Calculating Rational Best Approximants on $(-\infty, 0]$
Herbert Stahl
TFH-Berlin - Germany
3 ièmes journées Approximation 15-16 Mai Lille

In many applications one needs rational approximations on the negative axis \mathbb{R}_{-} of the exponential function or a function of similar type. In our talk we consider rational best approximants $r_{n, n+k}^{*}=r_{n, n+k}^{*}\left(f, \mathbb{R}_{-} ; \cdot\right) \in R_{n, n+k}$ of a given function f on \mathbb{R}_{-}in the uniform norm.

After a short review of characteristic properties of such approximants (the ${ }^{\prime} 1 / 9^{\prime}-$ problem and related asymptotic considerations), we concentrate on numerical methods for their calculation. In the literature one finds two approaches for practical use: One is based on AAK approximation after the problem has been transformed from $\mathbb{R}_{\text {- }}$ onto the unit circle, and the other one has the Remez algorithm as its core piece.

We will describe a new variant of the algorithm. One of its main features is the exploitation of structural properties of the rational best approximants $r_{n, n+k}^{*}$, another one is the use of specific knowledge of the asymptotic behaviour of the error function.

