Reconstruction of non-stationary signals by the generalized Prony method

Gerlind Plonka

Institute for Numerical and Applied Mathematics, University of Göttingen

Lille, June 1, 2018

Gerlind Plonka (University of Göttingen) Reconstruction of nonstationary signals

Outline

- The Prony method: Reconstruction of sparse exponential sums
- Revisiting Prony's method using the shift operator
- Generalized shift operators
- Recovery of sparse trigonometric expansions
- Recovery of sparse expansions of shifted Gaussians
- Recovery of sparse Gabor expansions
- Recovery of sparse expansions of Chebyshev polynomials
- Recovery of non-stationary signals

Joint work with Kilian Stampfer and Ingeborg Keller

The Prony method for sparse exponential sums

Signal model
$$f(x) = \sum_{j=1}^{M} c_j e^{T_j x}$$

We have *M*, $f(\ell)$, $\ell = 0, ..., 2M - 1$

We want $c_j, T_j \in \mathbb{C}$, where $-\pi \leq \text{Im } T_j < \pi$, $j = 1, \dots, M$.

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

The Prony method for sparse exponential sums

Signal model
$$f(x) = \sum_{j=1}^{M} c_j e^{T_j x}$$

We have $M, f(\ell), \ell = 0, ..., 2M - 1$

We want $c_j, T_j \in \mathbb{C}$, where $-\pi \leq \text{Im } T_j < \pi, j = 1, \dots, M$.

Consider

$$\mathsf{P}(z) := \prod_{j=1}^{M} \left(z - e^{\mathcal{T}_j}
ight) = \sum_{\ell=0}^{M} p_\ell \, z^\ell$$

with unknown parameters T_j and $p_M = 1$.

$$\sum_{\ell=0}^{M} p_{\ell} f(\ell+m) = \sum_{\ell=0}^{M} p_{\ell} \sum_{j=1}^{M} c_j e^{T_j(\ell+m)} = \sum_{j=1}^{M} c_j e^{T_j m} \sum_{\ell=0}^{M} p_{\ell} e^{T_j \ell}$$
$$= \sum_{j=1}^{M} c_j e^{T_j m} P(e^{T_j}) = 0, \qquad m = 0, \dots, M-1.$$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Reconstruction algorithm

Input: $f(\ell)$, $\ell = 0, ..., 2M - 1$

• Solve the Hankel system

$$\begin{pmatrix} f(0) & f(1) & \dots & f(M-1) \\ f(1) & f(2) & \dots & f(M) \\ \vdots & \vdots & & \vdots \\ f(M-1) & f(M) & \dots & f(2M-2) \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_{M-1} \end{pmatrix} = - \begin{pmatrix} f(M) \\ f(M+1) \\ \vdots \\ f(2M-1) \end{pmatrix}$$

- Compute the zeros of the Prony polynomial $P(z) = \sum_{\ell=0}^{M} p_{\ell} z^{\ell}$ and extract the parameters T_j from its zeros $z_j = e^{T_j}$, j = 1, ..., M.
- Compute c_j solving the linear system

$$f(\ell) = \sum_{j=1}^M c_j \mathrm{e}^{T_j \ell}, \qquad \ell = 0, \dots, 2M-1.$$

Output: Parameters T_j and c_j , $j = 1, \ldots, M$.

(Almost) equivalent models

If we can reconstruct

$$f(x) = \sum_{j=1}^{M} c_j e^{\alpha_j x},$$

then we can also reconstruct

$$g(t) = \sum_{j=1}^{M} c_j \,\delta(t - t_j) \quad \Rightarrow \quad \widehat{g}(x) = \sum_{j=1}^{M} c_j \,\mathrm{e}^{-\mathrm{i}t_j x}$$

$$g(t) = \sum_{j=1}^{M} c_j \,\phi(t - t_j) \quad \Rightarrow \quad \widehat{g}(x) = \Big(\sum_{j=1}^{M} c_j \,\mathrm{e}^{-\mathrm{i}t_j x}\Big)\widehat{\phi}(x)$$

$$f(s) = \sum_{j=1}^{M} \frac{c_j}{s - \alpha_j} \quad \Rightarrow \quad \mathcal{L}^{-1}(g)(x) = \sum_{j=1}^{M} c_j \,\mathrm{e}^{\alpha_j x}$$

Lille, June 1, 2018 5 / 27

3

E 6 4 E 6

< /⊒> <

```
[Prony] (1795):
[Schmidt] (1979):
[Roy, Kailath] (1989):
```

[Hua, Sakar] (1990): [Stoica, Moses] (2000): [Vetterli, Marziliano, Blu (2002): [Potts, Tasche] (2010, 2011): [Peter, Plonka] (2013): Reconstruction of difference equations **MUSIC** (Multiple Signal Classification) **ESPRIT** (Estimation of signal parameters via rotational invariance techniques) **Matrix-pencil method Annihilating filters Finite rate of innovation signals Approximate Prony method Generalized Prony Method**

Sidi ('75,'82,'85); Golub, Milanfar, Varah ('99); Maravić, Vetterli ('04);
Elad, Milanfar, Golub ('04); Beylkin, Monzon ('05,'10);
Andersson, Carlsson, de Hoop ('10), Berent, Dragotti, Blu ('10),
Batenkov, Sarg, Yomdin ('12,'13); Filbir, Mhaskar, Prestin ('12);
Peter, Potts, Tasche ('11,'12,'13); Plonka, Wischerhoff ('13);
Plonka, Tasche ('14); Kunis, Peter, Römer, von der Ohe ('16);
Wei, Dragotti ('16); Sauer ('17); Cuyt, Lee ('17), Mourrain ('17)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Revisiting Prony's method using the shift operator Let

$$S_h f \coloneqq f(\cdot + h), \qquad h \in \mathbb{R} \setminus \{0\}.$$

Then

$$(S_h \mathrm{e}^{\alpha \cdot})(x) = \mathrm{e}^{\alpha(h+x)} = \mathrm{e}^{\alpha h} \mathrm{e}^{\alpha x}.$$

э

4 E b

< <p>A <

Revisiting Prony's method using the shift operator Let

$$S_h f \coloneqq f(\cdot + h), \qquad h \in \mathbb{R} \setminus \{0\}.$$

Then

$$(S_h \mathrm{e}^{\alpha \cdot})(x) = \mathrm{e}^{\alpha(h+x)} = \mathrm{e}^{\alpha h} \mathrm{e}^{\alpha x}.$$

For
$$f(x) = \sum_{j=1}^{M} c_j e^{\alpha_j x}$$
 and $\lambda_j = e^{\alpha_j h}$ let $P(z) := \prod_{j=1}^{M} (z - \lambda_j) = \sum_{k=0}^{M} p_k z^k$.

$$\sum_{k=0}^{M} p_k f(x_0 + h(k+m)) = \sum_{k=0}^{M} p_k (S_{h(k+m)} f)(x_0) = \sum_{k=0}^{M} p_k (S_h^{k+m} f)(x_0)$$

$$=\sum_{k=0}^{M} p_k S_h^{k+m} \Big(\sum_{j=1}^{M} c_j e^{\alpha_j \cdot} \Big)(x_0) = \sum_{k=0}^{M} p_k \sum_{j=1}^{M} c_j \left(S_h^{k+m} e^{\alpha_j \cdot} \right)(x_0)$$
$$=\sum_{j=1}^{M} c_j \sum_{k=0}^{M} p_k \lambda_j^{m+k} e^{\alpha_j \cdot x_0} = \sum_{j=1}^{M} c_j \lambda_j^m \Big(\sum_{k=0}^{M} p_k \lambda_j^k \Big) e^{\alpha_j \cdot x_0} = 0.$$

Generalized shift operators

A) Symmetric shift operator $S_{h,-h}$:

$$S_{h,-h}f(x) := \frac{1}{2} \Big(f(x-h) + f(x+h) \Big) = \frac{1}{2} (S_{-h} + S_h) f(x), \quad h > 0$$

B) Let $K \in C(\mathbb{R}^2)$ and

 $K(x, h_1 + h_2) = K(x, h_2)K(x + h_2, h_1) = K(x, h_1)K(x + h_1, h_2).$

Generalized shift operator $S_{K,h}$:

$$S_{K,h}f(x) \coloneqq K(x,h)f(x+h).$$

C) Let $G \in C(\mathbb{R})$ be strictly monotonous in $[a, b] \subseteq \mathbb{R}$. Generalized shift operator $S_{G,h}$:

$$S_{G,h}f(x) \coloneqq f(G^{-1}(G(x)+h)).$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Generalized shift operators

Theorem

$$\begin{split} S_{h_2,-h_2}(S_{h_1,-h_1}f) &= S_{h_1,-h_1}(S_{h_2,-h_2}f) \\ &= \frac{1}{2} \left(S_{h_1+h_2,-(h_1+h_2)}f + S_{h_1-h_2,-(h_1-h_2)}f \right), \\ S_{G,h_1}(S_{G,h_2}f) &= S_{G,h_2}(S_{G,h_1}f) = S_{G,h_1+h_2}f, \\ S_{K,h_1}(S_{K,h_2}f) &= S_{K,h_2}(S_{K,h_1}f) = S_{K,h_1+h_2}f. \end{split}$$

In particular,

$$\begin{split} S_{h,-h}^{k}f &= \frac{1}{2^{k-1}} \sum_{l=0}^{\lfloor (k-1)/2 \rfloor} \binom{k}{l} (S_{(k-2l)h,-(k-2l)h}f + \delta_{k/2,\lfloor k/2 \rfloor} \frac{1}{2^{k}} \binom{k}{k/2} f, \\ S_{G,h}^{k}f &= S_{G,kh}f, \\ S_{K,h}^{k}f &= S_{K,kh}f, \end{split}$$

where $\delta_{k/2,\lfloor k/2 \rfloor} = 1$ if k is even and vanishes otherwise.

Recovery of sparse trigonometric expansions

We have

$$S_{h,-h}\cos(\alpha x) = \frac{1}{2}\left[\cos(\alpha(x+h)) + \cos(\alpha(x-h))\right] = \cos(\alpha h)\cos(\alpha x),$$

and

$$S_{h,-h}\sin(\alpha x) = \frac{1}{2}\left[\sin(\alpha(x+h)) + \sin(\alpha(x-h))\right] = \cos(\alpha h)\sin(\alpha x),$$

i.e., the symmetric shift operator $S_{h,-h}$ possesses the eigenfunctions $\cos(\alpha x)$ and $\sin(\alpha x)$ for all $\alpha \in \mathbb{R}$.

Recovery of cosine expansions

We want to recover

$$f(x) = \sum_{j=1}^{M} c_j \cos(\alpha_j x).$$

Theorem

Assume that α_j are in the range $[0, K) \subset \mathbb{R}$. Let $h = \frac{\pi}{K}$. Then, f in can be uniquely reconstructed using the 2M samples f(kh), k = 0, ..., 2M - 1. More generally, for $x_0 \in \mathbb{R}$ satisfying $\alpha_j x_0 \neq (2k+1)\pi/2$ for $k \in \mathbb{Z}$ the 4M - 1 sample values $f(x_0 + hk)$, k = -2M + 1, ..., 2M - 1, are sufficient to reconstruct f.

Recovery of expansions of shifted Gaussians

We apply the generalized shift operator $S_{K,h}f(x) = K(x,h)f(x+h)$.

Let $g(x) \coloneqq e^{-\beta x^2}$ for some given $\beta \in \mathbb{C} \setminus \{0\}$.

We want to recover the parameters $c_j \in \mathbb{C}$ and $lpha_j \in \mathbb{R}$ of

$$f(x) = \sum_{j=1}^M c_j g(x - \alpha_j) = \sum_{j=1}^M c_j e^{-\beta(x - \alpha_j)^2}.$$

▲■▶ ▲■▶ ▲■▶ = 差 - のへで

12 / 27

Recovery of expansions of shifted Gaussians

We apply the generalized shift operator $S_{K,h}f(x) = K(x,h)f(x+h)$.

Let $g(x) \coloneqq e^{-\beta x^2}$ for some given $\beta \in \mathbb{C} \setminus \{0\}$.

We want to recover the parameters $c_j \in \mathbb{C}$ and $lpha_j \in \mathbb{R}$ of

$$f(x) = \sum_{j=1}^{M} c_j g(x - \alpha_j) = \sum_{j=1}^{M} c_j e^{-\beta(x - \alpha_j)^2}$$

Let $K(x, h) := e^{\beta h(2x+h)}$. Then

$$(S_{\mathcal{K},h} \mathrm{e}^{-\beta(\cdot-\alpha_j)^2})(x) = \mathrm{e}^{\beta h(2x+h)} \mathrm{e}^{-\beta(x+h-\alpha_j)^2} = \mathrm{e}^{2\beta \alpha_j h} \mathrm{e}^{-\beta(x-\alpha_j)^2}$$

Thus, $e^{-\beta(\cdot-\alpha_j)^2}$ are eigenfunctions of $S_{\mathcal{K},h}$ to $e^{2\beta\alpha_j h}$.

(日本)

Recovery of expansions of shifted Gaussians

We want to recover the parameters $c_j \in \mathbb{C}$ and $\alpha_j \in \mathbb{R}$ of

$$f(x) = \sum_{j=1}^{M} c_j g(x - \alpha_j) = \sum_{j=1}^{M} c_j e^{-\beta(x - \alpha_j)^2}.$$

Theorem

If $\operatorname{Re} \beta \neq 0$, the stepsize $h \in \mathbb{R} \setminus \{0\}$ can be taken arbitrarily. If $\operatorname{Re} \beta = 0$, we assume that $\alpha_j \in (-T, T)$ for $j = 1, \ldots, M$ for some given T and choose $0 < h \le \frac{\pi}{2|\operatorname{Im} \beta| T}$. Then, f can be reconstructed using the 2M sample values $f(x_0 + hk)$, $k = 0, \ldots, 2M - 1$, where $x_0 \in \mathbb{R}$ is an arbitrary real number.

Example: Recovery of shifts of Gaussians

$$f(x) = \sum_{j=1}^{5} c_j e^{i(x-\alpha_j)^2}$$

	j = 1	j = 2	j = 3	j = 4	j = 5
$\operatorname{Re} c_j$	-2.37854	-4.55545	2.54933	-2.57214	-0.57597
$\operatorname{Im} c_j$	0.75118	-0.56308	0.94536	0.42117	0.73366
α_j	0.64103	-0.18125	-1.50929	-0.53137	-0.23778

∃ →

Example: Recovery of shifts of Gaussians

$$f(x) = \sum_{j=1}^{5} c_j e^{i(x-\alpha_j)^2}$$

	j = 1	j = 2	j = 3	j = 4	j = 5
$\operatorname{Re} c_j$	-2.37854	-4.55545	2.54933	-2.57214	-0.57597
$\operatorname{Im} c_j$	0.75118	-0.56308	0.94536	0.42117	0.73366
α_j	0.64103	-0.18125	-1.50929	-0.53137	-0.23778

∃ →

Recovery of sparse Gabor expansions

We want to recover the parameters α_j , c_j , $s_j \in \mathbb{R}$ of

$$f(x) = \sum_{j=1}^{M} c_j e^{2\pi i x \alpha_j} g(x - s_j),$$

with Gaussian window $g(x) := e^{-\beta x^2}$ and known $\beta \in \mathbb{R} \setminus \{0\}$.

16 / 27

Recovery of sparse Gabor expansions

We want to recover the parameters $\alpha_j, c_j, s_j \in \mathbb{R}$ of

$$f(x) = \sum_{j=1}^{M} c_j e^{2\pi i x \alpha_j} g(x - s_j),$$

with Gaussian window $g(x) := e^{-\beta x^2}$ and known $\beta \in \mathbb{R} \setminus \{0\}$.

Let
$$K(x,h) = e^{\beta h(2x+h)}$$
 then
 $(S_{K,h} e^{2\pi i \alpha_j \cdot -\beta(\cdot-s_j)^2})(x) = e^{\beta h(2x+h)} e^{2\pi i (x+h)\alpha_j} e^{-\beta(x+h-s_j)^2}$

$$= e^{2h(\beta s_j + \pi i \alpha_j)} e^{2\pi i x \alpha_j - \beta(x-s_j)^2}.$$

Thus, $e^{2\pi i x \alpha_j} g(x - s_j) = e^{2\pi i x \alpha_j} e^{-\beta (x - s_j)^2}$ are eigenfunctions of $S_{K,h}$ to the eigenvalue $e^{2h(\beta s_j + \pi i \alpha_j)}$.

Recovery of Gabor expansions

We want to recover the parameters $\alpha_j c_j, s_j \in \mathbb{R}$ of

$$f(x) = \sum_{j=1}^{M} c_j e^{2\pi i x \alpha_j} g(x - s_j),$$

with Gaussian window $g(x) := e^{-\beta x^2}$ and known $\beta \in \mathbb{R} \setminus \{0\}$.

Theorem

Assume that $\alpha_j \in (-K, K)$ for j = 1, ..., M and let $0 < h \le 1/2K$. Then, f can be reconstructed using the 2M sample values $f(x_0 + hk)$, k = 0, ..., 2M - 1, where $x_0 \in \mathbb{R}$ is an arbitrary real number.

• # • • = • • = • = •

Proof.

D

efine
$$P(z) \coloneqq \prod_{j=1}^{M} (z - e^{2h(\pi i \alpha_j + \beta s_j)}) = \sum_{\ell=0}^{M} p_\ell z^\ell.$$

The zeros of P(z) are complex, where the imaginary part covers the modulation parameters α_i and the real part the shift parameters s_i . Then for m = 0, ..., M - 1,

$$\begin{split} &\sum_{\ell=0}^{M} p_{\ell} \left(S_{K,(\ell+m)h} f \right)(x_{0}) = \sum_{\ell=0}^{M} p_{\ell} e^{\beta h(\ell+m)(2x_{0}+h(\ell+m))} f(x_{0}+h(\ell+m)) \\ &= \sum_{\ell=0}^{M} p_{\ell} e^{\beta h(\ell+m)(2x_{0}+h(\ell+m))} \sum_{j=1}^{M} c_{j} e^{2\pi i (x_{0}+h(m+\ell))\alpha_{j}} e^{-\beta (x_{0}+h(\ell+m)-s_{j})^{2}} \\ &= \sum_{j=1}^{M} c_{j} e^{-\beta (x_{0}+hm-s_{j})^{2}} e^{\beta hm(2x_{0}+hm)} e^{2\pi i (x_{0}+hm)\alpha_{j}} \sum_{\ell=0}^{M} p_{\ell} e^{2\ell h(\pi i \alpha_{j}+\beta s_{j})} = 0. \end{split}$$

Compute P(z) and extract α_i and s_i from the zeros of P(z). Compute c_i by solving the obtained linear system. \Box

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Recovery of Gabor expansions

$$f(x) = \sum_{j=1}^{6} c_j e^{2\pi i x \alpha_j} e^{-(x-s_j)^2/2}$$

	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6
c_j	0.0777	2.9361	-3.8450	-7.2255	-0.4885	-2.7508
s_j	-1.9918	-4.3941	4.8090	-2.1337	3.0082	3.9611
α_j	0.7881	0.7802	0.6685	0.1335	0.0215	0.5598

Example: Recovery of Gabor expansions

$$f(x) = \sum_{j=1}^{6} c_j e^{2\pi i x \alpha_j} e^{-(x-s_j)^2/2}$$

	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6
c_j	0.0777	2.9361	-3.8450	-7.2255	-0.4885	-2.7508
s_j	-1.9918	-4.3941	4.8090	-2.1337	3.0082	3.9611
α_j	0.7881	0.7802	0.6685	0.1335	0.0215	0.5598

Recovery of signal models using the shift $S_{G,h}$

Let
$$S_{G,h}f(x) \coloneqq f(G^{-1}(G(x)+h)).$$

G(x)	$G^{-1}(x)$	S _{G,h} f	eigenfunctions
ln(x)	e ^x	$f(\mathrm{e}^{(\ln x)+h}) = f(x \mathrm{e}^h)$	$x^{p}, \ p \in \mathbb{C}$
x ²	\sqrt{x}	$f(\sqrt{x^2+h})$	$e^{\alpha x^2}, \ \alpha \in \mathbb{C}$
$x^p, p > 0$	$\sqrt[p]{X}$	$f(\sqrt[p]{x^p+h})$	$e^{\alpha x^{\rho}}, \ \alpha \in \mathbb{C}$
$\cos(x)$	$\arccos(x)$	$f(\arccos(\cos(x) + h))$	$e^{\alpha \cos x}, \ \alpha \in \mathbb{C}$

э

< ∃⇒

< A I

Sparse expansions of Chebyshev polynomials

We want to recover

$$f(x) = \sum_{j=1}^{M} c_j T_{n_j}(x).$$

٨.1

э

→ ∃ →

Sparse expansions of Chebyshev polynomials

We want to recover

$$f(x)=\sum_{j=1}^{M}c_j T_{n_j}(x).$$

۸*1*

Let $(S_{G,h,-h}f)(x) := \frac{1}{2} \Big(f(\cos(\arccos(x)+h)) + f(\cos(\arccos(x)-h)) \Big).$ Then

$$(S_{G,h,-h}T_k)(x) = \frac{1}{2} \Big(T_k(\cos(\arccos(x)+h)) + T_k(\cos(\arccos(x)-h)) \Big)$$

= $\frac{1}{2} \Big(\cos k(\arccos(x)+h) + \cos k(\arccos(x)-h) \Big)$
= $\cos(kh)\cos(k\arccos(x)) = \cos(kh)T_k(x).$

22 / 27

Sparse expansions of Chebyshev polynomials

We want to recover

$$f(x)=\sum_{j=1}^{M}c_j T_{n_j}(x).$$

ΛΛ

Let $(S_{G,h,-h}f)(x) := \frac{1}{2} (f(\cos(\arccos(x)+h)) + f(\cos(\arccos(x)-h))))$. Then

$$(S_{G,h,-h}T_k)(x) = \frac{1}{2} \Big(T_k(\cos(\arccos(x)+h)) + T_k(\cos(\arccos(x)-h)) \Big)$$

= $\frac{1}{2} \Big(\cos k(\arccos(x)+h) + \cos k(\arccos(x)-h) \Big)$
= $\cos(kh)\cos(k\arccos(x)) = \cos(kh)T_k(x).$

Theorem

Let K be a bound of the degree of the polynomial f and let $0 < h \le \frac{\pi}{K}$. Then the Chebyshev expansion f(x) can be uniquely recovered from the samples $f(\cos(kh))$, k = 0, ..., 2M - 1.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recovery of non-stationary signals

We want to recover the parameters α_j , $c_j \in \mathbb{R}$, $\beta_j \in [0, 2\pi)$ of

$$f(x) = \sum_{j=1}^{M} c_j \cos(\alpha_j x^p + \beta_j), \qquad p > 0 \text{ odd}$$

E 6 4 E 6

3

23 / 27

Recovery of non-stationary signals

We want to recover the parameters $\alpha_j, c_j \in \mathbb{R}$, $\beta_j \in [0, 2\pi)$ of

$$f(x) = \sum_{j=1}^{M} c_j \cos(\alpha_j x^p + \beta_j), \qquad p > 0 \text{ odd}$$

Let

$$S_{x^p,h,-h}f(x) \coloneqq \frac{1}{2} \left(f(\operatorname{sgn}(x^p+h)f\left(\sqrt[p]{|x^p+h|}\right) + f(\operatorname{sgn}(x^p+h)f\left(\sqrt[p]{|x^p-h|}\right) \right).$$

Then

$$S_{x^{p},h,-h}\cos\left(\alpha_{j}x^{p}+\beta_{j}
ight)=\cos\left(\alpha_{j}h
ight)\cos\left(\alpha_{j}x^{p}+\beta_{j}
ight).$$

The eigenvalues $\cos(\alpha_j h)$ and $\cos(\alpha_k h)$ are pairwise different for $\alpha_j \neq \alpha_k$ if $\alpha_j, \alpha_k \in [0, \pi/h]$.

Recovery of non-stationary signals

We want to recover the parameters $\alpha_j, c_j \in \mathbb{R}$, $\beta_j \in [0, 2\pi)$ of

$$f(x) = \sum_{j=1}^{M} c_j \cos(\alpha_j x^p + \beta_j)$$
 (with known odd $p > 0$).

Theorem

Let $h := \pi/K$. 1. If the parameters β_j do not appear, then f can be uniquely recovered from its signal values $f\left(\sqrt[p]{hk}\right)$, k = 0, ..., 2M - 1. 2. If the nonzero parameters β_j appear, then the α_j , j = 1, ..., M, can be recovered in a first step from signal values $f\left(\sqrt[p]{hk}\right)$, k = 0, ..., 2M - 1, and the parameters c_j and β_j can be reconstructed, using in a second step additionally the signal values $f\left(sgn(hk - \frac{\pi}{2\alpha_j})\sqrt[p]{|hk - \frac{\pi}{2\alpha_j}|}\right)$ for k = -M + 1, ..., M - 1.

< (1) × <

Example: Recovery of non-stationary signals

	j = 1	j = 2	j = 3
c_j	-0.1835	4.2157	2.478
α_j	0.3132	2.2308	2.2181
β_j	0.3834	-0.4682	0.0416

Gerlind Plonka (University of Göttingen) Reconstruction of nonstationary signals

References

- Thomas Peter, Gerlind Plonka: Generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Problems 29 (2013), 025001.
- Gerlind Plonka, Marius Wischerhoff: **How many Fourier samples are needed for real function reconstruction?** Journal of Applied Mathematics and Computing 42 (2013), 117-137.
- Gerlind Plonka, Manfred Tasche: **Prony methods for recovery of structured functions.** GAMM-Mitt. 37(2) (2014) 239-258.
- Ran Zhang and Gerlind Plonka: **Optimal approximation with exponential sums by maximum likelihood modification of Prony's method.** Preprint, November 2017.
- Gerlind Plonka, Kilian Stampfer, Ingeborg Keller: Reconstruction of stationary and non-stationary signals by the generalized Prony method. Preprint, March 2018.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

thankyou

▶ < ∃ >

< /⊒> <

э