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The Prony method for sparse exponential sums
Signal model f (x) =

M∑
j=1

cj eTj x

We have M, f (`), ` = 0, . . . , 2M − 1
We want cj ,Tj ∈ C, where −π ≤ ImTj < π, j = 1, . . . ,M.

Consider
P(z) :=

M∏
j=1

(
z − eTj

)
=

M∑
`=0

p` z`

with unknown parameters Tj and pM = 1.

M∑

`=0
p`f (`+ m) =

M∑
`=0

p`
M∑

j=1
cjeTj (`+m) =

M∑
j=1

cj eTj m
M∑
`=0

p` eTj`

=
M∑

j=1
cjeTj mP(eTj ) = 0, m = 0, . . . ,M − 1.
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Reconstruction algorithm
Input: f (`), ` = 0, . . . , 2M − 1

Solve the Hankel system



f (0) f (1) . . . f (M − 1)
f (1) f (2) . . . f (M)
...

...
...

f (M − 1) f (M) . . . f (2M − 2)







p0
p1
...

pM−1




= −




f (M)
f (M + 1)

...
f (2M − 1)




Compute the zeros of the Prony polynomial P(z) =
∑M
`=0 p`z` and

extract the parameters Tj from its zeros zj = eTj , j = 1, . . . ,M.
Compute cj solving the linear system

f (`) =
M∑

j=1
cjeTj`, ` = 0, . . . , 2M − 1.

Output: Parameters Tj and cj , j = 1, . . . ,M.
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(Almost) equivalent models

If we can reconstruct

f (x) =
M∑

j=1
cj eαj x ,

then we can also reconstruct

g(t) =
M∑

j=1
cj δ(t − tj) ⇒ ĝ(x) =

M∑

j=1
cj e−itj x

g(t) =
M∑

j=1
cj φ(t − tj) ⇒ ĝ(x) =

( M∑

j=1
cj e−itj x

)
φ̂(x)

f (s) =
M∑

j=1

cj
s − αj

⇒ L−1(g)(x) =
M∑

j=1
cj eαj x
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Revisiting Prony’s method using the shift operator
Let

Sh f := f (·+ h), h ∈ R \ {0}.

Then
(Sheα·)(x) = eα(h+x) = eαh eαx .

For f (x) =
M∑

j=1
cj eαj x and λj = eαj h let P(z) :=

M∏
j=1

(z − λj) =
M∑

k=0
pkzk .

M∑

k=0
pk f (x0 + h(k + m)) =

M∑

k=0
pk(Sh(k+m)f )(x0) =

M∑

k=0
pk(Sk+m

h f )(x0)

=
M∑

k=0
pkSk+m

h

( M∑

j=1
cjeαj ·

)
(x0) =

M∑

k=0
pk

M∑

j=1
cj (Sk+m

h eαj ·)(x0)

=
M∑

j=1
cj

M∑

k=0
pk λ

m+k
j eαj x0 =

M∑

j=1
cjλ

m
j
( M∑

k=0
pk λ

k
j
)
eαj x0 = 0.
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Generalized shift operators
A) Symmetric shift operator Sh,−h:

Sh,−hf (x) := 1
2
(
f (x − h) + f (x + h)

)
= 1

2(S−h + Sh)f (x), h > 0

B) Let K ∈ C(R2) and

K (x , h1 + h2) = K (x , h2)K (x + h2, h1) = K (x , h1)K (x + h1, h2).

Generalized shift operator SK ,h:

SK ,hf (x) := K (x , h) f (x + h).

C) Let G ∈ C(R) be strictly monotonous in [a, b] ⊆ R.
Generalized shift operator SG,h:

SG,hf (x) := f (G−1(G(x) + h)).
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Generalized shift operators
Theorem

Sh2,−h2(Sh1,−h1f ) = Sh1,−h1(Sh2,−h2f )

= 1
2

(
Sh1+h2,−(h1+h2)f + Sh1−h2,−(h1−h2)f

)
,

SG,h1(SG,h2f ) = SG,h2(SG,h1f ) = SG,h1+h2f ,
SK ,h1(SK ,h2f ) = SK ,h2(SK ,h1f ) = SK ,h1+h2f .

In particular,

Sk
h,−hf = 1

2k−1

b(k−1)/2c∑

l=0

(
k
l

)
(S(k−2l)h,−(k−2l)hf + δk/2,bk/2c

1
2k

(
k

k/2

)
f ,

Sk
G,hf = SG,khf ,

Sk
K ,hf = SK ,khf ,

where δk/2,bk/2c = 1 if k is even and vanishes otherwise.
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Recovery of sparse trigonometric expansions

We have

Sh,−h cos(αx) = 1
2 [cos(α(x + h)) + cos(α(x − h))] = cos(αh) cos(αx),

and

Sh,−h sin(αx) = 1
2 [sin(α(x + h)) + sin(α(x − h))] = cos(αh) sin(αx),

i.e., the symmetric shift operator Sh,−h possesses the eigenfunctions
cos(αx) and sin(αx) for all α ∈ R.
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Recovery of cosine expansions

We want to recover

f (x) =
M∑

j=1
cj cos(αjx).

Theorem
Assume that αj are in the range [0,K ) ⊂ R.
Let h = π

K . Then, f in can be uniquely reconstructed using the 2M
samples f (kh), k = 0, . . . , 2M − 1.
More generally, for x0 ∈ R satisfying αjx0 6= (2k + 1)π/2 for k ∈ Z the
4M − 1 sample values f (x0 + hk), k = −2M + 1, . . . , 2M − 1, are
sufficient to reconstruct f .
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Recovery of expansions of shifted Gaussians

We apply the generalized shift operator SK ,hf (x) = K (x , h)f (x + h).

Let g(x) := e−βx2 for some given β ∈ C \ {0}.

We want to recover the parameters cj ∈ C and αj ∈ R of

f (x) =
M∑

j=1
cj g(x − αj) =

M∑

j=1
cj e−β(x−αj )2

.

Let K (x , h) := eβh(2x+h). Then

(SK ,h e−β(·−αj )2)(x) = eβh(2x+h) e−β(x+h−αj )2 = e2βαj h e−β(x−αj )2
.

Thus, e−β(·−αj )2 are eigenfunctions of SK ,h to e2βαj h.
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Recovery of expansions of shifted Gaussians

We want to recover the parameters cj ∈ C and αj ∈ R of

f (x) =
M∑

j=1
cj g(x − αj) =

M∑

j=1
cj e−β(x−αj )2

.

Theorem
If Reβ 6= 0, the stepsize h ∈ R \ {0} can be taken arbitrarily.
If Reβ = 0, we assume that αj ∈ (−T , T ) for j = 1, . . . ,M for some
given T and choose 0 < h ≤ π

2|Imβ|T .
Then, f can be reconstructed using the 2M sample values f (x0 + hk),
k = 0, . . . , 2M − 1, where x0 ∈ R is an arbitrary real number.
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Example: Recovery of shifts of Gaussians
f (x) =

5∑
j=1

cj ei(x−αj )2

25

7 Numerical examples

In this section we want to illustrate the recovery method for non-stationary signals
with some examples.

Example 7.1. We start with considering the recovery of an expansion of complex
shifted Gaussians,

f(x) =

MX

j=1

cj G(x � ↵j) =

MX

j=1

cj e��(x�↵j)
2
,

with M = 5, G(x) = eix2
, i.e., � = �i, and with complex coe�cients cj and real

shifts ↵j given in Table 1. The coe�cients have been obtained by applying a uniform
random choice from the intervals (�5, 5) + i(�2, 2) for cj and from (�⇡,⇡) for ↵j .
For reconstruction, we have used the 10 signal values f(j), j = �1, . . . , 8, indicated
by ⇤ in Figure 1 (left). The maximal error for recovering the parameters is given by

max
j

|cj � c̃j | = 1.5 · 10�10, max
j

|↵j � ↵̃j | = 3.5 · 10�12,

where c̃j and ↵̃j denote the computed parameters.

j = 1 j = 2 j = 3 j = 4 j = 5

Re cj �2.37854 �4.55545 2.54933 �2.57214 �0.57597

Im cj 0.75118 �0.56308 0.94536 0.42117 0.73366

↵j 0.64103 �0.18125 �1.50929 �0.53137 �0.23778

Table 1 Coe�cients cj 2 C and ↵j 2 R for the expansion of shifted Gaussians in Example 7.1.
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Figure 1 Left: Real and imaginary part of the signal f(x) consisting of shifted Gaussians given in Example
7.1. Right: Real and imaginary part of the Gabor expansion considered in Example 7.2. Stars indicate
the used signal values.

Example 7.2. Next, we consider the recovery of a Gabor expansion of the form
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Recovery of sparse Gabor expansions

We want to recover the parameters αj , cj , sj ∈ R of

f (x) =
M∑

j=1
cj e2πixαjg(x − sj),

with Gaussian window g(x) := e−βx2 and known β ∈ R \ {0}.

Let K (x , h) = eβh(2x+h) then

(SK ,h e2πiαj ·−β(·−sj )2)(x) = eβh(2x+h) e2πi(x+h)αj e−β(x+h−sj )2

= e2h(βsj +πiαj ) e2πixαj−β(x−sj )2
.

Thus, e2πixαjg(x − sj) = e2πixαj e−β(x−sj )2 are eigenfunctions of SK ,h to
the eigenvalue e2h(βsj +πiαj ).
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.

Thus, e2πixαjg(x − sj) = e2πixαj e−β(x−sj )2 are eigenfunctions of SK ,h to
the eigenvalue e2h(βsj +πiαj ).
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Recovery of Gabor expansions

We want to recover the parameters αj cj , sj ∈ R of

f (x) =
M∑

j=1
cj e2πixαjg(x − sj),

with Gaussian window g(x) := e−βx2 and known β ∈ R \ {0}.

Theorem
Assume that αj ∈ (−K ,K ) for j = 1, . . . ,M and let 0 < h ≤ 1/2K. Then,
f can be reconstructed using the 2M sample values f (x0 + hk),
k = 0, . . . , 2M − 1, where x0 ∈ R is an arbitrary real number.
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Proof.
Define P(z) :=

M∏
j=1

(z − e2h(πiαj +βsj )) =
M∑
`=0

p` z`.

The zeros of P(z) are complex, where the imaginary part covers the
modulation parameters αj and the real part the shift parameters sj . Then
for m = 0, . . . ,M − 1,

M∑

`=0
p` (SK ,(`+m)hf )(x0) =

M∑

`=0
p` eβh(`+m)(2x0+h(`+m))f (x0 + h(`+ m))

=
M∑

`=0
p` eβh(`+m)(2x0+h(`+m))

M∑

j=1
cj e2πi(x0+h(m+`))αj e−β(x0+h(`+m)−sj )2

=
M∑

j=1
cj e−β(x0+hm−sj )2eβhm(2x0+hm)e2πi(x0+hm)αj

M∑

`=0
p` e2`h(πiαj +βsj ) = 0.

Compute P(z) and extract αj and sj from the zeros of P(z). Compute cj
by solving the obtained linear system. �
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Example: Recovery of Gabor expansions
f (x) =

6∑
j=1

cj e2πixαj e−(x−sj )2/2

26

with G(x) = e�x2/2, M = 6, real coe�cients cj , ↵j and sj as given in Table 2.
The coe�cients have been obtained by applying a uniform random sampling from
the intervals (�10, 10) for cj , from (�5, 5) for sj and from (0, 1) for ↵j . For the
reconstruction we have used the 12 signal values f(l), l = 0, . . . , 11 indicated by ⇤ in
Figure 1 (right). For the errors we obtain in this example

max
j

|cj � c̃j | = 1.3 · 10�6, max
j

|↵j � ↵̃j | < 3.3 · 10�7, max
j

|sj � s̃j | < 3.1 · 10�6,

where c̃j , ↵̃j , s̃j denote the parameters computed by the numerical procedure.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

cj 0.0777 2.9361 �3.8450 �7.2255 �0.4885 �2.7508

sj �1.9918 �4.3941 4.8090 �2.1337 3.0082 3.9611

↵j 0.7881 0.7802 0.6685 0.1335 0.0215 0.5598

Table 2 Coe�cients cj , ↵j , sj 2 R for the Gabor expansion in Example 7.2.

Example 7.3. Finally, we consider two examples for the model with quadratic phase
function

f(x) =
MX

j=1

cj cos(x2 + ↵jx + �j)

in (6.27). In Figure 2 (left), we display a signal with M = 3 components with
corresponding parameters given in Table 3. For reconstruction, we have used the
signal values f(l), l = 0, . . . , 5. In Figure 2 (right), we give a second example with
coe�cients given in Table 4. Here, M = 6, and we have used the signal values
f(�1 + 5l

12), l = 0, . . . , 11 for reconstruction. The coe�cients have been obtained
by applying a uniform random sampling from the intervals (�1, 5) for cj in the first
and from (0, 5) in the second example, from (�⇡,⇡) for ↵j and from (�⇡/2,⇡/2) for
�j (for both examples). The reconstruction errors in the first example with M = 3
terms are

max
j

|cj � c̃j | = 1.3 · 10�8, max
j

|↵j � ↵̃j | = 3.3 · 10�11, max
j

|�j � �̃j | = 1.7 · 10�9.

For the second example with M = 6 we obtain

max
j

|cj � c̃j | = 7.7 · 10�5, max
j

|↵j � ↵̃j | = 3.6 · 10�6, max
j

|�j � �̃j | = 5.5 · 10�5.

j = 1 j = 2 j = 3

cj �0.1835 4.2157 2.478

↵j 0.3132 2.2308 2.2181

�j 0.3834 �0.4682 0.0416

Table 3 Coe�cients cj , ↵j ,�j 2 R for the non-stationary signal in Figure 2 (left).

25

7 Numerical examples

In this section we want to illustrate the recovery method for non-stationary signals
with some examples.

Example 7.1. We start with considering the recovery of an expansion of complex
shifted Gaussians,

f(x) =
MX

j=1

cj G(x � ↵j) =
MX

j=1

cj e��(x�↵j)
2
,

with M = 5, G(x) = eix2
, i.e., � = �i, and with complex coe�cients cj and real

shifts ↵j given in Table 1. The coe�cients have been obtained by applying a uniform
random choice from the intervals (�5, 5) + i(�2, 2) for cj and from (�⇡,⇡) for ↵j .
For reconstruction, we have used the 10 signal values f(j), j = �1, . . . , 8, indicated
by ⇤ in Figure 1 (left). The maximal error for recovering the parameters is given by

max
j

|cj � c̃j | = 1.5 · 10�10, max
j

|↵j � ↵̃j | = 3.5 · 10�12,

where c̃j and ↵̃j denote the computed parameters.

j = 1 j = 2 j = 3 j = 4 j = 5

Re cj �2.37854 �4.55545 2.54933 �2.57214 �0.57597

Im cj 0.75118 �0.56308 0.94536 0.42117 0.73366

↵j 0.64103 �0.18125 �1.50929 �0.53137 �0.23778

Table 1 Coe�cients cj 2 C and ↵j 2 R for the expansion of shifted Gaussians in Example 7.1.
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Figure 1 Left: Real and imaginary part of the signal f(x) consisting of shifted Gaussians given in Example
7.1. Right: Real and imaginary part of the Gabor expansion considered in Example 7.2. Stars indicate
the used signal values.

Example 7.2. Next, we consider the recovery of a Gabor expansion of the form

f(x) =

MX

j=1

cj e2⇡ix↵jG(x � sj),
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Re cj �2.37854 �4.55545 2.54933 �2.57214 �0.57597
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Figure 1 Left: Real and imaginary part of the signal f(x) consisting of shifted Gaussians given in Example
7.1. Right: Real and imaginary part of the Gabor expansion considered in Example 7.2. Stars indicate
the used signal values.

Example 7.2. Next, we consider the recovery of a Gabor expansion of the form

f(x) =

MX

j=1

cj e2⇡ix↵jG(x � sj),
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Recovery of signal models using the shift SG ,h

Let SG,hf (x) := f (G−1(G(x) + h)).

G(x) G−1(x) SG,hf eigenfunctions

ln(x) ex f (e(ln x)+h) = f (x eh) xp, p ∈ C

x2 √
x f (

√
x2 + h) eαx2

, α ∈ C

xp, p > 0 p
√
x f ( p√xp + h) eαxp

, α ∈ C

cos(x) arccos(x) f (arccos(cos(x) + h)) eα cos x , α ∈ C
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Sparse expansions of Chebyshev polynomials
We want to recover

f (x) =
M∑

j=1
cj Tnj (x).

Let (SG,h,−hf )(x) := 1
2

(
f (cos(arccos(x) + h)) + f (cos(arccos(x)− h))

)
.

Then
(SG,h,−hTk)(x) = 1

2
(
Tk(cos(arccos(x) + h)) + Tk(cos(arccos(x)− h))

)

= 1
2
(

cos k(arccos(x) + h) + cos k(arccos(x)− h)
)

= cos(kh) cos(k arccos x) = cos(kh)Tk(x).

Theorem
Let K be a bound of the degree of the polynomial f and let 0 < h ≤ π

K .
Then the Chebyshev expansion f (x) can be uniquely recovered from the
samples f (cos(kh)), k = 0, . . . , 2M − 1.
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Recovery of non-stationary signals

We want to recover the parameters αj , cj ∈ R, βj ∈ [0, 2π) of

f (x) =
M∑

j=1
cj cos(αjxp + βj), p > 0 odd

Let

Sxp ,h,−hf (x) := 1
2

(
f (sgn(xp + h)f

(
p
√
|xp + h|

)
+ f (sgn(xp + h)f

(
p
√
|xp − h|

))
.

Then
Sxp ,h,−h cos (αjxp + βj) = cos(αjh) cos (αjxp + βj) .

The eigenvalues cos(αjh) and cos(αkh) are pairwise different for αj 6= αk
if αj , αk ∈ [0, π/h].
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Recovery of non-stationary signals
We want to recover the parameters αj , cj ∈ R, βj ∈ [0, 2π) of

f (x) =
M∑

j=1
cj cos(αjxp + βj) (with known odd p > 0).

Theorem
Let h := π/K.
1. If the parameters βj do not appear, then f can be uniquely recovered
from its signal values f

(
p√hk

)
, k = 0, . . . , 2M − 1.

2. If the nonzero parameters βj appear, then the αj , j = 1, . . . ,M, can be
recovered in a first step from signal values f

(
p√hk

)
, k = 0, . . . , 2M − 1,

and the parameters cj and βj can be reconstructed, using in a second step
additionally the signal values f

(
sgn(hk − π

2αj
) p
√
|hk − π

2αj
|
)

for
k = −M + 1, . . . ,M − 1.
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Example: Recovery of non-stationary signals
f (x) =

3∑
j=1

cj cos(x2 + αjx + βj)

26

with G(x) = e�x2/2, M = 6, real coe�cients cj , ↵j and sj as given in Table 2.
The coe�cients have been obtained by applying a uniform random sampling from
the intervals (�10, 10) for cj , from (�5, 5) for sj and from (0, 1) for ↵j . For the
reconstruction we have used the 12 signal values f(l), l = 0, . . . , 11 indicated by ⇤ in
Figure 1 (right). For the errors we obtain in this example

max
j

|cj � c̃j | = 1.3 · 10�6, max
j

|↵j � ↵̃j | < 3.3 · 10�7, max
j

|sj � s̃j | < 3.1 · 10�6,

where c̃j , ↵̃j , s̃j denote the parameters computed by the numerical procedure.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

cj 0.0777 2.9361 �3.8450 �7.2255 �0.4885 �2.7508

sj �1.9918 �4.3941 4.8090 �2.1337 3.0082 3.9611

↵j 0.7881 0.7802 0.6685 0.1335 0.0215 0.5598

Table 2 Coe�cients cj , ↵j , sj 2 R for the Gabor expansion in Example 7.2.

Example 7.3. Finally, we consider two examples for the model with quadratic phase
function

f(x) =

MX

j=1

cj cos(x2 + ↵jx + �j)

in (6.27). In Figure 2 (left), we display a signal with M = 3 components with
corresponding parameters given in Table 3. For reconstruction, we have used the
signal values f(l), l = 0, . . . , 5. In Figure 2 (right), we give a second example with
coe�cients given in Table 4. Here, M = 6, and we have used the signal values
f(�1 + 5l

12), l = 0, . . . , 11 for reconstruction. The coe�cients have been obtained
by applying a uniform random sampling from the intervals (�1, 5) for cj in the first
and from (0, 5) in the second example, from (�⇡,⇡) for ↵j and from (�⇡/2,⇡/2) for
�j (for both examples). The reconstruction errors in the first example with M = 3
terms are

max
j

|cj � c̃j | = 1.3 · 10�8, max
j

|↵j � ↵̃j | = 3.3 · 10�11, max
j

|�j � �̃j | = 1.7 · 10�9.

For the second example with M = 6 we obtain

max
j

|cj � c̃j | = 7.7 · 10�5, max
j

|↵j � ↵̃j | = 3.6 · 10�6, max
j

|�j � �̃j | = 5.5 · 10�5.

j = 1 j = 2 j = 3

cj �0.1835 4.2157 2.478
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Table 3 Coe�cients cj , ↵j ,�j 2 R for the non-stationary signal in Figure 2 (left).
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Figure 2 Left: non-stationary signal f(x) with quadratic phase function with parameters given in Table 3.
Right: non-stationary signal f(x) with quadratic phase function with parameters given in Table 4. Stars
indicate the used signal values.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

cj 3.8940 2.117 0.4541 1.3323 0.7682 1.4050

↵j �0.3764 0.1705 �0.2675 2.3585 0.1134 2.7873

�j 0.4326 1.4378 �0.8145 0.5533 �0.6626 0.5397

Table 4 Coe�cients cj , ↵j , sj 2 R for the non-stationary signal in Figure 2 (right).
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