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This Lecture

New view on
QR, Krylov, and Chasing

I hope you like it.

Combines/extends work of Watkins, Güttel & Berljafa.
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This Lecture

I On computing eigenvalues of a single matrix A.

I I’ll link three topics:

1. Krylov Subspaces
2. Matrix Structures
3. QZ algorithms

I I’ll do this for three spaces:

1. Classical Krylov
2. Extended Krylov
3. Rational Krylov

I More on this topic
I Camps, Meerbergen, Vandebril, A rational QZ algorithm, arXiv.
I Pencils (A,B), deflations, properness, tightly packed bulges,...
I Future work: multi-bulge, multi-pole, real arithmetic, LR variants, ...
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What about the QR algorithm

I The method of choice for solving ‘small dense’ eigenvalue problems.

I QR algorithm: 135.000 hits in Google.

I John Francis & Vera Kublanovskaya in the 60’s.

I Introduction QR algorithm: 79.600 hits in Google.

I Typical way of introducing QR-type algorithms?
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What about my talk – What is QR

I That’s not how I will do it (I build upon Watkins’ work).

I Requested: eigenvalues of A.

I Preprocessing, similarity of A to suitable form H.

K K̃ = f (H)K
Subspace Iteration

H H̃
Explicit QR

Implicit QR, bulge chasing

I What will be discussed in this lecture.
I f (H) determines the convergence (E.g. power method f (H) = H).

I QR-step: pole chasing.
I Link Krylov K – Structure of H (uniqueness: implicit Q-theorem).
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Basis for the Krylov subspace

I Given matrix A and a (sufficiently random) starting vector v :

K (A, v) = [v ,Av ,A2v ,A3v , . . . ,An−1v ],

K(A, v) = spanK (A, v).

I We desire an orthonormal basis Q = [q1, . . . , qn] for K(A, v).

I Nestedeness is important:

∀i : span{q1, . . . , qi} = span{v ,Av , . . . ,Ai−1v},

so a gradual construction is required.

I Construct qi out of the continuation vector.
Options:

I qi+1 constructed out of Aiv . (Numerical issues!!)
I qi+1 constructed out of Aqi . (Standard Arnoldi)
I qi+1 constructed out of Ac for a ‘good’ c ∈ span{q1, . . . , qi}.
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Standard Arnoldi

Classical Gram Schmidt:

1. Normalize v and store as q1.

2. Make Aq1 orthogonal to span{q1}, store the rest as r .
Normalize r and store as q2.

3. Make Aq2 orthogonal to span{q1, q2}, store the rest as r .
Normalize r and store as q3.

4. ...

More precisely

I Aqi orthogonalized against span{q1, . . . , qi} to give rest r .
Normalize r to get qi+1.

I So Aqi is a linear combination of {q1, . . . , qi , qi+1}.
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In Matrix Language

I Example: construction of q3 out of Aq2.
Relation for vector Aq2 depending on q1, q2, q3 (n = 5):

Aq2 = [q1, q2, q3, q4, q5]


×
×
×
0
0

 .

I Matrix relation in detail

A[q1, q2, q3, q4, q5] = [q1, q2, q3, q4, q5]


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 .

I Matrix relation for H Hessenberg:

AQ = QH.
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Arnoldi Process with Different Continuation Vector

Gram Schmidt with different continuation vector.

1. Normalize v and store as q1.

2. Choose a good vector c ∈ span{q1}.
Make Ac orthogonal to span{q1}, store the rest as r .
Normalize r and store as q2.

3. Choose a good vector c ∈ span{q1, q2}.
Make Ac orthogonal to span{q1, q2}, store the rest as r .
Normalize r and store as q3.

4. ...

More precisely

I Take a ’good’ linear combination c ∈ span{q1, . . . , qi}.
Ac orthogonalized against span{q1, . . . , qi} to give rest r .
Normalize r to get qi+1.

I c is linear combination of {q1, . . . , qi}.
Ac is a linear combination of {q1, . . . , qi , qi+1}.

Vandebril (University of Leuven) Rational QZ Algorithm Lille, AMF18 13 / 99



In Matrix Language

I Example: construction of q3 out of Ac , for ’good’ c ∈ span{q1, q2}.
Relation for Ac depending on q1, q2, q3

Ac = [q1, q2, q3, q4, q5]


×
×
×
0
0

 .

I Or, if we write out c :

A[q1, q2, q3, q4, q5]


×
×
0
0
0

 = [q1, q2, q3, q4, q5]


×
×
×
0
0

 .
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In Matrix Language

I Matrix relation in detail

A[q1, q2, q3, q4, q5]


× × × × ×

× × × ×
× × ×

× ×
×



= [q1, q2, q3, q4, q5]


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 .

I Matrix relation for K upper triangular and H Hessenberg:

AQK = QH.

I This links to the QZ algorithm: Hessenberg, upper-triangular pencil!
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(Generalized) Eigenvalue Problems

I Eigenvalues of A solutions of det(A− λI ) = 0.

I Standard Arnoldi – Classical eigenvalue problem
I AQ = QH.
I Q∗AQ = H – Hessenberg matrix – single matrix form.
I Eigenvalues: det(A− λI ) = det(H − λI ) = 0.

I Alternative continuation vector – Generalized eigenvalue problem
I AQK = QH.
I Q∗AQ = HK−1 – Hessenberg matrix – single matrix form.
I Eigenvalues: det(A− λI ) = det(HK−1 − λI ) = det(H − λK).

I We name (H,K ) a Hessenberg pair, since HK−1 is Hessenberg.

I We will compute eigenvalues of the Hessenberg pair.
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What about uniqueness?
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The Actors!

We have the relations

K (A, v) = [v ,Av , . . . ,An−1v ] = QR,

and

AQK = QH or Q∗AQ = HK−1.

The actors are:

1. The matrix A;

2. unitary structure of Q;

3. starting vector v = Qe1;

4. Krylov space K (A, v) = span{v ,Av ,A2v ,A3v , . . .}
(further on: generalizations);

5. Hessenberg structure of H, upper triangular structure of K ;

6. contents (the elements) of HK−1;

7. contents (the elements) of Q.
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Implicit H-Theorem (Arnoldi Process)

Theorem

Given A, v , and a unitary Q (Qe1 = v) such that

K (A, v) = [v ,Av , . . . ,An−1v ] = QR,

is a QR factorization (i.e. Q forms a nested orthogonal basis).

Then we get
AQK = QH and Q∗AQ = HK−1,

with H Hessenberg and K upper triangular, with

I (contents) Q essentially unique (uniqueness of QR factorization),

I (contents) HK−1 essentially unique.
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Implicit Q-Theorem

Theorem

Given A, v (v = Qe1), and a unitary Q such that

AQK = QH and Q∗AQ = HK−1,

with H Hessenberg and K upper triangular.

Then we get that
K (A, v) = [v ,Av , . . . ,An−1v ] = QR,

is a QR factorization, with

I (contents) Q essentially unique,

I (contents) HK−1 essentially unique.
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Classifying the Actors

Fixed constraints for both Theorems

1. The matrix A;

2. unitary structure of Q;

3. starting vector v = Qe1.

Different constraints and different outcomes
Implicit H-Theorem

I K(A, v) = span{v ,Av ,A2v , . . .};
I K (A, v) = QR.

Implicit Q-Theorem

I Hessenberg pair (H,K );

I AQK = QH.

Fixed outcomes for both Theorems

1. essentially unique elements of HK−1;

2. essentially unique elements of Q.
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Algorithmic Idea: Equivalences on Pencil

I Single step: Hessenberg pair (H,K ) to new Hessenberg pair (H̃, K̃ ).

I In the end: the pair has to become upper triangular revealing the eigenvalues.

I Operating on the pencil (H,K ) via equivalences

(H,K ) ∼ HK−1

(H̃, K̃ ) = Q∗(H,K )Z ∼ H̃K̃−1 = Q∗HZ Z∗K−1Q.

I Implicit Q-theorem states:
I Given first column of Qe1 = v , given A = HK−1,
I imposing (H̃, K̃) to be a Hessenberg pair,
I then the outcome H̃K̃−1 is fixed.

I Implicit algorithm:
I Construct Q and Z on the fly,
I satisfying the constraints of the implicit Q-theorem.
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Algorithmic Idea: Initializing

I Introduce perturbation via Q0, with Q0e1 = Qe1

I Restore structure via Qi , so that Q = Q0Q1Q2Q3 (for our case n = 5).
Q1,Q2, and Q3 do not touch the first column anymore!

I More on Q0: keep things simple (single shift, single bulge,...).
I Structure of Q0:

Q0 =

��

=


× ×
× ×

1
1

1

 .

I We choose a particular, good µ ∈ C:

(HK−1 − µI )e1 ≈ Q0e1.

I The symbol ≈ means equal up to a scalar.
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Initialization

I Q0e1 ≈ (HK−1 − µI )e1.

I Q0 is a rotator acting on rows 1 and 2.

Q∗
0H Q∗

0K

��


× × × × ×
× × × × ×

× × × ×
× × ×

× ×


��


× × × × ×

× × × ×
× × ×

× ×
×
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Initialization

I Q0e1 ≈ (HK−1 − µI )e1.

I Q0 is a rotator acting on rows 1 and 2.

Q∗
0H Q∗

0K
× × × × ×
× × × × ×

× × × ×
× × ×

× ×




× × × × ×
⊗ × × × ×

× × ×
× ×

×



Structure mismatch in row 2.
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Chasing Step 1(a)

I Construct Z1 to annihilate the right bulge.

I Z1 works on columns 1 and 2.

Q∗
0HZ1 Q∗

0KZ1
× × × × ×
× × × × ×

× × × ×
× × ×

× ×


��


× × × × ×
⊗ × × × ×

× × ×
× ×

×


��
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Chasing Step 1(a)

I Construct Z1 to annihilate the right bulge.

I Z1 works on columns 1 and 2.

Q∗
0HZ1 Q∗

0KZ1
× × × × ×
× × × × ×
⊗ × × × ×

× × ×
× ×




× × × × ×
× × × ×

× × ×
× ×

×
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Chasing Step 1(b)

I Construct Q1 to annihilate the left bulge.

I Q1 works on rows 2 and 3 (does not destroy Q0e1).

Q∗
1Q

∗
0HZ1 Q∗

1Q
∗
0KZ1

��


× × × × ×
× × × × ×
⊗ × × × ×

× × ×
× ×


��


× × × × ×

× × × ×
× × ×

× ×
×
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Chasing Step 1(b)

I Construct Q1 to annihilate the left bulge.

I Q1 works on rows 2 and 3 (does not destroy Q0e1)..

Q∗
1Q

∗
0HZ1 Q∗

1Q
∗
0KZ1

× × × × ×
× × × × ×

× × × ×
× × ×

× ×




× × × × ×
× × × ×
⊗ × × ×

× ×
×



Structure mismatch in row 3.
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Chasing Step 2

I Construct Z2 to annihilate the right bulge (columns 2 and 3).

I Construct Q2 to annihilate the left bulge (rows 3 and 4).

Q∗
2Q

∗
1Q

∗
0HZ1Z2 Q∗

2Q
∗
1Q

∗
0KZ1Z2

��


× × × × ×
× × × × ×

× × × ×
× × ×

× ×


��

��


× × × × ×

× × × ×
⊗ × × ×

× ×
×


��
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Chasing Step 2

I Construct Z2 to annihilate the right bulge (columns 2 and 3).

I Construct Q2 to annihilate the left bulge (rows 3 and 4).

Q∗
2Q

∗
1Q

∗
0HZ1Z2 Q∗

2Q
∗
1Q

∗
0KZ1Z2

× × × × ×
× × × × ×

× × × ×
× × ×

× ×




× × × × ×
× × × ×

× × ×
⊗ × ×

×



Structure mismatch in row 4.

Vandebril (University of Leuven) Rational QZ Algorithm Lille, AMF18 33 / 99



Chasing Step 3

I Construct Z3 to annihilate the right bulge (columns 3 and 4).

I Construct Q3 to annihilate the left bulge (rows 4 and 5).

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3

× × × × ×
× × × × ×

× × × ×
× × ×

× ×




× × × × ×
× × × ×

× × ×
× ×
⊗ ×



Structure mismatch in row 5.
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Finalization

I Construct Z4 to annihilate the right bulge.

I Z4 operates on columns 4 and 5.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3Z4 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3Z4

× × × × ×
× × × × ×

× × × ×
× × ×

× ×




× × × × ×
× × × ×

× × ×
× ×

×



Desired structure obtained: implicit QZ step executed.
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Swapping Diagonal Elements

I Consider the upper triangular pencil([
α1 ×

α2

]
,

[
β1 ×

β2

])
.

I Suppose α1

β1
6= α2

β2
,

I then we can construct Q and Z such that

Q∗
([

α1 ×
α2

]
,

[
β1 ×

β2

])
Z =

([
α̃2 ×

α̃1

]
,

[
β̃2 ×

β̃1

])
,

I with
α1

β1
=

α̃1

β̃1

α2

β2
=

α̃2

β̃2

.

I The ratios of the diagonal elements are swapped.
(Cfr. reordering eigenvalues in the Schur form.)
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Alternative Notation

I Simplified notation:

Q∗
([

1 ×
2

]
,

[
1 ×

2

])
Z =

([
2 ×

1

]
,

[
2 ×

1

])
.

I The elements left ( 1 , 1 ) and right ( 1 , 1 ) differ.
The elements left ( 2 , 2 ) and right ( 2 , 2 ) differ.

I But, the ratios remain the same. For both left and right:

1

1
= α and

2

2
= β,

α and β could be 0, ∈ C, or ∞.

I The ratios, i.e. eigenvalues, have been swapped.
(Cfr. bulge pencils, as introduced by Watkins.)
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Reconsidering the Initializing

I More on Q0:
I We take a particular choice, for a chosen µ:

Q0e1 ≈ (HK−1 − µI )e1.

I Since Ke1 ≈ e1 (K is upper triangular):

Q0e1 ≈ (H − µK)e1.

I Rewriting
e1 ≈ (Q∗

0H − µQ∗
0K)e1.

I Considering the second element of the vector we get

(Q∗
0H)21 − µ(Q∗

0K)21 = 0.

I Or we get as ratios of the subdiagonal elements:

(Q∗
0H)21

(Q∗
0K)21

= µ.
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Initialization: Introducing a Shift

I Given  × ×
1 ×

2

 ,

 × ×
1 ×

2


I There exists Q0 (with Q0e1 = (H − µK )e1), such that

Q∗
0

 × ×
1 ×

2

 ,

 × ×
1 ×

2

 =

 × ×
µ ×

2

 ,

 × ×
µ ×

2


I Elements 1 and 1 are replaced by µ and µ .

I We have new elements whose ratio satisfies

µ

µ
= µ.

I Comment: in fact we do not need (H − µK )e1, Q0 can be computed directly.
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Original

I Original matrix: all elements 1 = 2 = . . . = 0

I Hence 1 / 1 = 2 / 2 = . . . = ∞.

H K
× × × × ×
1 × × × ×

2 × × ×
3 × ×

4 ×




× × × × ×
0 × × × ×

0 × × ×
0 × ×

0 ×
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Initialization

I Q0 constructed to introduce the shift µ.

I Q0 acts on rows 1 and 2 and introduces the shift µ.

Q∗
0H Q∗

0K
× × × × ×
µ × × × ×

2 × × ×
3 × ×

4 ×




× × × × ×
µ × × × ×

0 × × ×
0 × ×

0 ×



Shift present in row 2.
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Initialization

I Q0 constructed to introduce the shift µ.

I Q0 acts on rows 1 and 2 and introduces the shift µ.

Q∗
0H Q∗

0K
× × × × ×
µ × × × ×

2 × × ×
3 × ×

4 ×




× × × × ×
µ × × × ×

0 × × ×
0 × ×

0 ×



Red block subjected to swapping!
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Chase step 1

I The shift µ moved from row 2 to row 3.

I Q1 and Z1 execute swap.

Q∗
1Q

∗
0HZ1 Q∗

1Q
∗
0KZ1

× × × × ×
2 × × × ×

µ × × ×
3 × ×

4 ×




× × × × ×
0 × × × ×

µ × × ×
0 × ×

0 ×



Shift located in row 3, red block needs swapping!
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Chase step 2

I The shift µ moved from row 3 to row 4.

I Q2 and Z2 execute swap.

Q∗
2Q

∗
1Q

∗
0HZ1Z2 Q∗

2Q
∗
1Q

∗
0KZ1Z2

× × × × ×
2 × × × ×

3 × × ×
µ × ×

4 ×




× × × × ×
0 × × × ×

0 × × ×
µ × ×

0 ×



Shift located in row 4, red block needs swapping!
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Chase step 3

I The shift µ moved from row 4 to row 5.

I Q3 and Z3 execute swap.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3

× × × × ×
2 × × × ×

3 × × ×
4 × ×

µ ×




× × × × ×
0 × × × ×

0 × × ×
0 × ×

µ ×



Shift located in row 5!
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Finalization

I Remove the shift and restore the Hessenberg structure.

I Z4 operates on columns 4 and 5, and removes the shift.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3Z4 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3Z4

× × × × ×
2 × × × ×

3 × × ×
4 × ×

5 ×




× × × × ×
0 × × × ×

0 × × ×
0 × ×

0 ×



Shift is removed!

Vandebril (University of Leuven) Rational QZ Algorithm Lille, AMF18 47 / 99



Outline

Overview

The classic QR algorithm
QR algorithm
Krylov – Hessenberg
Arnoldi – Implicit Q-Theorem – Uniqueness
Implicit QR Algorithm: Classic
Implicit QR Algorithm: Shift Swapping
Convergence

The extended QR algorithm

The rational QR algorithm

Some Conclusions

Vandebril (University of Leuven) Rational QZ Algorithm Lille, AMF18 48 / 99



Convergence Analysis

I Convergence is subspace iteration with a basis transformation.

I Subspace iteration determined by the initialization:

Q0e1 = (H − µK )e1 = (HK−1 − µI )e1.

I Subspace iteration driven by (HK−1 − µI ).

I Convergence: lower right corner of H̃K̃−1 gets pushed to µ.
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What about extended Krylov

I Extended Krylov: 8.250 hits in Google.

I V. Druskin & L. Knizhnerman.

I Jagels, Reichel, Simoncini, ...

I Applications
I matrix functions,
I matrix equations.
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Basis for the extended Krylov subspace

I Given matrix A and a starting vector v :

KE (A, v) = [v ,A−1v ,Av ,A−2v ,A2v , . . .].

KE (A, v) = spanKE (A, v).

I The order of positive and negative powers can be chosen freely.
We can have a succession of negative powers, followed by positive powers,...

I We desire an orthonormal basis Q = [q1, . . . , qn] for KE (A, v).

I Construct qi+1 out of the continuation vector c ∈ span{q1, . . . , qi}.
Two possibilities for the Gram Schmidt procedure:

I Positive power: qi+1 constructed out of Ac.
I Negative power: qi+1 constructed out of A−1c.
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In Matrix Language

More precisely for a positive power (same as before)

I Take good c ∈ span{q1, . . . , qi}.
Ac orthogonalized against span{q1, . . . , qi} to give rest r .
Normalize r to get qi+1.

I So Ac ∈ span{q1, . . . , qi , qi+1}.

Example: construction of q3 out of Ac , c ∈ span{q1, q2}.
I Relation for vector Ac depending on q1, q2, q3 (n = 5):

Ac = A[q1, q2, q3, q4, q5]


×
×
0
0
0

 = [q1, q2, q3, q4, q5]


×
×
×
0
0

 .
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In matrix Language

More precisely for a negative power

I Take good c ∈ span{q1, . . . , qi}.
A−1c orthogonalized against span{q1, . . . , qi} to give rest r .
Normalize r to get qi+1.

I So A−1c ∈ span{q1, . . . , qi , qi+1}.
I Or c ∈ span{Aq1, . . . ,Aqi+1}.

Example on the construction of q4.

I c ∈ span{q1, q2, q3}.
c ∈ span{Aq1,Aq2,Aq3,Aq4}.

A[q1, q2, q3, q4, q5]


×
×
×
×
0

 = c = [q1, q2, q3, q4, q5]


×
×
×
0
0

 .
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In matrix Language

I Matrix relation in detail

A[q1, q2, q3, q4, q5]


× × × × ×
× × × × ×

× × ×
× × ×

×



= [q1, q2, q3, q4, q5]


× × × × ×

× × × ×
× × × ×

× ×
× ×

 ,

I Positive power: Hessenberg right, upper triangular left.
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In matrix Language

I Matrix relation in detail

A[q1, q2, q3, q4, q5]


× × × × ×
× × × × ×

× × ×
× × ×

×



= [q1, q2, q3, q4, q5]


× × × × ×

× × × ×
× × × ×

× ×
× ×

 ,

I Negative power: Hessenberg left, upper triangular right.
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In matrix Language

I Matrix relation in detail

A[q1, q2, q3, q4, q5]


× × × × ×
× × × × ×

0 × × ×
× × ×

0 ×



= [q1, q2, q3, q4, q5]


× × × × ×
0 × × × ×

× × × ×
0 × ×

× ×

 .

I Zero on the left OR on the right!

I We name (H,K ) and extended Hessenberg pair. We have

AQK = QH.
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Implicit Theorems

Fixed constraints for both Theorems

1. The matrix A;

2. unitary structure of Q;

3. starting vector v = Qe1.

Different constraints and different outcomes
Implicit H-Theorem

I KE (A, v) = span{v ,A−1v ,Av ,A−2v , . . .};
I KE (A, v) = QR.

Implicit Q-Theorem

I Extended pair (H,K );

I AQK = QH.

Fixed outcomes for both Theorems

1. essentially unique elements of HK−1;

2. essentially unique elements of Q.
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Original

I We have i = 0 or i = 0, for i = 1, . . . , 4.

I Hence i / i equals ∞ or 0.

H K
× × × × ×
0 × × × ×

2 × × ×
0 × ×

4 ×




× × × × ×
1 × × × ×

0 × × ×
3 × ×

0 ×
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Algorithm & Initialization

I From extended pair (H,K ) to new extended pair (H̃, K̃ ) implicitly.

I We initialize the iteration, for a chosen µ:

Q0e1 ≈ (H − µK )e1, or e1 ≈ (Q∗
0H − µQ∗

0K )e1,

just as before.

I Clearly Q0 is of the correct form: only operates on rows 1 and 2.

I We get as ratios of the subdiagonal elements:

(Q∗
0H)21

(Q∗
0K )21

= µ.

I Q0 introduces the shift µ as a ratio on the subdiagonal.
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Initialization

I Q0 constructed to introduce the shift µ.

I Q0 acts on rows 1 and 2.

Q∗
0H Q∗

0K
× × × × ×
µ × × × ×

2 × × ×
0 × ×

4 ×




× × × × ×
µ × × × ×

0 × × ×
3 × ×

0 ×



Shift present in row 2.
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Initialization

I Q0 constructed to introduce the shift µ.

I Q0 acts on rows 1 and 2.

Q∗
0H Q∗

0K
× × × × ×
µ × × × ×

2 × × ×
0 × ×

4 ×




× × × × ×
µ × × × ×

0 × × ×
3 × ×

0 ×



Red block subjected to swapping!
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Chase step 1

I The shift µ moved from row 2 to row 3.

I Q1 and Z1 execute swap.

Q∗
1Q

∗
0HZ1 Q∗

1Q
∗
0KZ1

× × × × ×
2 × × × ×

µ × × ×
0 × ×

4 ×




× × × × ×
0 × × × ×

µ × × ×
3 × ×

0 ×



Shift located in row 3, red block needs swapping!
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Chase step 2

I The shift µ moved from row 3 to row 4.

I Q2 and Z2 execute swap.

Q∗
2Q

∗
1Q

∗
0HZ1Z2 Q∗

2Q
∗
1Q

∗
0KZ1Z2

× × × × ×
2 × × × ×

0 × × ×
µ × ×

4 ×




× × × × ×
0 × × × ×

3 × × ×
µ × ×

0 ×



Shift located in row 4, red block needs swapping!
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Chase step 3

I The shift µ moved from row 4 to row 5.

I Q3 and Z3 execute swap.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3

× × × × ×
2 × × × ×

0 × × ×
4 × ×

µ ×




× × × × ×
0 × × × ×

3 × × ×
0 × ×

µ ×



Shift located in row 5!
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Finalization Option 1

I Remove the shift and restore extended Hessenberg structure.

I Z4 operates on columns 4 and 5, and removes the shift.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3Z4 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3Z4

× × × × ×
2 × × × ×

0 × × ×
4 × ×

0 ×




× × × × ×
0 × × × ×

3 × × ×
0 × ×

5 ×



Shift is removed! Extended structure restored!
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Finalization Option 2

I Remove the shift and restore extended Hessenberg structure.

I Z4 operates on columns 4 and 5, and removes the shift.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3Z4 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3Z4

× × × × ×
2 × × × ×

0 × × ×
4 × ×

5 ×




× × × × ×
0 × × × ×

3 × × ×
0 × ×

0 ×



Shift is removed! Extended structure restored!
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Conclusions

I Algorithm almost the same as the classical QR.

I Identical to the bulge hopping algorithm of Vandebril & Watkins.

I Introduce µ as ratio of subdiagonal elements.

I Chase µ by swapping subdiagonal elements.

I Finalization is different:
I In the QR case: no options.
I Here two options: position a zero left or right.

This is equivalent to introducing a ratio ∞ or 0.
Both are extended Hessenberg pairs, so that’s fine.

I This choice has an influence on the convergence.
Since forthcoming associated Krylov subspaces (next step) have changed!
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Convergence Analysis

I Subspace iteration determined by the initialization:

Q0e1 = (H − µK )e1 ≈ (HK−1)−1(HK−1 − µI )e1.

I Subspace iteration driven by (HK−1)−1(HK−1 − µI ).

I Convergence:
I lower right corner of H̃K̃−1 gets pushed to µ (fast),
I upper right corner gets pushed to 0 (slow).
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What about rational Krylov

I Rational Krylov: 119.000 hits in Google.

I Introduced by Ruhe

I Beckermann, Güttel, Berljafa, Meerbergen, ...

I Applications
I model reduction,
I flexibility because of the pole selection.

Vandebril (University of Leuven) Rational QZ Algorithm Lille, AMF18 74 / 99



Basis for the rational Krylov subspace

I Given matrix A and a (sufficiently random) starting vector v :

KR(A, v) = [v , (A− σ1I )
−1v , (A− σ2I )

−1(A− σ1I )
−1v , . . .],

KR(A, v) = spanKR(A, v).

I The σi ’s, named poles, can be chosen freely (can even be ∞, i.e., Av).

I We desire an orthonormal basis Q = [q1, . . . , qn] for KR(A, v).

I Construct qi+1 out of the continuation vector c ∈ span{q1, . . . , qi}
I For σi 6= ∞: qi+1 constructed out of (A− σi I )

−1c.
For σi = 0: qi+1 constructed out of A−1c. (Same as before.)

I For σi = ∞: qi+1 constructed out of Ac. (Same as before.)
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In Matrix Language

Generic relation between the vectors.

I c ∈ span{q1, . . . , qi}.
(A− σi I )

−1c orthogonalized against span{q1, . . . , qi} to give rest r .
Normalize r to get qi+1.

I So (A− σi I )
−1c ∈ span{q1, . . . , qi , qi+1}.

I Or c ∈ span{(A− σi I )q1, . . . , (A− σi I )qi+1}.
I This implies a relation between

[q1, . . . , qi+1] and [Aq1, . . . ,Aqi+1].
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Example: compute q3 from Ac

I c ∈ span{q1, q2}.
I (A− σ2I )

−1c ∈ span{q1, q2, q3}.
I c ∈ (A− σ2I ) span{q1, q2, q3}.
I We have

c = [q1, q2, q3, q4, q5]


×
×
0
0
0

 = (A− σ2I )[q1, q2, q3, q4, q5]


⊗
⊗
⊗
0
0


I Or

(c =) Q


×
×
0
0
0

 = AQ


⊗
⊗
⊗
0
0

− σ2Q


⊗
⊗
⊗
0
0


Vandebril (University of Leuven) Rational QZ Algorithm Lille, AMF18 77 / 99



Example: compute q3

I We had

Q


×
×
0
0
0

 = AQ


⊗
⊗
⊗
0
0

− σ2Q


⊗
⊗
⊗
0
0


I Rewritten we get

AQ


⊗
⊗
⊗
0
0

 = Q


×+ σ2⊗
×+ σ2⊗

σ2⊗
0
0

 .

I Note that we can extract the pole!
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In matrix Language

I Matrix relation in detail

AQ


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 = Q


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 ,

I Matrix relation for K and H Hessenberg

AQK = QH.

I Poles as ratios of subdiagonal elements.

I We name (H,K ) a rational Hessenberg pair.
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Implicit Theorems

Fixed constraints for both Theorems

1. The matrix A;

2. unitary structure of Q;

3. starting vector v = Qe1.

Different constraints and different outcomes
Implicit H-Theorem

I KR(A, v) = span{v , (A− σ1I )
−1v , . . .};

I KR(A, v) = QR.

Implicit Q-Theorem

I Rational pair (H,K );

I AQK = QH.

Fixed outcomes for both Theorems

1. essentially unique elements of HK−1;

2. essentially unique elements of Q.
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Summary

Krylov

I K(A, v) = span{v ,Av ,A2v ,A3v , . . . , },
I Hessenberg pair (H,K ).

Extended Krylov

I KE (A, v) = span{v ,A−1v ,Av ,A−2v ,A2v , . . . , },
I Extended Hessenberg pair (H,K ).

Most general:

Rational Krylov

I KR(A, v) = span{v , (A− σ1I )
−1v , (A− σ2I )

−1(A− σ1I )
−1v , . . . , },

I Rational Hessenberg pair (H,K ).
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Original

I We have poles as ratios of the subdiagonal elements.

I We use the following notation 1 / 1 = σ1, and so forth.

H K
× × × × ×
1 × × × ×

2 × × ×
3 × ×

4 ×




× × × × ×
1 × × × ×

2 × × ×
3 × ×

4 ×
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Algorithm & Initialization

I From rational pair (H,K ) to new rational pair (H̃, K̃ ) implicit.

I We initialize the iteration for a chosen µ:

Q0e1 ≈ (H − µK )e1,

just as before.

I All relations still hold.

I Pole changing algorithm of Güttel and Berljafa.
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Initialization

I Q0 constructed to introduce the shift µ.

I Q0 acts on rows 1 and 2.

Q∗
0H Q∗

0K
× × × × ×
µ × × × ×

2 × × ×
3 × ×

4 ×




× × × × ×
µ × × × ×

2 × × ×
3 × ×

4 ×



Shift present in row 2.
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Initialization

I Q0 constructed to introduce the shift µ.

I Q0 acts on rows 1 and 2.

Q∗
0H Q∗

0K
× × × × ×
µ × × × ×

2 × × ×
3 × ×

4 ×




× × × × ×
µ × × × ×

2 × × ×
3 × ×

4 ×



Red block subjected to swapping!
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Chase step 1

I The shift µ moved from row 2 to row 3.

I Q1 and Z1 execute swap.

Q∗
1Q

∗
0HZ1 Q∗

1Q
∗
0KZ1

× × × × ×
2 × × × ×

µ × × ×
3 × ×

4 ×




× × × × ×
2 × × × ×

µ × × ×
3 × ×

4 ×



Shift located in row 3, red block needs swapping!
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Chase step 2

I The shift µ moved from row 3 to row 4.

I Q2 and Z2 execute swap.

Q∗
2Q

∗
1Q

∗
0HZ1Z2 Q∗

2Q
∗
1Q

∗
0KZ1Z2

× × × × ×
2 × × × ×

3 × × ×
µ × ×

4 ×




× × × × ×
2 × × × ×

3 × × ×
µ × ×

4 ×



Shift located in row 4, red block needs swapping!
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Chase step 3

I The shift µ moved from row 4 to row 5.

I Q3 and Z3 execute swap.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3

× × × × ×
2 × × × ×

3 × × ×
4 × ×

µ ×




× × × × ×
2 × × × ×

3 × × ×
4 × ×

µ ×



Shift located in row 5!
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Finalization Option 1

I Remove the shift and restore rational Hessenberg structure.

I Z4 operates on columns 4 and 5, and removes the shift.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3Z4 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3Z4

× × × × ×
2 × × × ×

3 × × ×
4 × ×

0 ×




× × × × ×
2 × × × ×

3 × × ×
4 × ×

5 ×



Shift removed! Structure Restored! Pole 0 introduced!
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Finalization Option 2

I Remove the shift and restore rational Hessenberg structure.

I Z4 operates on columns 4 and 5, and removes the shift.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3Z4 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3Z4

× × × × ×
2 × × × ×

3 × × ×
4 × ×

5 ×




× × × × ×
2 × × × ×

3 × × ×
4 × ×

0 ×



Shift removed! Structure Restored! Pole ∞ introduced!

Vandebril (University of Leuven) Rational QZ Algorithm Lille, AMF18 92 / 99



Finalization Option 3

I Remove the shift and restore rational Hessenberg structure.

I Z4 operates on columns 4 and 5, and removes the shift.

Q∗
3Q

∗
2Q

∗
1Q

∗
0HZ1Z2Z3Z4 Q∗

3Q
∗
2Q

∗
1Q

∗
0KZ1Z2Z3Z4

× × × × ×
2 × × × ×

3 × × ×
4 × ×

5 ×




× × × × ×
2 × × × ×

3 × × ×
4 × ×

5 ×



Shift removed! Structure Restored! Pole σ5 introduced!
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Convergence Analysis

I Subspace iteration determined by the initialization:

Q0e1 = (H − µK )e1 ≈ (HK−1 − σ1)
−1

(
HK−1 − µI

)
e1.

I Subspace iteration driven by (HK−1 − σ1)
−1

(
HK−1 − µI

)
.

I Note, σ1 is pushed off, so next time, next driving function.

I Convergence:
I lower right corner of H̃K̃−1 gets pushed to µ (fast),
I upper right corner gets pushed to σi (slow).
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Numerical Experiment

I 5 % – 10 % faster than the classical QZ, for standard pole choice.
I More interesting is the link with contour integration.
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Numerical Experiments
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Numerical Experiments
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