwidth and k is the number of terms

in the Chebyshev expansion. Note the O(N) behavior in terms of cost.
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Summary

‘Gapped’ systems, like insulators, exhibit strong localization

Localization in P = f (H), when strong enough, can lead to fast

approximation algorithms

Our decay bounds for density matrices depend only on the gap γ and

on the sparsity of H; they are, therefore, universal

These bounds can be useful in determining appropriate sparsity

patterns (or bandwidths) that capture the nonnegligible entries in

P = f (H)

Constants in O(N) algorithms can be large. In practice, to beat

O(Np) algorithms (p = 2, 3) on real problems, N must be large

enough.

Extensions to non-Hermitian case possible (applications??)
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Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Some open problems

The bounds represent the worst-case scenario and can be pessimistic.

To improve them, one must make use of additional information, such

as the eigenvalue distribution, which may not be readily available.

How to deal with metallic systems (γ → 0 as N → ∞)?

1 Wavelets?

2 H-matrices? Multipole methods? Domain Decomposition...?

3 Optimally localized bases? P = XX ∗, X = [u1, . . . , uN ]

What is the effect of errors in estimating λmin, λmax, and γ?

What about other asymptotics? E.g., scaling for C → ∞?

Which are the best O(N) algorithms? There are many of them...

An excellent introduction: C. Le Bris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.

Michele Benzi Applications of Matrix Functions Part III: Quantum ChemistryLille, SSMF2013



Localization in spectral projectors: small relative gap

Rank-one spectral projector for H = H∗ tridiagonal. Relative gap

γ = 10−3. Note the slow decay and oscillatory behavior of |Pij |.
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Localization in spectral projectors: large relative gap

Rank-one spectral projector for H = H∗ tridiagonal. Relative gap γ = 0.5.
Back
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Chebyshev approximation

For H with σ(H) ⊂ [−1, 1] the Chebyshev polynomials are given by

Tk+1(H) = 2HTk(H) − Tk−1(H), T1(H) = H, T0(H) = I .

Then f (H) can be represented in a series of the form

f (H) =

∞∑
k=0

ckTk(H).

The coefficients of the expansion are given by

ck ≈
2

M

M∑
j=1

f (cos(θj)) cos((k − 1)θj),

where θj = π(j − 1
2)/M. Back
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The N-independence of the error

The mth truncation error without dropping can be written as

‖em(H)‖ = ‖f (H) −

m∑
k=0

ckTk(H)‖.

For x in [−1, 1] we have that |Tk(x)| ≤ 1 for k = 1, 2, . . . . Then

‖em(H)‖ = ‖
∞∑

k=m+1

ckTk(H)‖ ≤
∞∑

k=m+1

|ck |.

Back
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A Theorem of Bernstein

The set of Faber polynomials can be used to obtain a uniform

approximation to an analytic function f with a sequence of polynomials of

bounded degree, i.e.,

|f (z) − ΠN(z)| < cqN (0 < q < 1)

for all z ∈ F , where c and q depend on the analytic properties of f .

Example – Disk

If the region is a disk of radius ρ centered at z0, then for any function f

analytic on the disk of radius ρ/q centered at z0, where 0 < q < 1, there

exists a polynomial ΠN of degree at most N and a positive constant c

such that

|f (z) − ΠN(z)| < cqN ,

for all z ∈ F .

Back
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