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Motivation

• Developing geometrical and statistical tools to analyse
biomedical shapes,

• Developing the associated numerical algorithms.
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Example of problems of interest

Given two shapes, find a diffeomorphism of R3 that maps one
shape onto the other
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Example of problems of interest

Given two shapes, find a diffeomorphism of R3 that maps one
shape onto the other

Different data types and different way of representing them.

Figure: Two slices of 3D brain images of the same subject at different
ages
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Example of problems of interest
Given two shapes, find a diffeomorphism of R3 that maps one
shape onto the other

Deformation by a diffeomorphism

Figure: Diffeomorphic deformation of the image


SimulationBrain.mp4
Media File (video/mp4)
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About Computational Anatomy

Old problems:

1 to find a framework for registration of biological shapes,

2 to develop a statistical analysis in this framework.

Action of a transformation group on shapes or images
Idea pioneered by Grenander and al. (80’s), then developed by
M.Miller, A.Trouvé, L.Younes.

Figure: deforming the shape of a fish by D’Arcy Thompson, author of
On Growth and Forms (1917)

New problems like study of Spatiotemporal evolution of
shapes within a diffeomorphic approach
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A Riemannian approach to diffeomorphic
registration

Several diffeomorphic registration methods are available:

• Free-form deformations B-spline-based diffeomorphisms by D.
Rueckert

• Log-demons (X.Pennec et al.)

• Large Deformations by Diffeomorphisms (M. Miller,A.
Trouvé, L. Younes)

Only the last one provides a Riemannian framework.
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A Riemannian approach to diffeomorphic
registration

• vt ∈ V a time dependent vector field on Rn.

• φt ∈ Diff , the flow defined by ∂tφt = vt(φt).

Action of the group of diffeomorphism G0 (flow at time 1):

Π : G0 × C → C ,
Π(φ,X )

.
= φ.X

Right-invariant metric on G0: d(φ0,1, Id)2 = 1
2

∫ 1

0
|vt |2V dt.
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Inexact matching: taking noise into account

Minimizing

J (v) =
1

2

∫ 1

0

|vt |2V dt +
1

2σ2
d(φ0,1.A,B)2 .

In the case of landmarks:

J (φ) =
1

2

∫ 1

0

|vt |2V dt +
1

2σ2

k∑
i=1

‖φ(xi )− yi‖2 ,

In the case of images:

d(φ0,1.I0, Itarget)
2 =

∫
U

|I0 ◦ φ1,0 − Itarget |2dx .

Main issues for practical applications:

• choice of the metric (prior),

• choice of the similarity measure.
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A Riemannian framework

Proposition

The inexact matching functional

J (v) =

∫ 1

0

|vt |2V dt +
1

σ2
d(φ0,1.A,B)2

leads to geodesics on the orbit of A for the induced Riemannian
metric.

Proposition

Left-action G × Q 7→ Q of a group G endowed with a
right-invariant metric induces a Riemannian metric on the orbits of
the action and the map Πq0 : G 3 g 7→ g · q0 ∈ Q is a Riemannian
submersion.
Consequence: Geodesics downstairs horizontally lift to geodesics
upstairs.

• Statistics on the initial momentum.
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Bayesian interpretation

The prior in the functional

J (v) =

∫ 1

0

|vt |2V dt +
1

σ2
d(φ0,1.A,B)2

suggests a white noise in time for generic evolutions.

Figure: Kunita flows

→ Not realistic for evolutions of biological shapes.
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Interpolating sparse longitudinal shape data

What we aim to do:

Within a diffeomorphic framework:

Let (S i
t i0
, . . . ,S i

t ik
)i∈[1,n] be a n−sample of shape sequences indexed

by the time (t i0, . . . , t
i
n) ⊂ [0, 1].

Having in mind biological shapes, at least two problems

� To find a deterministic framework to treat each sample.
(in which space to study these data?)

� To develop a probabilistic framework to do statistics.
(classification into normal and abnormal growth)
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A natural attempt

How to interpolate a sequence of data (S0, . . . ,Stk ) (images,
surfaces, landmarks . . .)

When k = 1 −→ standard registration problem of two images:
Geodesic on a diffeomorphism group - LDDMM framework
(M.Miller, A.Trouvé, L.Younes, F.Beg,...)

F(v) =
1

2

∫ 1

0

|vt |2V dt + |φ1.S0 − St1 |2 ,

{
φ0 = Id

φ̇t = vt(φt) .
(1)

Extending it to k > 1,

F(v) =
1

2

∫ tk

0

|vt |2V dt +
k∑

j=1

|φtj .S0 − Stj |2 ,

=⇒ piecewise geodesics in the group of diffeomorphisms
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Illustration on 3D images

Figure: Slices of 3D volumic images: 33 / 36 / 43 weeks of gestational
age of the same subject.
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Illustration on 3D images

Video courtesy of Laurent Risser

Figure: Video courtesy of Laurent Risser
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Illustration on 3D images

Video courtesy of Laurent Risser

Figure: Representation of the surface - Back of the brain
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How to smoothly interpolate longitudinal data

In the Euclidean space:

Figure: Sparse data from a sinus curve
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How to smoothly interpolate longitudinal data

In the Euclidean space:

Minimizing the L2 norm of the speed → piecewise linear
interpolation

Figure: Linear interpolation of the data.
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How to smoothly interpolate longitudinal data

In the Euclidean space:

Enforcing the geodesicity constraint

Figure: Cubic spline interpolation of the data.
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How to smoothly interpolate longitudinal data

In the Euclidean space:

Minimizing the L2 norm of the acceleration → cubic spline
interpolation

Figure: Cubic spline interpolation of the data.
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What is acceleration in our context?

First attempt, on the group in the matching functional:

F(v) =
1

2

∫ 1

0

|vt |2V dt + |φ1.S0 − St1 |2 , (2)

Replace the L2 norm of the speed:

1

2

∫ 1

0

|vt |2V dt (3)

by the L2 norm of the acceleration of the vector field:

1

2

∫ 1

0

| d

dt
vt |2V dt + |φ1.S0 − St1 |2 , (4)

Null cost for this norm −→ vt ≡ v0: Incoherent
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Correct notion of acceleration

Acceleration on a Riemannian manifold M: let c : I → M be a C 2

curve. The notion of acceleration is:

D

dt
ċ(t) = ∇ċ ċ(= c̈k +

∑
i,j

ċiΓ
k
i,j ċj) (5)

with ∇ the Levi-Civita connection.
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Correct notion of acceleration

Acceleration on a Riemannian manifold M: let c : I → M be a C 2

curve. The notion of acceleration is:

D

dt
ċ(t) = ∇ċ ċ(= c̈k +

∑
i,j

ċiΓ
k
i,j ċj) (5)

with ∇ the Levi-Civita connection.

Riemannian splines: Crouch, Silva-Leite (90’s)

On SO(3) inf
c

∫ 1

0

1

2
|∇ċt ċt |2Mdt . (6)

subject to c(i) = ci and ċ(i) = vi for i = 0, 1.
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Correct notion of acceleration

Acceleration on a Riemannian manifold M: let c : I → M be a C 2

curve. The notion of acceleration is:

D

dt
ċ(t) = ∇ċ ċ(= c̈k +

∑
i,j

ċiΓ
k
i,j ċj) (5)

with ∇ the Levi-Civita connection.

Elastic Riemannian splines:

inf
c

∫ 1

0

1

2
|∇ċt ċt |2M +

α

2
|ċt |2Mdt . (6)

subject to c(i) = ci and ċ(i) = vi for i = 0, 1.
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A modeling question

The Euler-Lagrange equation for Riemannian cubics is

∇3
ċ ċ + R(∇ċ ċ , ċ)ċ = 0 , (7)

where R is the curvature tensor of the metric.

Remarks
If π : M 7→ B is a Riemannian submersion then:
geodesics lift to geodesics.
Probably not true for Riemannian cubics . . .

In our context of a group action, G ×M 7→ M:
Πq0 : G 3 g 7→ g · q0 ∈ Q is a Riemannian submersion

Question

Higher-order on the group (upstairs) or higher-order on the orbit
(downstairs)?
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The convenient Hamiltonian setting

Hamiltonian equations of geodesics for landmarks:

Geodesics

{
ṗ = −∂qH(p, q)

q̇ = ∂pH(p, q)
(8)

with H(p, q) = H(p1, . . . , pn, q1, . . . , qn)
.

= 1
2

∑n
i,j=1 pik(qi , qj)pj

and k is the kernel for spatial correlation.

Lemma
On a general Riemannian manifold,

∇q̇ q̇ = K (q)(ṗ + ∂qH(p, q)) (9)

where q̇ = K (q)p with K (q) being the identification given by the
metric between T ∗q Q and TqQ.
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Splines on shape spaces

We introduce a forcing term u as:

Perturbed geodesics

{
ṗt = −∂qH(pt , qt) + ut

q̇t = ∂pH(pt , qt)
(10)

Definition (Shape Splines)

Shape splines are defined as minimizer of the following functional:

inf
u

J(u)
.

=
1

2

∫ tk

0

‖ut‖2
X dt +

k∑
j=1

|qtj − xtj |2 . (11)

subject to (q, p) perturbed geodesic through ut for a freely chosen
norm ‖ · ‖X on T ∗q .



Splines on Shape
Spaces

Francois-Xavier
Vialard

Introduction to Large
Deformation by
Diffeomorphisms
Metric Mapping
(LDDMM)

Interpolation of time
sequence of shapes

Second order
interpolation

Shape Splines

A generative model
for shape evolutions

Geodesic regression

Splines on shape spaces

We introduce a forcing term u as:

Perturbed geodesics

{
ṗt = −∂qH(pt , qt) + ut

q̇t = ∂pH(pt , qt)
(10)

Definition (Shape Splines)

Shape splines are defined as minimizer of the following functional:

inf
u

J(u)
.

=
1

2

∫ tk

0

‖ut‖2
X dt +

k∑
j=1

|qtj − xtj |2 . (11)

subject to (q, p) perturbed geodesic through ut for a freely chosen
norm ‖ · ‖X on T ∗q .
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Simulations

Figure: Comparison between piecewise geodesic interpolation and spline
interpolation

• Matching of 4 timepoints from an initial template.

• | · |X is the Euclidean metric.

• Smooth interpolation in time.
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• Matching of 4 timepoints from an initial template.

• | · |X is the Euclidean metric.

• Smooth interpolation in time.
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Information contained in the acceleration and
extrapolation

Figure: On each row: two different examples of the spline interpolation.
In the first column, the norm of the control is represented whereas the
signed normal component of the control is represented in the second
one. The last column represents the extrapolation.
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Robustness to noise

Due to the spatial regularisation of the kernel:

Figure: Gaussian noise added to the position of 50 landmarks

• Left: no noise.

• Center: standard deviation of 0.02.

• Right: standard deviation of 0.09.
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Stochastics
A stochastic model:

Theorem

If k is C 1, the solutions of the stochastic differential equation
defined by{

dpt = −∂xH0(pt , xt)dt + ut(xt)dt + ε(pt , xt)dBt

dxt = ∂pH0(pt , xt)dt.
(12)

are non exploding with few assumptions on ut and ε.

Figure: The first figure represents a calibrated spline interpolation and the
three others are white noise perturbations ot the spline interpolation with
respectively

√
nε set to 0.25, 0.5 and 0.75.
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A stochastic model:

Theorem

If k is C 1, the solutions of the stochastic differential equation
defined by{

dpt = −∂xH0(pt , xt)dt + ut(xt)dt + ε(pt , xt)dBt

dxt = ∂pH0(pt , xt)dt.
(12)

are non exploding with few assumptions on ut and ε.
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three others are white noise perturbations ot the spline interpolation with
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√
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Simple PCA on the forcing term

Figure: Top row: Four examples of time evolution reconstructions from
the observations at 6 time points (not represented here) in the learning
set. Bottom row: The simulated evolution generated from a PCA
model learn from the pairs (pk

0 , u
k). The comparison between the two

rows shows that the synthetised evolutions from the PCA analysis are
visually good.
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Ongoing work

• Extension to infinite dimensions
(diffeomorphism group and images)

• Spline regression on the space of real images and statistical
studies.
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Geodesic regression

Enforcing the geodesicity constraint, shooting methods on the
space of images:

S(P(0)) =
λ

2
〈∇I (0)P(0),K ?∇I (0)P(0)〉L2 +

1

2
‖I (1)− J‖2

L2 .

(13)

with: 
∂t I + v · ∇I = 0,

∂tP +∇ · (vP) = 0,

v + K ? (P∇I ) = 0.

(14)
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Adjoint equations

Proposition

The gradient of S is given by:
∇P(0)S = −P̂(0) +∇I (0) · K ? (P(0)∇I (0)) where P̂(0) is given
by the solution the backward PDE in time:

∂t Î +∇ · (v Î ) +∇ · (Pv̂) = 0 ,

∂t P̂ + v · ∇P̂ −∇I · v̂ = 0 ,

v̂ + K ? (Î∇I − P∇P̂) = 0 ,

(15)

subject to the initial conditions:{
Î (1) = J − I (1) ,

P̂(1) = 0 ,
(16)
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A key point: Integral formulation
Gradient descent based on an integral formulation:

Theorem

Let I (0), J ∈ H2(Ω,R) be two images and K be a C 2 kernel on Ω.
For any P(0) ∈ L2(Ω), let (I ,P) be the solution of the shooting
equations with initial conditions I (0),P(0). Then, the
corresponding adjoint equations have a unique solution (Î , P̂) in
C 0([0, 1],H1(Ω)× H1(Ω)) such that

P̂(t) = P̂(1) ◦ φt,1 −
∫ 1

t
[∇I (s) · v̂(s)] ◦ φt,s ds ,

Î (t) = Jac(φt,1)Î (1) ◦ φt,1
+
∫ 1

t
Jac(φt,s)[∇ · (P(s)v̂(s))] ◦ φt,s ds .

(17)

with: 
v̂(t) = K ? [P(t)∇P̂(t)− Î (t)∇I (t)] ,

P(t) = Jac(φt,0)P(0) ◦ φt,0 ,
I (t) = I (0) ◦ φt,0 ,

(18)

where φs,t is the flow of v(t) = −K ? P(t)∇I (t).
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Numerical examples on points

Figure:

•••• First Column: Geodesic Regression

• Second column: Linear Interpolation

• Third Column: Spline Interpolation



Splines on Shape
Spaces

Francois-Xavier
Vialard

Introduction to Large
Deformation by
Diffeomorphisms
Metric Mapping
(LDDMM)

Interpolation of time
sequence of shapes

Second order
interpolation

Shape Splines

A generative model
for shape evolutions

Geodesic regression

Papers

I warmly thank Colin Cotter, Darryl Holm, David Meier, Marc
Niethammer, Laurent Risser and Alain Trouvé for this work.
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