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𝐸𝑛0 ~ 0.2801. . ./𝑛 , 𝐸𝑛𝑛 ~ 8𝑒−𝜋 𝑛

Newman, 1964: approximation of |x| on [−1,1]

Poles and zeros of r :
exponentially clustered near x=0,
exponentially diminishing residues.

1.  Polynomial vs. rational approximation

poles
type (20,20)

Rational approximation is nonlinear, so algorithms are nontrivial.
There may be nonuniqueness and local minima.
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2.  Four representations of rational functions

Quotient of polynomials 𝑝(𝑧)/𝑞(𝑧)

Partial fractions

Quotient of partial fractions

Transfer function/matrix pencil

෍
𝑎𝑘

𝑧 − 𝑧𝑘

𝑛(𝑧)/𝑑(𝑧)

(= barycentric)

SK, IRF, AGH, ratdisk

VF, exponential sums 

Floater-Hormann, AAA 

IRKA, Loewner, RKFIT

Beylkin, Deschrijver, Dhaene, Drmač, 
Greengard, Gustavsen, Hochman,
Mohlenkamp, Monzón, Semlyen,…

Berrut, Filip, Floater, Gopal,
Hochman, Hormann, Ionita, Klein,
Mittelmann, Nakatsukasa, Salzer,
Schneider, Sète, Trefethen, Werner,…

Antoulas, Beattie, Beckermann, Berljafa,
Druskin, Elsworth, Gugercin, Güttel,
Knizhnerman, Meerbergen, Ruhe,…

Alpert, Carpenter, Coelho, Gonnet,
Greengard, Hagstrom, Koerner, Levy,
Pachón, Phillips, Ruttan, Sanathanen,
Silantyev, Silveira, Varga, White,…

𝑐𝑇 𝑧𝐵 − 𝐴 −1𝑏

Sometimes the boundaries are blurry!
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2a.  Quotient of polynomials

Need a good basis, such as — disk:
interval:

connected region:
disconnected region:

monomials
Chebyshev
Faber polynomials
Faber-Walsh polynomials         (Liesen & Sète)

𝑟 𝑧 = 𝑝(𝑧)/𝑞(𝑧)

However, for problems with singularities, 𝑟 = 𝑝/𝑞 remains problematic
regardless of the basis.   (Carpenter-Ruttan-Varga 1993 used 200-digit arithmetic.)

Reason: if poles and zeros are clustered, 𝑝 and 𝑞 are exponentially
graded.  So 𝑝/𝑞 will be inaccurate where 𝑝 and 𝑞 are small.
(𝑝/𝑞 is an exponentially ill-conditioned function of 𝑝 and 𝑞.)

IRF = Iterated rational fitting.  Coelho-Phillips-Silveira 1999.

AGH. Alpert-Greengard-Hagstrom 2000.

ratdisk/ratinterp.  Gonnet-Pachón-Trefethen 2011.

The first two above construct a good basis along the way.
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2b.  Partial fractions 𝑟 𝑧 =෍
𝑎𝑘

𝑧 − 𝑧𝑘

Much better behaved than 𝑝/𝑞.  Ill-conditioning often exponential, yet it’s
not clear this hurts much.  (Unanswered questions here…. related to frames?) 

Note that partial fractions in this form cannot represent multiple poles.
Philosophically, this is perhaps analogous to breakdown of a Lanczos iteration

(which is related to degeneracies in the Padé table). 

An advantage is that the poles 𝑧𝑘 are explicitly present, which is often helpful if
we want to manipulate them, e.g. to exclude them from a certain interval or region.

VF = Vector fitting.  Gustavsen-Semlyen 1999.  2390 citations at Google Scholar!

Exponential sums. Beylkin-Monzón, 2005.
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2c.  Quotient of partial fractions (= barycentric)

Salzer 1981, Schneider & Werner 1986, Antoulas & Anderson 1986, Berrut 1988
Floater-Hormann.  F & H 2007.

AAA = adaptive Antoulas-Anderson.  Nakatsukasa-Sète-Trefethen 2018.

Klein thesis 2012 ( → equi flag in Chebfun)

(from the AAA paper)

𝑧𝑗 are called the support points and can be chosen to enhance stability.  They are not the poles!

𝑟 𝑧 = σ
𝑎𝑘

𝑧−𝑧𝑘
/ σ 𝑏𝑘

𝑧−𝑧𝑘
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2d.  Transfer function/matrix pencil

Ruhe, 1990s.

Loewner framework.  Mayo-Antoulas 2007.

IRKA = Iterative rational Krylov.  Antoulas-Beattie-Gugercin 2008.

RKFIT.  Berljafa-Güttel 2015 (→ RKFUN).

𝑟 𝑧 = 𝑐𝑇 𝑧𝐵 − 𝐴 −1𝑏

These representations are fully imbedded in numerical linear algebra/model order reduction.
Scalar problems are just a special case where certain matrices are diagonal.
The poles of 𝑟 are the eigenvalues of the pencil [𝐴, 𝐵]. 
The Loewner framework uses SVD to choose poles.
Rational Krylov constructs orthogonal bases iteratively.

8/26



Yuji Nakatsukasa Olivier Sète

3.  The AAA algorithm

SISC, to appear

= “adaptive Antoulas-Anderson”.  Fall 2016.
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AAA Algorithm

Taking 𝑚 = 1,2,… , choose support points 𝑧𝑚 one after another.

Next support point: point 𝑧𝑖 where error |𝑓𝑖 − 𝑟(𝑧𝑖)| is largest.

Barycentric weights 𝑤𝑗 at each step:

chosen to minimize linearized least-squares error ||𝑓𝑑 − 𝑛||.

Available (for 𝜇 = 𝜈) as aaa in Chebfun.
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Generalizations also to type (𝜇, 𝜈) with 𝜇 ≠ 𝜈.

cf. Berrut & Mittelmann 1997

Comparied with other

methods AAA is FAST!
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Type (20,20) approx of |𝑥| on [−1,1]

Size of denominator 𝐷 for
AAA representation 𝑁/𝐷

Size of denominator 𝑞 for
polynomial representation 𝑝/𝑞



AAA demos
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ezplot(aaa(@gamma))

Z = randn(1000,1) + 1i*randn(1000,1);
plot(Z,'.k','markersize',4), axis equal, hold on
F = exp(Z)./sin(pi*Z);
tic, [r,pol] = aaa(F,Z); toc
norm(F-r(Z),inf)
plot(pol,'.r'), hold off
pol



4.  Application: conformal maps

Numerische Mathematik, submitted
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Conformal maps

First, compute the conformal map 𝑓 by
standard methods.  For polygons we use
Driscoll’s Schwarz-Christoffel Toolbox.

Then use AAA to represent the result:

Sample Z and F = 𝑓(Z) at a few thousand
points on the boundary.

Forward map
[r, rpol, rres] = aaa(F, Z, 'tol', 1e-7)

Inverse map
[s, spol, sres] = aaa(Z, F, 'tol', 1e-7)

Note that the inverse map comes for free.
Speedups often by factors in the hundreds.
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Perturbed L shape
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Snowflake
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Unbounded domain
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Root-exponential convergence
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The classic problem concerns |𝑥|𝛼.

For conformal maps of regions with corners we need the complex function 𝑥𝛼.
This is different, and not a corollary.

We’ve proved root-exponential convergence via a trapezoidal rule estimate
adapted from ATAP, pp. 221-212. (Gopal & T., submitted to Numer. Math.)

(Zolotarev, Newman, Vyacheslavov, Stahl,…) 



Following Caldwell, Li, and Greenbaum, 
we use the Kerzman-Stein integral equation
as discretized by Kerzman and Trummer
(taking 800 points on the boundary).

Then AAA represents the map and its inverse:

[r, rpol, rres] = aaa(F, Z, 'tol', 1e-6)

[s, spol, sres] = aaa(Z, F, 'tol', 1e-6)

Smooth domains
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Random boundary

(defined by Chebfun randnfun)
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Note that maps involving analytic boundaries
may have singularities exponentially close.
Polynomial approximations would be unworkable.



5.  Application: minimax approximation

a loyal friend from Rennes a man of steel from Lille

SISC, to appear
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Minimax approximation on a real interval
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Before 2017, Chebfun failed on type (10,10) approx to |𝑥| (see ATAP, p. 192).
Varga-Ruttan-Carpenter 1993 got to type (80,80), but using 200-digit arithmetic.

Chebfun’s new code minimax can do type (80,80) in 16-digit arithmetic!
Types (𝑚, 𝑛) with 𝑚 ≠ 𝑛 are also allowed.

Key advance: barycentric representation.                          

This was successful for three different minimax methods:
(1) Remez algorithm   (Werner 1962, Maehly 1963, Curtis & Osborne 1966)

(2) ”AAA-Lawson” algorithm (AAA in noninterpolatory mode, iterative reweighting)
(3) differential correction algorithm (making key use of linear programming)   (Cheney and Loeb 1961)

Remez can still be difficult because of the initialization problem.  minimax uses, as necessary:

•  CF approximation (SVD of Hankel matrix of Chebyshev coefficients)
•  AAA-Lawson
•  stepping up from smaller types 𝑚, 𝑛

Previous work: Ioniţă 2013
Rice U. / MathWorks

(cf. Lawson 1961)



minimax demos
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f = @(x) sqrt(abs(x+.5)) + abs(x-.5);
xx = linspace(-1,1,20000);

[p,q,r] = minimax(f,100,0); plot(xx, f(xx)-r(xx)), grid on
0,100

[p,q,r] = minimax(f,10,10); plot(xx, f(xx)-r(xx)), grid on
20,20    40,40    80,80

plot(xx,r(xx))



6.  Accuracy and noise

Quotient of polynomials 𝑝(𝑧)/𝑞(𝑧)

Partial fractions

Quotient of partial fractions

Transfer function/matrix pencil

෍
𝑎𝑘

𝑧 − 𝑧𝑘

𝑛(𝑧)/𝑑(𝑧)
(= barycentric)

𝑐𝑇 𝑧𝐵 − 𝐴 −1𝑏
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Q1:  Are they capable of representing difficult rational functions?

NO

COMPLICATED !

YES

YES

The matrices usually have
awful condition numbers,
like 108 or worse.  Yet often
the fits are good anyway.



aaacompare demos

(AAA vs. partial fractions least-squares fit using the same AAA poles)
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exp(x)

abs(x-0.1i)

sin(1/(1.1-x))



What happens with noisy data?

Effect on AAA of small errors in a fit of 𝑥1/4
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The noise has led to an
unwanted pole-zero pair —
a Froissart doublet.

Currently AAA seems more
fragile than RKFIT, and we
are investigating.
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Isospectral drum
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Ellipse

Note that maps involving analytic boundaries may
have singularities exponentially close (here, 3 × 10−5).
Polynomial approximations would be unworkable.
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Rectangle
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Illustration of possible ill-conditioning of partial fractions representation

Approximate 𝑒−𝑥
2
on [−1,1]

AAA represents the function
to 15 digits with 10 poles.

Here we make a 10000 × 10
matrix from these poles and do 

a least-squares fit.  7 digits are lost.
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