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Definition
A monic Orthogonal Polynomial Sequence (OPS) {P,}n>0 is defined by

<U0, PnPk> = Nnd,,,k s with N, 76 0.

where up is the first element of the corresponding dual sequence.

» Equivalently, {Ps}n>0 is an OPS for wg iff

m [0 if n>m,
(uo, x P”>_{ N, if n=m, for n>0.

» It always satisfies the second order recurrence relation
Pri1(x) = (x = Bn) Pa(x) = ynPn-1(x)
with Pp =1 and P_; =0 and

<U0,XP,%>
<u07 'D3>

<U0, PI§+1>

n = 5 N
and Ynt1 (o, P2) #0,n¢€

Bn =
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Multiple orthogonal polynomials - type Il

Consider a sequence {P5} with @ = (n, n2) and deg P#(x) = m + n such that

(o, X Pa(x)) = / KB Wo(x)dx = 0, k=0,1,...,m —1
A

<ul,xkﬁﬁ(x)>:/ XPr(x)Wi(x)dx =0, k=0,1,...,m —1

A
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Multiple orthogonal polynomials - type Il

Consider a sequence {P5} with @ = (n, n2) and deg P#(x) = m + n such that

(o, X Pa(x)) = / KB Wo(x)dx = 0, k=0,1,...,m —1
A

(ul,xkﬁ,?(x»:/ XPr(x)Wi(x)dx =0, k=0,1,...,m —1

A

Now, if we construct a sequence {ﬁn}nZO such that

Pan(x) = ﬁ,,i,(x)

P2n+1(X) = Pn,n+1(X)

then {P,}n>0 is a 2-OPS.
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2-orthogonal polynomials

Definition
Consider a vector linear functional u = (uo, u1) defined on P in C . The
sequence of polynomials {P,},>0, where deg P, = n, is said to be 2-orthogonal
to u = (uo, tr) if
m |0 for n>2m+1
< Ug, X Pn>_{ Nom £0 for n=2m (1)

m _J 0 for n>2m+2
< 1, xTPa >_{ Nomi1 20 for n=2m+1 (2)
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2-orthogonal polynomials

The monic 2-OPS {P,},>0 for u = (uo, u1) satisfies a third order recurrence
relation (see Van Iseghem’88, Maroni'89)

Pri1(x) = (x = Bn) Pa(x) — @nPn-1(x) = 7n-1Pr—2(x) 3)
with Po(x) =1, Pi(x) =x — fo and P2(x) = (x — f1)Pi(x) — aa.
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2-orthogonal polynomials

The monic 2-OPS {P,},>0 for u = (uo, u1) satisfies a third order recurrence
relation (see Van Iseghem’88, Maroni'89)

Pri1(x) = (x = Bn) Pa(x) — @nPn-1(x) = 7n-1Pr—2(x) 3)
with Po(x) =1, Pi(x) =x — fo and P2(x) = (x — f1)Pi(x) — aa.

Expressions for the recurrence coefficients follow immediately from the
definition. For instance,

n+1 n+1
< o, X" Papy2 > < u1, X" Papyz >

2042 = n>0.
< Ug, x"Pyp > > Yent < u1, X"Papi1 >

Y2nt+1 =

Conversely, we also have

n
) n+1
Nop =< uop, X P2,,+2 >= H72k+1
k=0
and

n
Nopi1 =< u1, X" Papy3 >= H72k+2, for n>0.
k=0
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Example 1: 2-orthogonal polynomials for Bessel weights

Pri1(x) = (X = B4)Pa(x) — atnPn_1(x) — ¥n—1Pn—2(x)
with

Bn=3n" 4+ (2a+ 28+ 3)n+ (14 a)(1 + )
an=n(Bn+a+p)(n+a)(n+B), n>1,
Y=n(n+1)(n+a+1)(n+a)(n+B8+1)(n+p), n>2,

They satisfy the 3rd order recurrence relation
P+ (34 a+ B)xP; + ((a+1)(B+1) — x)Py = —nP,
and are 2-OPS for U = (uo, v1) satisfying
XPuf —(a+B—Dxuy — (x —aB)uo =0 , (a+1)(B+1)u = —(xup)

Such vector functional U = (uo, u1) admits the following integral representation

+oo
<o, f(X)> = /O FO)X 2K, s(24/X)dx,

+oo /
<u,f(x)> = m/o £(x) (X(Q+B)/2Ka_5(2\/)?)) dx,

(See Ben Cheikh&Douak'00 and Van Assche& Yakubovich'00.)



Example 2: 2-orthogonal polynomials with constant rec coef

The sequence of polynomials {P,(x)}»>0 satisfying the recurrence relation

Pria(x) = xPo(x) = 57 Po-2(x)

is 2-orthogonal with respect to U = (up, u1) such that

(* = 1)ug + 3x°up — txuo =0
u =3(x* — L)up — 2x%uo

Such vector functional admits an integral representation on the real line as

follows

<, f() > = /1 f(x ('%/f {(1 + V1) = (1~ \/ﬁ)m} dx
+ /+<>0 f(x)3e™™ A1\/;cos(\/§x) o+ dox? sin(\/gx):| dx,

<) > = / F U (x)dx,

(See Douak&Maroni'97 for further details.)
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Example 3: multiple orthogonal polynomials with exponential weights

Consider the monic polynomials P, , of degree n+ m for which

X Pym(x)exp (=x> + tx)dx =0, j=0,...,n—1,

MUl

ijn,m(x) exp (—x3 +tx)dx =0, j=0,...,m—1,

UM
51

with [y ={z€C:argz= e2’”r"/3}7 k=0,1,2.

(see Van Assche & Filipuk & Zhang (2015)) fo
[P

Rodrigues' formula:

—x34ix -1)" d" —x3ix
&P ns) = G (7 Pun()
—x3x —1)" d" —x3tix
e Pyp(x) = G I (e, o)

where P, o and Py, are orthogonal polynomials...
. ( Case t = 0 already in Pélya and Szegé (1925).
and {Pyi} is 2-OPS. Special case of Gould-Hopper polynomials (1962).)
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3-fold symmetric (not necessarily 2-orthogonal) polynomials

Definition
A monic polynomial sequence {B,}n>0 is 3-fold symmetric if and only if

2im 2inm

Bh(e 3 x) =e 3 By(x)

and
4im 4in

B,(e’3 x) =e 3 By(x), n>0.

In other words, this is to say that there exist three sequences {B,[,j]}nzo with
j €{0,1,2} such that

Bsn(x) = BY (x*),

B3,,+1(X) = XBI[71](X3)7

Bsni2(x) = x*BP(x?),
(The sequences {B,[,j]}nzo are the components of the cubic decomposition of

the 3-fold symmetric sequence {B,}n>0.)
(see Barrucand&Dickinson’66)
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3-fold symmetric 2-orthogonal polynomials

Whilst we are dealing with 3-fold symmetric and 2-orthogonal sequences, we
recall the following result.

Theorem (Douak & Maroni'92)

Let {Pn}n>0 be a 2-orthogonal polynomial sequence for U = (uo, u1). Then,
{Pn}n>0 is 3-fold symmetric iff if satisfies the third order recurrence relation

Pni1(x) = xPn(x) = yn-1Pn—2(x), n > 2,
with Po(x) =1, Pi(x) = x and P>(x) = x2.

Moreover, we have
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3-fold symmetric 2-orthogonal polynomials

Lemma (Douak & Maroni'92)

If the a 3-fold symmetric sequence {P,}n>0 is 2-orthogonal, then the three
components in the cubic decomposition of {P,},>0 are also 2-orthogonal
fulfilling the recurrence relations:

PH (x) = (x = Y PH(x) — alPY () — 1 PH,(x),

i
where
,[,k] = Yan—1+k + V3n+k + V3nt1+k, N >0,
ol = i o kY3t + V31K V-3 k + Van—2 ek Yan—14ks 1> 1,
[kl _ 0, n>2
Yn ' = Y3n—2+kY3n+kY3n+2+k 7é , N2 2,

for each k = 0,1, 2.
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3-fold symmetric 2-OPS

Theorem. (Aptekarev et al.’00)
If y» >0 forn>1in

Pat1(x) = xPn(x) — vp—1Pn—2(x),

then {P,}n>0 is a 2-OPS w.r.t. the vector of linear functionals (uo, u1) and
< w0 F() >= [ FG0dn() (@)
s
<, F(x) >= / F(x)dpua (%) (5)
s
where S represents the starlike set
2 .
S:=[Jr  with M = [0,/ 300),
k=0

and the measures have a common support which is a subset of S and are
invariant under rotations of 27 /3.
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3-fold symmetric 2-OPS

Theorem. (Ben Romdhane’'08)
Let {Pn}n>0 be a 2-OPS satisfying

Pn+1(X) = XPn(X) - 'Yn—an—Q(X)-

If v» > 0, then the following statements hold

(a) If x is a zero of Ps,.;, then w*

x are also zeros of Ps,q; with w = e2mi/3
(b) 0 is a zero of Ps,y; of multiplicity j when j = 1,2

(c) Psnsj has n distinct positive real zeros
0< x(") < X,(,Jz,

(d) Between two real zeros of Pzniji3 there exist only one zero of P3,yj42 and
only one zero of Ps,qjt1, ie,

(J+2) () (j+1) (j+2)
< Xpdt1 < Xprp1 < Xp k1
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3-fold symmetric 2-OPS

Theorem. (AL & Van Assche'18)
Let {Pn}n>0 be a 2-OPS satisfying

Pn+1(X) = XPn(X) - ’Yn—an72(X)~
If 7v» > 0 and, additionally,
Yon = con® + o(n®) and 241 = cn® + o(n%)

for large n, with ¢, c1 > 0 and a > 0, then the largest zero in absolute value
|xn,n| behaves as

< %cmn“/3 +o(n*3), n>1, (6)

‘Xn,n

where ¢ = max{c, c1 }.
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3-fold symmetric 2-OPS

Proof. Consider the Hessenberg matrix

0 1 0 0 0 0 0
0 0 1 0 0 0 0
m 0 0 1 0 0 0
0 »» 0 O 0 0 0
H, =
0 0 0 O Yo—2 0 O
Hence,
P()(X) Po(X) 0
Pl(X) Pl(X) 0
H, ) =x ) — Py(x)
Pn_l(X) P,,_1(X) 1

and each zero of P,(x) is an eigenvalue of the matrix H,.
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3-fold symmetric 2-OPS (Proof - upper bounds for the zeros)

The spectral radius of the matrix H,,
p(H,) = max{|\| : X is an eigenvalue of H,},

is bounded from above by ||H,|| where || - || denotes a matrix norm. In
particular

Hmmzm*mmw=g%{zkfmﬁmG,
=

where S = diag(di, ..., dx,...,d,) is non-singular matrix and (S7'H,S);; if
the ith row and jth column entry of the product matrix S~'H,S we obtain

b ds di+cim dk + dk—37vk—3 dn—2Yn—2
P FRTEEE 9. T .

I#lls = max{
Setting dx = d*(k!)*/® # 0, for some d > 0, brings
I[Hal|s < 2273 (d + %) 03 4 o(n®3) as n— +oo.
The choice of d = (2¢)"/* provides a minimum to (d + %) and this gives

[Hnl|s < c na)l/3 +o(na/3) as n — +oo.

— 41/3 (
g
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Hahn 'Classical’ 2-orthogonal polynomials

Definition
A monic 2-OPS {P,},>0 is "classical” in Hahn's sense when the sequence of
its derivatives {Qn}n>0, With

1

@)=y

P;+1(X)

is also a 2-OPS.

Hence, as a monic 2-OPS, the sequence {Qx},>0 satisfies a third order
recurrence relation:

Qni1(X) = (x = Bn) Qu(X) = @n@n_1(x) = Fn1Qu2(x), n>2,  (7)
with Q =1, Qi(x) = x — o and @(x) = (x — 1) Qu(x) — 1.
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" Classical” 2-orthogonal polynomials

Between the two recurrence relations

Poii(x) = (x — %,)Pn(x) — apPn_1(x) — Yn—1Pn—2(x)
Q"+1(X) = (X - ﬂn)Qn(X) - EEnQn—l(X) - A’Yin—lQn—2(X), n>2

it follows a nonlinear system of equations

(n+2)Bn — nBa-1 = (n+ N

(n+3)an — (n+ 1)an 1 — Lanz + (0 + 1)(Barr — )’

(I’l + 4)§n+1 - (n + 2)%!1 =t 1)’Yn+1 _ .
+(n+ Dant2(Bns2 + Brsr ) — (n 4+ 2)an+1(28n42 — Bos1 — Bn)

)Bn

AT n"/n+1(5n+2 + ﬁn - 2[;"71)
— —~
2)an3 =(n+ 3)an+2)

- (n + 2)%1(2[3'#2 i

n(an+17n+2 + an+3ﬁ/n+l) = :Vi
+an (2(’7 + 1)’)/n+ 3):}7n+1

NYn+1Yn+3 = Yn (2(n + 2) Y npgm—(en—t- 4)#

—
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" Classical” 2-orthogonal polynomials

On the other hand, the 2-orthogonality of {P,},>0 for U = (uo, u1)
and the 2-orthogonality of {Qn}s>0 for V = (v, v1) implies

M ®
i ]ln] ©
o[ 2o m] e w00 ]

where ’(b(X) = %PI(X) and ¢ = _L’

=31
aa!

and also that

with

whilst deg{ 0,0, ¢0,1, 1,1} <1 and deg ¢1,0 < 2.
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" Classical” 2-orthogonal polynomials

Theorem. (Maroni& Douak’'92, Maroni'99)
The monic 2-OPS {Pp}n>o for U = (uo, u1) is "classical” iff there are
polynomials vy and ¢ j, with i,j € {0,1}, and a constant ¢ such that

([ s ][o]) [ e][u]-[3] oo

where deg{ 0,0, o1, P11} < 1, deg 1,0 < 2 and degtp = 1.

Relation (11a) reads as follows

A. Loureiro @ University of Kent



The sequence of derivatives of a three-fold symmetric polynomial sequence

If {Ps}n>0 is three-fold symmetric, then so is { Qn}n>0 where

1
Qn(x) = mP,’,H(X)7 n>0.

This means that for a three-fold symmetric Hahn-classical polynomial sequence
{Pn}n>0 then {Qn}n>o is three-fold and satisfies

Qnt1(x) = xQn(x) — Fn—1Qn—2, for n>=2,

with initial conditions Qi (x) = x* for k =0,1,2.

in this case we have

A. Loureiro @ University of Kent



Three-fold symmetric " classical” 2-orthogonal polynomials

Theorem. (AL&Van Assche'18) Let {Ps(x)}n>0 be a three-fold symmetric
2-OPS for (uo, u1). The following are equivalent:

(a) {Pn(x)}n>0 is a three-fold symmetric " classical” 2-orthogonal polynomial
sequence.

(b) The vector functional (uo, u1) satisfies the matrix differential equation
u ' U 0
0 o | _
Clal)evln]=le]  mw

191 (1 7'191)X

where

d = and W:[AOX (1)] (11b)

71

73(1—192) x? 209, — 1
1

for some constants 1 = % and ¥, = % such that ¥1,9, # "—;1

(c) There exists a sequence of numbers {¥n4+1}n>0 such that
Pria() = Quia(¥) + ((n+ Dymia = (4 3)To ) Qulx)  (12)
with initial conditions Px(x) = Qk(x) = x* for k =0, 1,2.
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Three-fold symmetric " classical” 2-orthogonal polynomials

Proof. (a) = (c): consequence of the rec. rel. of {P,}n,>0 and {Qn}n>o0.
(c) = (b): If {un}n>0 and {Va}n>o are the dual sequences of {P,},>0 and
{Qn}n>0, resp., then

vy = —(n+ 1)ttt (13)
vo = o+ (0 w2 = (4 3701 ) s, (14)

The 2-orthogonality of {P,}s>0 implies

X 1 X x2 1
U2 = —Up, U3=——Uo+ —ui, Us= up — —un
1 Y2 V2 Y173 73

If we take n =0 and n =1 in (13) we obtain

FIEEEIN

With n =0 and n =1 in (14) leads to

|: Vo :| B 191 (1—’(91)X |: o :|
Vi 2(1—-02) X 20, — 1 t
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Three-fold symmetric " classical” 2-orthogonal polynomials

Proof. (cont.)
The proof of (b) = (a) is essentially about showing that {Qn}s>0 is
2-orthogonal with respect to

|: Vo :| B ’191 (1—’(91)X |: o :|
2Z(1—-02) X 20, — 1 tn
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Three-fold symmetric " classical” 2-orthogonal polynomials

Proof. (cont.)
The proof of (b) = (a) is essentially about showing that {Qn}s>0 is
2-orthogonal with respect to

" A (1 — 1) o
[Vl]:[i(l—ﬁz)xz 20, — 1 H“l}

d
The Pearson equation
!
(elal)~vla]-15]
ui u 0
gives
5"y
Yn = n+2 nYn+1
with
_(1—(n+1)1—-D) (1= (n+1)1—1)
Vans1 = ( 1—n(1- o) nd D2 =\ T A g, )
(15)
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Three-fold symmetric " classical” 2-orthogonal polynomials

If we replace each P in
XPn = Pn+1 + "Yn—an—Q

by the corresponding expression given in

Prs() = Quia() + ((n+ Dyez = (04 32 Qu(x)

to then use the recurrence relation

~ ~ n
XQn = Qni1 +Yn—1Qn—2 where 7,1 = oy lﬁnfl'yn
we obtain 1
19n+2+/l97n:27n>17
and
s (n(ﬂn71)+1)
Ynt+2 = Vo1 # 0

n+1 ((n 4 (pir — 1) + 1)
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3-fold symmetric 2-orthogonal "classical” polynomials (3rd order diff. eq.)

Lemma (Douak&Maroni'97)

If a 2-symmetric 2-OPS {P,}n>0 is "classical”, then each polynomial is a
solution of the third order differential equation

where

an
b
Cn
dn

€n

3 111 2 pl /
(anx® — bn)Ppy1 + cnx“ Py + doxPpy1 = €nPria

= (=11 -1)

Yn43((143)0 ni2 — (n42)) ((n44) 9 41— (n43)) ((145) I py2 — (n+4))
(n+3)(n+4)

= 19,,79"4.1 —1- (n — 3)(19,1 — 1)(19n+1 — 1)
I1’L9n+1 — (n — 1)19,—,(219,—,4.1 — 1)

= n9py1, forany n>1,

with ag = bg = cg = dop = g = 0.

Here

190,7 1

_ (17(n+1)(171‘)1)> ol <17(n+1)(177’)2)>.

1—n(1—191) 1—n(1— 1))
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Three-fold symmetric " classical” 2-orthogonal polynomials

Proposition. (AL & Van Assche'18) The 2-OPS {P,(x)}s>0 with respect to
the vector linear functional U = (uo, u1) satisfy the Hahn's property if and only

if there are coefficients 91,72 # "1, such that U = (uo, u1) satisfies

" 2 5 4 2
(¢(x)uo) n (f(zsz + 91— 2)x uo) + S (W -2)xu=0  (16)
" 71
and
(V1= 2) (202 = 1) w1 = $(x)ug — = (1 — 1) (202 — 3) XPwo, if D1 #2,
X uy = 2up, if 91 =2,

where

d(x) = (191 (29, —1) — % (" —1) (%2 —1) X3> . (17)

and from this we have
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Three-fold symmetric " classical” 2-orthogonal polynomials

Theorem. (AL & Van Assche’18) For a "classical” threefold symmetric
{Pn}n>0 2-orthogonal with respect to (uo, u1) and satisfying the rec. rel. with
Yn+1 > 0:

{uk, F(x))

= % (/Ob F ()UK (x)dx + w1 /Obwf(x)l/{k(w2x)dx 4otk /Obb;z(x)uk(wx)dx> 7

with w=e?"/3 and b= Jim (%4,), provided that Up(x) and Us(x)

A. Loureiro @ University of Kent



Three-fold symmetric " classical” 2-orthogonal polynomials

Theorem. (AL & Van Assche’'18) For a "classical” threefold symmetric
{Pn}n>0 2-orthogonal with respect to (uo, u1) and satisfying the rec. rel. with
Yn+1 > 0:

{uk, F(x))

= % (/Ob F ()UK (x)dx + w1 /Obwf(x)l/{k(ng)dx 4otk /Obb;z(x)uk(wx)dx> 7

with w=e?"/3 and b= Jim (%4,), provided that Up(x) and Us(x)

aa!

(#0o(x)) "+ (22E1=2140(x) )+ 2222 (x) = Dogo(x)
(91 — 2) (202 — 1)Uy (x) = G(x)Ug(x) — 2E=E20204(x) + Mga (%)

1

XU (x) = 2Uy(x) it 9 =2

with ¢(x) = (191 (202 — 1) — w 3) , satisfying

I|m f(x) L{o(x) =0, and /Uo x)dx =1

Ak € C and fr x"gk(x)dx =0 .



3-fold symmetric 2-orthogonal " classical” polynomials

There are four cases to single out:

Case A: ¥ = 92 = 1. This implies that ¥, = 1 for all n > 0.
Case B;: 91 # 1 but ¥, = 1 so that by setting 91 = £&2 it follows

ptl
1
192n—1:m and Y, =1, n>1
n+p
Case B;: 91 =1 but ¥, # 1 so that by setting ¥, = ﬁ—ﬁ it follows
1
G =1 and o= "FPHL oo
n+p
Case C: 11 # 1 and 92 # 1 and hence by setting ¢ = ﬂ—ﬁ and ¥, = ’;—ﬁ
it follows
Gom1 = TERFL g gy, = At L oy
n+u n+p
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Case A: Appell polynomials

In this case we have Q,(x) := -2 P, ,1(x) = Pa(x). Additionally

n+1

2
uy — —xu=0
Ynt1 = (n+1)(n+2)%, and m

Uy = —ug

With the choice 71 = 2, it follows that
ug —x up=0

Yor1 = (n+1)(n+2), and

Uy = —ug

and
—P (X)) + xPp 1 (x) = nPai1(x), n>0.

Remark. The polynomials appear in the Vorob'ev-Yablonski polynomials
associated with rational solutions of Painlevé Il equations (Clarkson &
Mansfield'03)
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Case A: Appell polynomials

Integral representation (AL&Van Assche)
<u,f> = /f(x)Wo(x)dx, for all f eP,
r
<u,f> = /f(x)Wl(x)dx, forall feP,
r

where Wy : T =ToUTl Ul — R defined by
Wo(x) = Ai(x)Ir, — e 2™ /2Ai(e 2™ 3x)Ir, — ™2 Ai(e*™ X))y,

with [y = {W :arg(w) = MT’T} ,with k =0,1,2,
[B1

where the orientations of [, are all taken from left to right
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Plot of the zeros of Psg, P31 and Psp

N - n=30
e,
': N ) ) - n=31
5 10 18
o - n=32
o
K
o
o 5
o
.
o
.
o
.
o 10

Remarks.
- All the zeros of P,(x) are located on o UT1 U
- In each Tk, between two zeros of P, there is one zero of P, and Ppy;.
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e Here we have
n(2n+1)(n + p)(p +2) 271 +2)

n y 2 17
n (E'ynJruf1)(3n+,u+2)’y 9 no(n),
(n+1)2n+1)(n+2) 271 +2)
n+l = = ’ >0,
Y2n+1 Gntp+2) " 3 n+o(n), n>0

e For u >0, thenfyn>0foralln>1
e The largest real zero xn ) of Psnyj is bounded from above by

Fig. largest zero of the first 300 polynomials
(y1, 1) = (2,3)

15

X '°

s

2/3
< (e +2)20 +o(n'?)
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Case Bj: the zeros of P,

%
%
% 2
‘,
5‘,
,(7
kX
5% T
%
-k
zeros of Py(x;3) when
o n=34 *
» =35 . . bt degt e g ogl Rz
] 1 2 3
= n=36 0
*
I
*
!‘ -1
K
o
R
o
o -2r
«
°
.

Figure: Zeros of P3a(x; p) (circle), Pss(x; p) (star) and Psg(x; u) (square) with p =3,
where Pp(x; p) is the 2-OPS studied in case B1.
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With the choice of v1 = 2, when >0

Tug +xPup — (= 2)xuo =0

u = —(“:2) (ué + 3X2uo) .

and for = 0:
uh 4+ 3x%u =0

xuy = 2ug
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Theorem (AL & Van Assche)

The linear 3-fold symmetric 2-orthogonal vector functional (uo, u1) admit the
following integral representation:

(e, F(x)) = (/f YUk (x)dx + w*~ l/fx)uk(w x)dx + w2

0

f( )L{k(wx)dx> ,
with k = 0,1 and
Uo(x) = Uo(x; p) =

1
3
aIr
Ui(x) = Ui(x; 1) = T

Here

U(a,b;x):%/0 7Nt 4+1)""" e ™dt and U(0,b;x) =1
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case Bj: proof of the integral representation

Proof (idea). We seek an integral representation for wug, that is, we seek a
weight function Up(x) and a path C so that

< up, f(x) >= / f(x)Uo(x)dx,
c

is valid for any polynomial f. In particular, we must have
< up,x" >= /X"L{o(x)dx, n>0.
c

The functional equation (u + 2)uf + x?uf — (1 — 2)xuo = 0 implies that Uo
must be a solution of the differential equation

(420U’ + x*Ug — (1 — 2)xUo = Mg (x)
where X is a complex constant and g(x) is a function such that
/x"g(x)(x)dx =0, n>0.
e
With A = 0, it follows that

2—p 2 1/3 w4
—a R (222 F1i-E 2.
U(x)=c11 1( 3 73,t>+C2t 11( 373,73
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case Bj: proof of the integral representation (cont.)

The choice of the constants ¢; and ¢, as well as the path of integration is
dictated by the conditions

< ug,x" >= /X"I/{o(x)dx7 n>0,
c

and | (1 +2) (F/(x) = F))UH(x) — X2F(x)Uo(x)|| =0, for any f € P.

C

From DLMF (relations (13.2.39) and (13.2.41)) we deduce

r(1-b)

e *U(a, b,z) = fa—b+1)

\Fi(b—a, b;—z)+ M(b=1) 1 1Fi(1—a,2—b;—2)

r(a)
which are valid when b is not an |nteger

K and o =
1+
r( 3” r(3 +1)

Thus, with ¢ =
|

K and C =T, the result follows.
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Case By with =1

The particular choice of ;= 1 produces

2
Y2n = §(2n+1)(u+2)7 nZ 17
2
Yant1 = 5(2” +1)(k+2), n=>0,

whilst the weight functions become
3

i ()

Ulxil) =2 sn e

x? _ 3 x3 3 x3
et = e () ka (5) % (55))

where K, (z) represents the modified Bessel function of second kind.
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Case B; with =2

With p = 2, we have

4n(2n+1)(n+2)
(3n+1)(3n+4)

4(n+1)(2n+1)
(3n+4)

72’7 = ’713 n Z 17

Y2n+1 = Y1, n Z 07

whilst the integral representation becomes

Uo(x;2) = var %(i)% r(3’12 3)

2m3
r(2 3
Ui(x;2) = fe/Zgj) (;x2 r (%, %x3) - V18 efﬁ>

where I'(«, z) represents the incomplete Gamma function:
+oo

Mo, z) = / t*“*e~'dt provided that a > 0.
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case B; - differential equation

’ 3rd order differential equation: ‘

o+ 2P (x) + 262PY (x) + 2 (u

:2n<u+ 1+ 3C 1)n+ )Pn(x)

from which we deduce

29~ 7) Pl(x)

Py = DTG, <_+”+X>
e - 12 ;
(§+(41 +5+5) 33 3(p+2)
1)"(3u+6)" (3 _p2us3n (D™ 1

Pr[zl](x;u) = D ,un“) 3) (3) F2< m =% ;"4 4 +12;$
(g+¢+§+ ) 313 3(p+2)
-1)" 3 3 2u43n (=17 | 1

PL2](X;M) = ( 1) (3M—’;6) 3 n(3)n2F2 <_n7“;r4+5 P + 1;;)()
(§+(741) +%+}Z)n 33 3(n+2)
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In this case we have

n(2n+1)(p +3)

n = 5 n 2 17
72 Gnt+p)
1(2n+1 3
o (DR D)
(3n+p+3)(3n+p)
With the choice of 71 = ﬁ, we obtain
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In this case we have

n(2n+1)(p +3)
(3n+p)

(n+1)(2n+1)(n+ p)(p+3) )
(3n+p+3)(3n+p) ’

Y2n = Y1, n> 1

)

Y2n+1 =

With the choice of 71 = we obtain

(p+3)
2 B2y ) = PP Bi(x; u+1), forall n>0,

while
Qe Bi(x; ) = P B2(x; y+2), forall n>0,

which brings

1 d?

D) we e n) = Pulxipnt3)
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We set

. 2
T+ 2)(p+3)

so that

2n(2n+1)(n+ p) n>1
3n+pu—-1)@Bn+p+2)Bn+p) T
2(n+1)(2n+1)(n+ p)

n = n\ My = ’ 2 '
Yant1 = Yon(ft, p) (Bn+up+2)3Bn+p)(Bn+p+3) n=0

Yon = Yan(pty p) = (

Besides, we have

(1 =5%) ug +x*(u +p = 4)up — (b —2)(p — 1)xuo = 0,
G = (= 1) ug = (p— 1)x* w, for > —1,

xuy = 2uy, for p=0.

Some of these are related to polynomials introduced by Pincherle (1890) and
later extended by Humbert (1920), which were also related to 3F, functions by
Baker (1920).
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Case C: the weights

Here we have

(uk, f(x)) = (/f(x Uy (x)dx + W~ 1/0 () Uk (W x)dx 4+ w' f(x)uk(wx)dx>

with
UO(X) = Z/IO(X; 1y P)
3r(E2)r(2+1) ppo1 ooprl
- r) r3(§)r(u+p+2)(1* X*) T 2R @;1,)(3 ,
Z/ﬁ(X) = ul(X M, P)
= SEITEEY a0y ( Lo 1_x3>
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Case C: known particular cases

Humbert polynomials: when ;o = 3= and p = 32, this 2-OPS satisfies

Pn+2(X; 3”;17 37”)

-1 sy 4 n(n+1)Bv+n-1)
202 21(v+n—1@w+n)(v+n+1)

= xPpi1(x; Pr_1(x; 31,2_1’ 37”)
" Chebyshev” -type polynomials: when v =1 = (u, p) = (1,3/2):
Pn+2(X; 17 %) = XP"+1(X; 17 %) - %Pﬂ—l(X; 17 %)

and here

Z/{o(X)zg\/g((l_;_ 1_X3)1/3_(1_m)1/3>

47

) = 252 (Vi (14 VA=) - (1 i) ]

s
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Case C: explicit expressions

P3"(X; /"La p)

P3ni1(x; p, p)

P3ni2(X; 11, p)

_|_l _
3n 5 1 3n 1
3F2< " ( Y %127%71(71) " +4,x3>
313
n (2 4
N (-1 (3),6),
(=305 +5) G+ 5+3),
R L R L SRR T I
32 24 X
313
n (4 5
2 (_1) (5 (5)

/\\-/

G +5+50) G-+ 5+ 5),
SR +g¢—1en%+s+if>
32 4 5 '

373
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THANK YOU!
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