QRylov

Rational QZ Algorithm

Raf Vandebril
Raf.Vandebril@cs.kuleuven.be
Dept. of Computer Science, University of Leuven, Belgium
International Conference on
Approximation and Matrix Functions

This Lecture

QR, Krylov, and Chasing I hope you like it.

Combines/extends work of Watkins, Güttel \& Berljafa.

This Lecture

- On computing eigenvalues of a single matrix A.
- I'll link three topics:

1. Krylov Subspaces
2. Matrix Structures
3. QZ algorithms

- I'll do this for three spaces:

1. Classical Krylov
2. Extended Krylov
3. Rational Krylov

- More on this topic
- Camps, Meerbergen, Vandebril, A rational QZ algorithm, arXiv.
- Pencils (A, B), deflations, properness, tightly packed bulges,...
- Future work: multi-bulge, multi-pole, real arithmetic, LR variants, ...

Outline

Overview

The classic QR algorithm
QR algorithm

```
    Krylov - Hessenberg
    Arnoldi - Implicit Q-Theorem - Uniqueness
    Implicit QR Algorithm: Classic
    Implicit QR' Algorithm: Shift Swapping
    Convergence
```

The extended QR algorithm

The rational QR algorithm

Some Conclusions

What about the QR algorithm

- The method of choice for solving 'small dense' eigenvalue problems.
- QR algorithm: 135.000 hits in Google.
- John Francis \& Vera Kublanovskaya in the 60's.

- Introduction QR algorithm: 79.600 hits in Google.
- Typical way of introducing QR-type algorithms?

QR Algorithm with shift

H PHASE-II

QR Algorithm with shift:

$$
\text { for } \mathrm{k}=1: 50
$$

determine shift μ_{k}
$[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}\left(\mathrm{H}-\mu_{\mathrm{k}} \mathrm{I}\right)$;
$\mathrm{H}=\mathrm{R} * \mathrm{Q}+\mu_{\mathrm{k}} \mathrm{I}$;
end
a good choice $\mu_{\mathrm{k}}=h_{n, n}^{(k)}$

```
>> eig(A)'
    11.1055 -3.8556 3.5736 0.1765
```

Example:

$$
\mu_{k}=h_{n n}
$$

$$
\begin{array}{ccrc}
\mathrm{H}= & & & \\
1.0000 & -5.0000 & -1.5395 & -1.2767 \\
-6.0000 & 8.5556 & 0.1085 & 3.6986 \\
0 & -5.9182 & -2.1689 & -1.1428 \\
0 & 0 & -0.1428 & 3.6133
\end{array}
$$

$$
\mathrm{H} 1=
$$

$$
\begin{array}{llll}
3.3236 & -5.5508 & 4.4353 & 2.6929
\end{array}
$$

$$
\begin{array}{llll}
-8.0984 & 2.9128 & -6.1528 & -2.4688
\end{array}
$$

$$
\begin{array}{ccrr}
0 & -2.2250 & 1.1900 & 1.0296 \\
0 & 0 & -0.0017 & 3.5736
\end{array}
$$

$$
\mathrm{H} 2=
$$

$$
\begin{array}{lllll}
2.4924 & -9.7341 & -2.5648 & 2.3834
\end{array}
$$

$$
\begin{array}{llll}
-5.9560 & 5.0131 & 3.0854 & -2.9507
\end{array}
$$

$$
\begin{array}{ccc|c}
0 & -1.4702 & -0.0791 & 0.0767 \\
\hline 0 & 0 & -0.0000 & 3.5736 \\
\hline
\end{array}
$$

$$
a_{i, i-1} \rightarrow 0 \text { with rate }\left|\frac{\lambda_{1}}{\lambda_{1-1}}\right|
$$

References

(1) Burden and Faires, Numerical Analysis, 8th Edition
(2) Laurene V. Fausett, Applied Numerical Analysis Using MATLAB, 2nd Edition
(3) Marco Latini ,The QR Algorithm, Past and Future
(1) Wikipedia
(6) Dr. Shafiu Jibrin, Numerical Analysis notes.

What about my talk - What is QR

- That's not how I will do it (I build upon Watkins' work).
- Requested: eigenvalues of A.
- Preprocessing, similarity of A to suitable form H.

$$
\mathcal{K} \xrightarrow{\text { Subspace Iteration }} \widetilde{\mathcal{K}}=f(H) \mathcal{K}
$$

- What will be discussed in this lecture.
- $f(H)$ determines the convergence (E.g. power method $f(H)=H$).

What about my talk - What is QR

- That's not how I will do it (I build upon Watkins' work).
- Requested: eigenvalues of A.
- Preprocessing, similarity of A to suitable form H.

- What will be discussed in this lecture.
- $f(H)$ determines the convergence (E.g. power method $f(H)=H$).
- QR-step: pole chasing.

What about my talk - What is QR

- That's not how I will do it (I build upon Watkins' work).
- Requested: eigenvalues of A.
- Preprocessing, similarity of A to suitable form H.

- What will be discussed in this lecture.
- $f(H)$ determines the convergence (E.g. power method $f(H)=H$).
- QR-step: pole chasing.
- Link Krylov \mathcal{K} - Structure of H (uniqueness: implicit Q-theorem).

Outline

Overview

The classic QR algorithm
QR algorithm
Krylov - Hessenberg
Arnoldi - Implicit Q-Theorem - Uniqueness
Implicit QR Algorithm: Classic
Implicit QR Algorithm: Shift Swapping
Convergence

The extended QR algorithm

The rational QR algorithm

Some Conclusions

Basis for the Krylov subspace

- Given matrix A and a (sufficiently random) starting vector v :

$$
\begin{aligned}
K(A, v) & =\left[v, A v, A^{2} v, A^{3} v, \ldots, A^{n-1} v\right] \\
\mathcal{K}(A, v) & =\operatorname{span} K(A, v)
\end{aligned}
$$

- We desire an orthonormal basis $Q=\left[q_{1}, \ldots, q_{n}\right]$ for $\mathcal{K}(A, v)$.
- Nestedeness is important:

$$
\forall i: \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}=\operatorname{span}\left\{v, A v, \ldots, A^{i-1} v\right\}
$$

so a gradual construction is required.

- Construct q_{i} out of the continuation vector.

Options:

- q_{i+1} constructed out of $A^{i} v$. (Numerical issues!!)
- q_{i+1} constructed out of $A q_{i}$. (Standard Arnoldi)
- q_{i+1} constructed out of $A c$ for a 'good' $c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$.

Standard Arnoldi

Classical Gram Schmidt:

1. Normalize v and store as q_{1}.
2. Make $A q_{1}$ orthogonal to $\operatorname{span}\left\{q_{1}\right\}$, store the rest as r. Normalize r and store as q_{2}.
3. Make $A q_{2}$ orthogonal to $\operatorname{span}\left\{q_{1}, q_{2}\right\}$, store the rest as r.

Normalize r and store as q_{3}.
4. ...

More precisely

- $A q_{i}$ orthogonalized against $\operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$ to give rest r. Normalize r to get q_{i+1}.
- So $A q_{i}$ is a linear combination of $\left\{q_{1}, \ldots, q_{i}, q_{i+1}\right\}$.

In Matrix Language

- Example: construction of q_{3} out of $A q_{2}$.

Relation for vector $A q_{2}$ depending on $q_{1}, q_{2}, q_{3}(n=5)$:

$$
A q_{2}=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
\times \\
0 \\
0
\end{array}\right]
$$

- Matrix relation in detail

$$
A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \times & \times
\end{array}\right] .
$$

- Matrix relation for H Hessenberg:

$$
A Q=Q H .
$$

Arnoldi Process with Different Continuation Vector

Gram Schmidt with different continuation vector.

1. Normalize v and store as q_{1}.
2. Choose a good vector $c \in \operatorname{span}\left\{q_{1}\right\}$.

Make $A c$ orthogonal to $\operatorname{span}\left\{q_{1}\right\}$, store the rest as r.
Normalize r and store as q_{2}.
3. Choose a good vector $c \in \operatorname{span}\left\{q_{1}, q_{2}\right\}$.

Make $A c$ orthogonal to $\operatorname{span}\left\{q_{1}, q_{2}\right\}$, store the rest as r.
Normalize r and store as q_{3}.
4. ...

More precisely

- Take a 'good' linear combination $c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$. Ac orthogonalized against $\operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$ to give rest r. Normalize r to get q_{i+1}.
- c is linear combination of $\left\{q_{1}, \ldots, q_{i}\right\}$. $A c$ is a linear combination of $\left\{q_{1}, \ldots, q_{i}, q_{i+1}\right\}$.

In Matrix Language

- Example: construction of q_{3} out of $A c$, for 'good' $c \in \operatorname{span}\left\{q_{1}, q_{2}\right\}$. Relation for $A c$ depending on q_{1}, q_{2}, q_{3}

$$
A c=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
\times \\
0 \\
0
\end{array}\right] .
$$

- Or, if we write out c :

$$
A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
0 \\
0 \\
0
\end{array}\right]=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
\times \\
0 \\
0
\end{array}\right] .
$$

In Matrix Language

- Matrix relation in detail

$$
\begin{aligned}
& A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times \\
& & & & \times
\end{array}\right] . \\
&=\quad\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right] .
\end{aligned}
$$

- Matrix relation for K upper triangular and H Hessenberg:

$$
A Q K=Q H .
$$

- This links to the QZ algorithm: Hessenberg, upper-triangular pencil!

Outline

Overview

The classic QR algorithm
QR algorithm
Krylov - Hessenberg
Arnoldi - Implicit Q-Theorem - Uniqueness
Implicit QR Algorithm: Classic
Implicit QR Algorithm: Shift Swapping
Convergence

The extended QR algorithm

The rational QR algorithm
Some Conclusions

(Generalized) Eigenvalue Problems

- Eigenvalues of A solutions of $\operatorname{det}(A-\lambda I)=0$.
- Standard Arnoldi - Classical eigenvalue problem
- $A Q=Q H$.
- $Q^{*} A Q=H$ - Hessenberg matrix - single matrix form.
- Eigenvalues: $\operatorname{det}(A-\lambda I)=\operatorname{det}(H-\lambda I)=0$.

(Generalized) Eigenvalue Problems

- Eigenvalues of A solutions of $\operatorname{det}(A-\lambda I)=0$.
- Standard Arnoldi - Classical eigenvalue problem
- $A Q=Q H$.
- $Q^{*} A Q=H$ - Hessenberg matrix - single matrix form.
- Eigenvalues: $\operatorname{det}(A-\lambda I)=\operatorname{det}(H-\lambda I)=0$.
- Alternative continuation vector - Generalized eigenvalue problem
- $A Q K=Q H$.
- $Q^{*} A Q=H K^{-1}$ - Hessenberg matrix - single matrix form.
- Eigenvalues: $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(H K^{-1}-\lambda I\right)=\operatorname{det}(H-\lambda K)$.
- We name (H, K) a Hessenberg pair, since $H K^{-1}$ is Hessenberg.
- We will compute eigenvalues of the Hessenberg pair.

What about uniqueness?

The Actors!

We have the relations

$$
K(A, v)=\left[v, A v, \ldots, A^{n-1} v\right]=Q R,
$$

and

$$
A Q K=Q H \quad \text { or } \quad Q^{*} A Q=H K^{-1} .
$$

The actors are:

1. The matrix A;
2. unitary structure of Q;
3. starting vector $v=Q e_{1}$;
4. Krylov space $K(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, A^{3} v, \ldots\right\}$ (further on: generalizations);
5. Hessenberg structure of H, upper triangular structure of K;
6. contents (the elements) of $H K^{-1}$;
7. contents (the elements) of Q.

Implicit H-Theorem (Arnoldi Process)

Theorem

Given A, v, and a unitary $Q\left(Q e_{1}=v\right)$ such that

$$
K(A, v)=\left[v, A v, \ldots, A^{n-1} v\right]=Q R,
$$

is a $Q R$ factorization (i.e. Q forms a nested orthogonal basis).
Then we get

$$
A Q K=Q H \quad \text { and } \quad Q^{*} A Q=H K^{-1}
$$

with H Hessenberg and K upper triangular, with

- (contents) Q essentially unique (uniqueness of $Q R$ factorization),
- (contents) H^{-1} essentially unique.

Implicit Q-Theorem

Theorem

Given $A, v\left(v=Q e_{1}\right)$, and a unitary Q such that

$$
A Q K=Q H \quad \text { and } \quad Q^{*} A Q=H K^{-1}
$$

with H Hessenberg and K upper triangular.
Then we get that

$$
K(A, v)=\left[v, A v, \ldots, A^{n-1} v\right]=Q R,
$$

is a $Q R$ factorization, with

- (contents) Q essentially unique,
- (contents) HK^{-1} essentially unique.

Classifying the Actors

Fixed constraints for both Theorems

1. The matrix A;
2. unitary structure of Q;
3. starting vector $v=Q e_{1}$.

Different constraints and different outcomes

Implicit \mathbf{H}-Theorem

- $\mathcal{K}(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots\right\}$;
- $K(A, v)=Q R$.

Implicit Q-Theorem

- Hessenberg pair (H, K);
- $A Q K=Q H$.

Fixed outcomes for both Theorems

1. essentially unique elements of $H K^{-1}$;
2. essentially unique elements of Q.

Outline

Overview

The classic QR algorithm
QR algorithm
Krylov - Hessenberg
Arnoldi - Implicit Q-Theorem - Uniqueness
Implicit QR Algorithm: Classic
Implicit QR Algorithm: Shift Swapping
Convergence

The extended QR algorithm

The rational QR algorithm
Some Conclusions

Algorithmic Idea: Equivalences on Pencil

- Single step: Hessenberg pair (H, K) to new Hessenberg pair (\tilde{H}, \tilde{K}).
- In the end: the pair has to become upper triangular revealing the eigenvalues.
- Operating on the pencil (H, K) via equivalences

$$
\begin{aligned}
(H, K) & \sim H K^{-1} \\
(\tilde{H}, \tilde{K})=Q^{*}(H, K) Z & \sim \tilde{H} \tilde{K}^{-1}=Q^{*} H Z Z^{*} K^{-1} Q .
\end{aligned}
$$

- Implicit Q-theorem states:
- Given first column of $Q e_{1}=v$, given $A=H K^{-1}$,
- imposing (\tilde{H}, \tilde{K}) to be a Hessenberg pair,
- then the outcome $\tilde{H} \tilde{K}^{-1}$ is fixed.
- Implicit algorithm:
- Construct Q and Z on the fly,
- satisfying the constraints of the implicit Q-theorem.

Algorithmic Idea: Initializing

- Introduce perturbation via Q_{0}, with $Q_{0} e_{1}=Q e_{1}$
- Restore structure via Q_{i}, so that $Q=Q_{0} Q_{1} Q_{2} Q_{3}$ (for our case $n=5$). Q_{1}, Q_{2}, and Q_{3} do not touch the first column anymore!
- More on Q_{0} : keep things simple (single shift, single bulge,,).
- Structure of Q_{0} :

$$
Q_{0}=\stackrel{\zeta}{\zeta}=\left[\begin{array}{lllll}
\times & \times & & & \\
\times & \times & & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right] .
$$

- We choose a particular, good $\mu \in \mathbb{C}$:

$$
\left(H K^{-1}-\mu I\right) e_{1} \approx Q_{0} e_{1} .
$$

- The symbol \approx means equal up to a scalar.

Initialization

- $Q_{0} e_{1} \approx\left(H K^{-1}-\mu I\right) e_{1}$.
- Q_{0} is a rotator acting on rows 1 and 2 .
$\zeta \quad\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ & \times & \times & \times \\ & & \times & \times\end{array}\right] \quad$ 引 $\quad\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ & & \times & \times & \times \\ & & & \times & \times \\ & & & & \times\end{array}\right]$

Initialization

- $Q_{0} e_{1} \approx\left(H K^{-1}-\mu l\right) e_{1}$.
- Q_{0} is a rotator acting on rows 1 and 2 .

Structure mismatch in row 2.

Chasing Step 1(a)

- Construct Z_{1} to annihilate the right bulge.
- Z_{1} works on columns 1 and 2.

$$
\left[\right] \quad \text { Q } \quad \text { Q } K Z_{1} .
$$

Chasing Step 1(a)

- Construct Z_{1} to annihilate the right bulge.
- Z_{1} works on columns 1 and 2 .

$$
\left.\begin{array}{cccc}
Q_{0}^{*} H Z_{1} \\
{\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times \\
& & \times & \times \\
& \times & \times
\end{array}\right] \quad Q_{0}^{*} K Z_{1}} \\
& & & \times \\
\times & \times & \times & \times \\
& \times & \times & \times \\
& \times \\
& & & \times \\
& & & \times \\
& & & \\
& \times
\end{array}\right]
$$

Chasing Step 1(b)

- Construct Q_{1} to annihilate the left bulge.
- Q_{1} works on rows 2 and 3 (does not destroy $Q_{0} e_{1}$).

$$
\longleftrightarrow \quad\left[\begin{array}{ccccc}
Q_{1}^{*} Q_{0}^{*} H Z_{1} & \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\otimes & \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \times & \times
\end{array}\right] \quad \longleftrightarrow \quad\left[\begin{array}{ccccc}
& Q_{1}^{*} Q_{0}^{*} K Z_{1} & \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times \\
& & & & \times
\end{array}\right]
$$

Chasing Step 1(b)

- Construct Q_{1} to annihilate the left bulge.
- Q_{1} works on rows 2 and 3 (does not destroy $Q_{0} e_{1}$)..

$$
\left.\begin{array}{cccc}
Q_{1}^{*} Q_{0}^{*} H Z_{1} & \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
& \times & \times & \times \\
& \times & \times & \times \\
& & \times & \times
\end{array}\right] \quad\left[\begin{array}{cccc}
Q_{1}^{*} Q_{0}^{*} K Z_{1} \\
& \times & \times & \times \\
& \times & \times \\
& \times & \times & \times \\
& \times & \times & \times \\
& \times \\
& & & \times \\
& & & \\
& & & \times
\end{array}\right]
$$

Structure mismatch in row 3.

Chasing Step 2

- Construct Z_{2} to annihilate the right bulge (columns 2 and 3).
- Construct Q_{2} to annihilate the left bulge (rows 3 and 4).

$$
\begin{aligned}
& Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right]} \\
& Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \otimes & \times & \times & \times \\
& & & \times & \times \\
& & & & \times
\end{array}\right]}
\end{aligned}
$$

Chasing Step 2

- Construct Z_{2} to annihilate the right bulge (columns 2 and 3).
- Construct Q_{2} to annihilate the left bulge (rows 3 and 4).

$$
\begin{aligned}
& Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right]} \\
& Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \otimes & \times & \times \\
& & & & \times
\end{array}\right]}
\end{aligned}
$$

Structure mismatch in row 4.

Chasing Step 3

- Construct Z_{3} to annihilate the right bulge (columns 3 and 4).
- Construct Q_{3} to annihilate the left bulge (rows 4 and 5).

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} \\
{\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
& \times \\
& \times & \times & \times \\
& \times & \times & \times \\
& & \times & \times
\end{array}\right]}
\end{gathered} \begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} \\
\\
\end{gathered}
$$

Structure mismatch in row 5.

Finalization

- Construct Z_{4} to annihilate the right bulge.
- Z_{4} operates on columns 4 and 5 .
$Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} Z_{4}$

$$
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} Z_{4}
$$

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times \\
& & & & \times
\end{array}\right]
$$

Desired structure obtained: implicit QZ step executed.

Outline

Overview

The classic QR algorithm
QR algorithm
Krylov - Hessenberg
Arnoldi - Implicit Q-Theorem - Uniqueness
Implicit QR Algorithm: Classic
Implicit QR Algorithm: Shift Swapping
Convergence

The extended QR algorithm

The rational QR algorithm

Some Conclusions

Swapping Diagonal Elements

- Consider the upper triangular pencil

$$
\left(\left[\begin{array}{cc}
\alpha_{1} & \times \\
& \alpha_{2}
\end{array}\right],\left[\begin{array}{cc}
\beta_{1} & \times \\
& \beta_{2}
\end{array}\right]\right) .
$$

- Suppose $\frac{\alpha_{1}}{\beta_{1}} \neq \frac{\alpha_{2}}{\beta_{2}}$,
- then we can construct Q and Z such that

$$
Q^{*}\left(\left[\begin{array}{cc}
\alpha_{1} & \times \\
& \alpha_{2}
\end{array}\right],\left[\begin{array}{cc}
\beta_{1} & \times \\
& \beta_{2}
\end{array}\right]\right) Z=\left(\left[\begin{array}{cc}
\tilde{\alpha}_{2} & \times \\
& \tilde{\alpha}_{1}
\end{array}\right],\left[\begin{array}{cc}
\tilde{\beta}_{2} & \times \\
& \tilde{\beta}_{1}
\end{array}\right]\right),
$$

- with

$$
\frac{\alpha_{1}}{\beta_{1}}=\frac{\tilde{\alpha}_{1}}{\tilde{\beta}_{1}} \quad \frac{\alpha_{2}}{\beta_{2}}=\frac{\tilde{\alpha}_{2}}{\tilde{\beta}_{2}} .
$$

- The ratios of the diagonal elements are swapped. (Cfr. reordering eigenvalues in the Schur form.)

Alternative Notation

- Simplified notation:

$$
Q^{*}\left(\left[\begin{array}{ll}
1 & \times \\
& (2)
\end{array}\right],\left[\begin{array}{ll}
1 & \times \\
& 2
\end{array}\right]\right) Z=\left(\left[\begin{array}{ll}
(2) & \times \\
& (1)
\end{array}\right],\left[\begin{array}{ll}
2 & \times \\
& 1
\end{array}\right]\right) .
$$

- The elements left (1),1) and right (1),1) differ. The elements left (2),(2) and right (2),2) differ.
- But, the ratios remain the same. For both left and right:

$$
\frac{(1)}{1}=\alpha \quad \text { and } \quad \frac{(2)}{2}=\beta,
$$

α and β could be $0, \in \mathbb{C}$, or ∞.

- The ratios, i.e. eigenvalues, have been swapped. (Cfr. bulge pencils, as introduced by Watkins.)

Reconsidering the Initializing

- More on Q_{0} :
- We take a particular choice, for a chosen μ :

$$
Q_{0} e_{1} \approx\left(H K^{-1}-\mu I\right) e_{1}
$$

- Since $K e_{1} \approx e_{1}$ (K is upper triangular):

$$
Q_{0} e_{1} \approx(H-\mu K) e_{1}
$$

- Rewriting

$$
e_{1} \approx\left(Q_{0}^{*} H-\mu Q_{0}^{*} K\right) e_{1}
$$

- Considering the second element of the vector we get

$$
\left(Q_{0}^{*} H\right)_{21}-\mu\left(Q_{0}^{*} K\right)_{21}=0
$$

- Or we get as ratios of the subdiagonal elements:

$$
\frac{\left(Q_{0}^{*} H\right)_{21}}{\left(Q_{0}^{*} K\right)_{21}}=\mu
$$

Initialization: Introducing a Shift

- Given

$$
\left(\left[\begin{array}{ll}
\times & \times \\
1 & \times \\
& (2)
\end{array}\right],\left[\begin{array}{cc}
\times & \times \\
1 & \times \\
& 2
\end{array}\right]\right)
$$

- There exists Q_{0} (with $\left.Q_{0} e_{1}=(H-\mu K) e_{1}\right)$, such that

$$
Q_{0}^{*}\left(\left[\begin{array}{cc}
\times & \times \\
1 & \times \\
& (2)
\end{array}\right],\left[\begin{array}{cc}
\times & \times \\
\mathbf{1} & \times \\
& \mathbf{2}
\end{array}\right]\right)=\left(\left[\begin{array}{cc}
\times & \times \\
& \times \\
& \times \\
& (2)
\end{array}\right],\left[\begin{array}{cc}
\times & \times \\
\boldsymbol{\mu} & \times \\
& \mathbf{2}
\end{array}\right]\right)
$$

- Elements (1) and 1 are replaced by (μ and $\boldsymbol{\mu}$.
- We have new elements whose ratio satisfies

$$
\frac{(\mu)}{\mu}=\mu .
$$

- Comment: in fact we do not need $(H-\mu K) e_{1}, Q_{0}$ can be computed directly.

Original

- Original matrix: all elements $1 \mathbf{1}=\ldots=0$
- Hence (1)/1 = (2)/2 $=\ldots=\infty$.

Initialization

- Q_{0} constructed to introduce the shift μ.
- Q_{0} acts on rows 1 and 2 and introduces the shift μ.

Shift present in row 2.

Initialization

- Q_{0} constructed to introduce the shift μ.
- Q_{0} acts on rows 1 and 2 and introduces the shift μ.

Red block subjected to swapping!

Chase step 1

- The shift μ moved from row 2 to row 3 .
- Q_{1} and Z_{1} execute swap.

\[

\]

Shift located in row 3, red block needs swapping!

Chase step 2

- The shift μ moved from row 3 to row 4.
- Q_{2} and Z_{2} execute swap.

Shift located in row 4, red block needs swapping!

Chase step 3

- The shift μ moved from row 4 to row 5 .
- Q_{3} and Z_{3} execute swap.

$$
\begin{aligned}
& Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& (3) & \times & \times & \times \\
& & (4) & \times & \times \\
& & & (\mu) & \times
\end{array}\right]} \\
& Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
& 0 & \times & \times & \times \\
& & 0 & \times & \times \\
& & & \mu & \times
\end{array}\right]}
\end{aligned}
$$

Shift located in row 5!

Finalization

- Remove the shift and restore the Hessenberg structure.
- Z_{4} operates on columns 4 and 5 , and removes the shift.

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} Z_{4} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& (3) & \times & \times & \times \\
& & (4) & \times & \times \\
& & & (5) & \times
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} Z_{4} \\
& {\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times \\
0 & \times & \times & \times \\
& 0 & \times & \times \\
& & 0 & \times \\
& & & 0 \\
& & & \times
\end{array}\right]}
\end{aligned}
$$

Shift is removed!

Outline

Overview

The classic QR algorithm
QR algorithm
Krylov - Hessenberg
Arnoldi - Implicit Q-Theorem - Uniqueness
Implicit QR Algorithm: Classic
Implicit QR Algorithm: Shift Swapping
Convergence

The extended QR algorithm

The rational QR algorithm

Some Conclusions

Convergence Analysis

- Convergence is subspace iteration with a basis transformation.
- Subspace iteration determined by the initialization:

$$
Q_{0} e_{1}=(H-\mu K) e_{1}=\left(H K^{-1}-\mu I\right) e_{1} .
$$

- Subspace iteration driven by $\left(H K^{-1}-\mu I\right)$.
- Convergence: lower right corner of $\tilde{H} \tilde{K}^{-1}$ gets pushed to μ.

Outline

Overview

The classic QR algorithm

The extended QR algorithm
Extended Krylov
Uniqueness
Implicit extended QR Algorithm
Convergence

The rational QR algorithm
Some Conclusions

What about extended Krylov

- Extended Krylov: 8.250 hits in Google.
- V. Druskin \& L. Knizhnerman.

- Jagels, Reichel, Simoncini, ...
- Applications
- matrix functions,
- matrix equations.

Basis for the extended Krylov subspace

- Given matrix A and a starting vector v :

$$
\begin{aligned}
K_{E}(A, v) & =\left[v, A^{-1} v, A v, A^{-2} v, A^{2} v, \ldots\right] . \\
\mathcal{K}_{E}(A, v) & =\operatorname{span} K_{E}(A, v) .
\end{aligned}
$$

- The order of positive and negative powers can be chosen freely.

We can have a succession of negative powers, followed by positive powers,...

- We desire an orthonormal basis $Q=\left[q_{1}, \ldots, q_{n}\right]$ for $\mathcal{K}_{E}(A, v)$.
- Construct q_{i+1} out of the continuation vector $c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$. Two possibilities for the Gram Schmidt procedure:
- Positive power: q_{i+1} constructed out of $A c$.
- Negative power: q_{i+1} constructed out of $A^{-1} c$.

In Matrix Language

More precisely for a positive power (same as before)

- Take good $c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$. Ac orthogonalized against $\operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$ to give rest r. Normalize r to get q_{i+1}.
- So $A c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}, q_{i+1}\right\}$.

Example: construction of q_{3} out of $A c, c \in \operatorname{span}\left\{q_{1}, q_{2}\right\}$.

- Relation for vector $A c$ depending on $q_{1}, q_{2}, q_{3}(n=5)$:

$$
A c=A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
0 \\
0 \\
0
\end{array}\right]=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
\times \\
0 \\
0
\end{array}\right]
$$

In matrix Language

More precisely for a negative power

- Take good $c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$.
$A^{-1} c$ orthogonalized against $\operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$ to give rest r.
Normalize r to get q_{i+1}.
- So $A^{-1} c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}, q_{i+1}\right\}$.
- Or $c \in \operatorname{span}\left\{A q_{1}, \ldots, A q_{i+1}\right\}$.

Example on the construction of q_{4}.

- $c \in \operatorname{span}\left\{q_{1}, q_{2}, q_{3}\right\}$. $c \in \operatorname{span}\left\{A q_{1}, A q_{2}, A q_{3}, A q_{4}\right\}$.

$$
A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
\times \\
\times \\
0
\end{array}\right]=c=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
\times \\
0 \\
0
\end{array}\right] .
$$

In matrix Language

- Matrix relation in detail

$$
\begin{aligned}
& A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \times & \times & \times \\
& & & & \times
\end{array}\right] \\
&=\quad\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & & \times & \times \\
& & & \times & \times
\end{array}\right],
\end{aligned}
$$

- Positive power: Hessenberg right, upper triangular left.

In matrix Language

- Matrix relation in detail

$$
\begin{aligned}
& A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \times & \times & \times \\
& & & & \times
\end{array}\right] \\
&=\quad\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & & \times & \times \\
& & & \times & \times
\end{array}\right],
\end{aligned}
$$

- Negative power: Hessenberg left, upper triangular right.

In matrix Language

- Matrix relation in detail

$$
\begin{aligned}
& A\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& 0 & \times & \times & \times \\
& & \times & \times & \times \\
& & & 0 & \times
\end{array}\right] \\
= & {\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & 0 & \times & \times \\
& & & \times & \times
\end{array}\right] . }
\end{aligned}
$$

- Zero on the left OR on the right!
- We name (H, K) and extended Hessenberg pair. We have

$$
A Q K=Q H .
$$

Outline

Overview

The classic QR algorithm

The extended QR algorithm
Extended Krylov
Uniqueness
Implicit extended QR Algorithm
Convergence

The rational QR algorithm
Some Conclusions

Implicit Theorems

Fixed constraints for both Theorems

1. The matrix A;
2. unitary structure of Q;
3. starting vector $v=Q e_{1}$.

Different constraints and different outcomes

Implicit \mathbf{H}-Theorem

- $\mathcal{K}_{E}(A, v)=\operatorname{span}\left\{v, A^{-1} v, A v, A^{-2} v, \ldots\right\} ;$
- $K_{E}(A, v)=Q R$.

Implicit Q-Theorem

- Extended pair (H, K);
- $A Q K=Q H$.

Fixed outcomes for both Theorems

1. essentially unique elements of $H K^{-1}$;
2. essentially unique elements of Q.

Outline

Overview

The classic QR algorithm

The extended QR algorithm
Extended Krylov
Uniqueness
Implicit extended QR Algorithm
Convergence

The rational QR algorithm
Some Conclusions

Original

- We have (i) $=0$ or $(i=0$, for $i=1, \ldots, 4$.
- Hence (i)/i equals ∞ or 0 .

Algorithm \& Initialization

- From extended pair (H, K) to new extended pair (\tilde{H}, \tilde{K}) implicitly.
- We initialize the iteration, for a chosen μ :

$$
Q_{0} e_{1} \approx(H-\mu K) e_{1}, \quad \text { or } \quad e_{1} \approx\left(Q_{0}^{*} H-\mu Q_{0}^{*} K\right) e_{1},
$$

just as before.

- Clearly Q_{0} is of the correct form: only operates on rows 1 and 2 .
- We get as ratios of the subdiagonal elements:

$$
\frac{\left(Q_{0}^{*} H\right)_{21}}{\left(Q_{0}^{*} K\right)_{21}}=\mu .
$$

- Q_{0} introduces the shift μ as a ratio on the subdiagonal.

Initialization

- Q_{0} constructed to introduce the shift μ.
- Q_{0} acts on rows 1 and 2.

Shift present in row 2.

Initialization

- Q_{0} constructed to introduce the shift μ.
- Q_{0} acts on rows 1 and 2 .

Red block subjected to swapping!

Chase step 1

- The shift μ moved from row 2 to row 3.
- Q_{1} and Z_{1} execute swap.

Shift located in row 3, red block needs swapping!

Chase step 2

- The shift μ moved from row 3 to row 4.
- Q_{2} and Z_{2} execute swap.

Shift located in row 4, red block needs swapping!

Chase step 3

- The shift μ moved from row 4 to row 5 .
- Q_{3} and Z_{3} execute swap.

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& 0 & \times & \times & \times \\
& & (4) & \times & \times \\
& & & (\mu) & \times
\end{array}\right]}
\end{gathered}
$$

$Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3}$
$\left[\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ & 3 & \times & \times & \times \\ & & 0 & \times & \times \\ & & & \mu & \times\end{array}\right]$

Shift located in row 5!

Finalization Option 1

- Remove the shift and restore extended Hessenberg structure.
- Z_{4} operates on columns 4 and 5 , and removes the shift.

$$
\begin{aligned}
& Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} Z_{4} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& 0 & \times & \times & \times \\
& & 4 & \times & \times \\
& & & 0 & \times
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} Z_{4} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
& 3 & \times & \times & \times \\
& & 0 & \times & \times \\
& & & 5 & \times
\end{array}\right]}
\end{aligned}
$$

Shift is removed! Extended structure restored!

Finalization Option 2

- Remove the shift and restore extended Hessenberg structure.
- Z_{4} operates on columns 4 and 5 , and removes the shift.

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} Z_{4} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& 0 & \times & \times & \times \\
& & 4 & \times & \times \\
& & & 5 & \times
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} Z_{4} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
& 3 & \times & \times & \times \\
& & 0 & \times & \times \\
& & & 0 & \times
\end{array}\right]}
\end{aligned}
$$

Shift is removed! Extended structure restored!

Conclusions

- Algorithm almost the same as the classical QR.
- Identical to the bulge hopping algorithm of Vandebril \& Watkins.
- Introduce μ as ratio of subdiagonal elements.
- Chase μ by swapping subdiagonal elements.
- Finalization is different:
- In the QR case: no options.
- Here two options: position a zero left or right. This is equivalent to introducing a ratio ∞ or 0 . Both are extended Hessenberg pairs, so that's fine.
- This choice has an influence on the convergence. Since forthcoming associated Krylov subspaces (next step) have changed!

Outline

Overview

The classic QR algorithm

The extended QR algorithm
Extended Krylov
Uniqueness
Implicit extended QR Algorithm
Convergence
The rational QR algorithm
Some Conclusions

Convergence Analysis

- Subspace iteration determined by the initialization:

$$
Q_{0} e_{1}=(H-\mu K) e_{1} \approx\left(H K^{-1}\right)^{-1}\left(H K^{-1}-\mu I\right) e_{1} .
$$

- Subspace iteration driven by $\left(H K^{-1}\right)^{-1}\left(H K^{-1}-\mu I\right)$.
- Convergence:
- lower right corner of $\tilde{H} \tilde{K}^{-1}$ gets pushed to μ (fast),
- upper right corner gets pushed to 0 (slow).

Outline

Overview

The classic QR algorithm

The extended QR algorithm

The rational QR algorithm
Rational Krylov
Uniqueness
Implicit rational QR Algorithm
Convergence

Some Conclusions

What about rational Krylov

- Rational Krylov: 119.000 hits in Google.
- Introduced by Ruhe

- Beckermann, Güttel, Berljafa, Meerbergen, ...
- Applications
- model reduction,
- flexibility because of the pole selection.

Basis for the rational Krylov subspace

- Given matrix A and a (sufficiently random) starting vector v :

$$
\begin{aligned}
K_{R}(A, v) & =\left[v,\left(A-\sigma_{1} I\right)^{-1} v,\left(A-\sigma_{2} I\right)^{-1}\left(A-\sigma_{1} I\right)^{-1} v, \ldots\right] \\
\mathcal{K}_{R}(A, v) & =\operatorname{span} K_{R}(A, v) .
\end{aligned}
$$

- The σ_{i} 's, named poles, can be chosen freely (can even be ∞, i.e., $A v$).
- We desire an orthonormal basis $Q=\left[q_{1}, \ldots, q_{n}\right]$ for $\mathcal{K}_{R}(A, v)$.
- Construct q_{i+1} out of the continuation vector $c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$
- For $\sigma_{i} \neq \infty: q_{i+1}$ constructed out of $\left(A-\sigma_{i} l\right)^{-1} c$.

For $\sigma_{i}=0: q_{i+1}$ constructed out of $A^{-1} c$. (Same as before.)

- For $\sigma_{i}=\infty: q_{i+1}$ constructed out of $A c$. (Same as before.)

In Matrix Language

Generic relation between the vectors.

- $c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$. $\left(A-\sigma_{i} l\right)^{-1} c$ orthogonalized against $\operatorname{span}\left\{q_{1}, \ldots, q_{i}\right\}$ to give rest r. Normalize r to get q_{i+1}.
- So $\left(A-\sigma_{i} I\right)^{-1} c \in \operatorname{span}\left\{q_{1}, \ldots, q_{i}, q_{i+1}\right\}$.
- Or $c \in \operatorname{span}\left\{\left(A-\sigma_{i} I\right) q_{1}, \ldots,\left(A-\sigma_{i} l\right) q_{i+1}\right\}$.
- This implies a relation between

$$
\left[q_{1}, \ldots, q_{i+1}\right] \quad \text { and } \quad\left[A q_{1}, \ldots, A q_{i+1}\right] .
$$

Example: compute q_{3} from $A c$

- $c \in \operatorname{span}\left\{q_{1}, q_{2}\right\}$.
- $\left(A-\sigma_{2} I\right)^{-1} c \in \operatorname{span}\left\{q_{1}, q_{2}, q_{3}\right\}$.
- $c \in\left(A-\sigma_{2} l\right) \operatorname{span}\left\{q_{1}, q_{2}, q_{3}\right\}$.
- We have

$$
c=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\times \\
\times \\
0 \\
0 \\
0
\end{array}\right]=\left(A-\sigma_{2} I\right)\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\left[\begin{array}{c}
\otimes \\
\otimes \\
\otimes \\
0 \\
0
\end{array}\right]
$$

- Or

$$
(c=) Q\left[\begin{array}{c}
\times \\
\times \\
0 \\
0 \\
0
\end{array}\right]=A Q\left[\begin{array}{l}
\otimes \\
\otimes \\
\otimes \\
0 \\
0
\end{array}\right]-\sigma_{2} Q\left[\begin{array}{l}
\otimes \\
\otimes \\
\otimes \\
0 \\
0
\end{array}\right]
$$

Example: compute q_{3}

- We had

$$
Q\left[\begin{array}{c}
\times \\
\times \\
0 \\
0 \\
0
\end{array}\right]=A Q\left[\begin{array}{l}
\otimes \\
\otimes \\
\otimes \\
0 \\
0
\end{array}\right]-\sigma_{2} Q\left[\begin{array}{c}
\otimes \\
\otimes \\
\otimes \\
0 \\
0
\end{array}\right]
$$

- Rewritten we get

$$
A Q\left[\begin{array}{c}
\otimes \\
\otimes \\
\otimes \\
0 \\
0
\end{array}\right]=Q\left[\begin{array}{c}
\times+\sigma_{2} \otimes \\
\times+\sigma_{2} \otimes \\
\sigma_{2} \otimes \\
0 \\
0
\end{array}\right] .
$$

- Note that we can extract the pole!

In matrix Language

- Matrix relation in detail

$$
A Q\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right]=Q\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right],
$$

- Matrix relation for K and H Hessenberg

$$
A Q K=Q H .
$$

- Poles as ratios of subdiagonal elements.
- We name (H, K) a rational Hessenberg pair.

Outline

Overview

The classic QR algorithm

The extended QR algorithm

The rational QR algorithm
Rational Krylov
Uniqueness
Implicit rational QR Algorithm Convergence

Some Conclusions

Implicit Theorems

Fixed constraints for both Theorems

1. The matrix A;
2. unitary structure of Q;
3. starting vector $v=Q e_{1}$.

Different constraints and different outcomes

Implicit H-Theorem

- $\mathcal{K}_{R}(A, v)=\operatorname{span}\left\{v,\left(A-\sigma_{1} I\right)^{-1} v, \ldots\right\} ;$
- $K_{R}(A, v)=Q R$.

Implicit Q-Theorem

- Rational pair (H,K);
- $A Q K=Q H$.

Fixed outcomes for both Theorems

1. essentially unique elements of $H K^{-1}$;
2. essentially unique elements of Q.

Summary

Krylov

- $\mathcal{K}(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, A^{3} v, \ldots,\right\}$,
- Hessenberg pair (H, K).

Extended Krylov

- $\mathcal{K}_{E}(A, v)=\operatorname{span}\left\{v, A^{-1} v, A v, A^{-2} v, A^{2} v, \ldots,\right\}$,
- Extended Hessenberg pair (H, K).

Most general:

Rational Krylov

- $\mathcal{K}_{R}(A, v)=\operatorname{span}\left\{v,\left(A-\sigma_{1} I\right)^{-1} v,\left(A-\sigma_{2} I\right)^{-1}\left(A-\sigma_{1} I\right)^{-1} v, \ldots,\right\}$,
- Rational Hessenberg pair (H, K).

Outline

Overview

The classic QR algorithm

The extended QR algorithm

The rational QR algorithm
Rational Krylov
Uniqueness
Implicit rational QR Algorithm
Convergence

Some Conclusions

Original

- We have poles as ratios of the subdiagonal elements.
- We use the following notation $(1) / 1=\sigma_{1}$, and so forth.

Algorithm \& Initialization

- From rational pair (H, K) to new rational pair (\tilde{H}, \tilde{K}) implicit.
- We initialize the iteration for a chosen μ :

$$
Q_{0} e_{1} \approx(H-\mu K) e_{1},
$$

just as before.

- All relations still hold.
- Pole changing algorithm of Güttel and Berljafa.

Initialization

- Q_{0} constructed to introduce the shift μ.
- Q_{0} acts on rows 1 and 2 .

Shift present in row 2.

Initialization

- Q_{0} constructed to introduce the shift μ.
- Q_{0} acts on rows 1 and 2 .

Red block subjected to swapping!

Chase step 1

- The shift μ moved from row 2 to row 3 .
- Q_{1} and Z_{1} execute swap.

$$
\left.\right] \quad\left[\begin{array}{ccccc}
& Q_{1}^{*} Q_{0}^{*} K Z_{1} \\
& & & \times & \times \\
2 & \times & \times & \times & \times \\
& & \mu & \times & \times \\
& \times \\
& & 3 & \times & \times \\
& & & 4 & \times
\end{array}\right]
$$

Shift located in row 3, red block needs swapping!

Chase step 2

- The shift μ moved from row 3 to row 4.
- Q_{2} and Z_{2} execute swap.

Shift located in row 4, red block needs swapping!

Chase step 3

- The shift μ moved from row 4 to row 5 .
- Q_{3} and Z_{3} execute swap.

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& 3 & \times & \times & \times \\
& & 4 & \times & \times \\
& & & \oplus & \times
\end{array}\right]}
\end{gathered}
$$

$$
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3}
$$

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
2 & \times & \times & \times & \times \\
& 3 & \times & \times & \times \\
& & 4 & \times & \times \\
& & & \mu & \times
\end{array}\right]
$$

Shift located in row 5 !

Finalization Option 1

- Remove the shift and restore rational Hessenberg structure.
- Z_{4} operates on columns 4 and 5 , and removes the shift.

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} Z_{4} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& (3) & \times & \times & \times \\
& & 4 & \times & \times \\
& & & 0 & \times
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} Z_{4} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
2 & \times & \times & \times & \times \\
& 3 & \times & \times & \times \\
& & 4 & \times & \times \\
& & & 5 & \times
\end{array}\right]}
\end{gathered}
$$

Shift removed! Structure Restored! Pole 0 introduced!

Finalization Option 2

- Remove the shift and restore rational Hessenberg structure.
- Z_{4} operates on columns 4 and 5, and removes the shift.

$$
\begin{aligned}
& Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} Z_{4} \\
& {\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\mathbf{2} & \times & \times & \times & \times \\
& 3 & \times & \times & \times \\
& & 4 & \times & \times \\
& & & 0 & \times
\end{array}\right]}
\end{aligned}
$$

Shift removed! Structure Restored! Pole ∞ introduced!

Finalization Option 3

- Remove the shift and restore rational Hessenberg structure.
- Z_{4} operates on columns 4 and 5 , and removes the shift.

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} H Z_{1} Z_{2} Z_{3} Z_{4} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
(2) & \times & \times & \times & \times \\
& (3) & \times & \times & \times \\
& & 4 & \times & \times \\
& & & (5) & \times
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
Q_{3}^{*} Q_{2}^{*} Q_{1}^{*} Q_{0}^{*} K Z_{1} Z_{2} Z_{3} Z_{4} \\
{\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
2 & \times & \times & \times & \times \\
& 3 & \times & \times & \times \\
& & 4 & \times & \times \\
& & & 5 & \times
\end{array}\right]}
\end{gathered}
$$

Shift removed! Structure Restored! Pole σ_{5} introduced!

Outline

Overview

The classic QR algorithm

The extended QR algorithm

The rational QR algorithm
Rational Krylov
Uniqueness
Implicit rational QR Algorithm
Convergence

Some Conclusions

Convergence Analysis

- Subspace iteration determined by the initialization:

$$
Q_{0} e_{1}=(H-\mu K) e_{1} \approx\left(H K^{-1}-\sigma_{1}\right)^{-1}\left(H K^{-1}-\mu I\right) e_{1} .
$$

- Subspace iteration driven by $\left(H K^{-1}-\sigma_{1}\right)^{-1}\left(H K^{-1}-\mu I\right)$.
- Note, σ_{1} is pushed off, so next time, next driving function.
- Convergence:
- lower right corner of $\tilde{H} \tilde{K}^{-1}$ gets pushed to μ (fast),
- upper right corner gets pushed to σ_{i} (slow).

Numerical Experiment

- $5 \%-10 \%$ faster than the classical QZ, for standard pole choice.
- More interesting is the link with contour integration.

Numerical Experiments

Numerical Experiments

"Thats all Talte!"

