Three-fold symmetric polynomials with an algebraic classical behaviour

Ana F. Loureiro

(joint work with W. Van Assche)
amf18, Université Lille-I
1st June 2018

Definition

A monic Orthogonal Polynomial Sequence (OPS) $\left\{P_{n}\right\}_{n \geqslant 0}$ is defined by

$$
\left\langle u_{0}, P_{n} P_{k}\right\rangle=N_{n} \delta_{n, k}, \text { with } N_{n} \neq 0
$$

where u_{0} is the first element of the corresponding dual sequence.

- Equivalently, $\left\{P_{n}\right\}_{n \geqslant 0}$ is an OPS for u_{0} iff

$$
\left\langle u_{0}, x^{m} P_{n}\right\rangle= \begin{cases}0 & \text { if } n>m \\ N_{n} & \text { if } n=m, \text { for } n \geq 0\end{cases}
$$

- It always satisfies the second order recurrence relation

$$
P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\gamma_{n} P_{n-1}(x)
$$

with $P_{0}=1$ and $P_{-1}=0$ and

$$
\beta_{n}=\frac{\left\langle u_{0}, x P_{n}^{2}\right\rangle}{\left\langle u_{0}, P_{n}^{2}\right\rangle} \quad \text { and } \quad \gamma_{n+1}=\frac{\left\langle u_{0}, P_{n+1}^{2}\right\rangle}{\left\langle u_{0}, P_{n}^{2}\right\rangle} \neq 0, n \in \mathbb{N}
$$

Consider a sequence $\left\{\widetilde{P}_{\vec{n}}\right\}$ with $\vec{n}=\left(n_{1}, n_{2}\right)$ and $\operatorname{deg} \widetilde{P}_{\vec{n}}(x)=n_{1}+n_{2}$ such that

$$
\begin{aligned}
& \left\langle u_{0}, x^{k} \widetilde{P}_{\vec{n}}(x)\right\rangle=\int_{\Delta_{1}} x^{k} \widetilde{P}_{\vec{n}}(x) W_{0}(x) \mathrm{d} x=0, k=0,1, \ldots, n_{1}-1 \\
& \left\langle u_{1}, x^{k} \widetilde{P}_{\vec{n}}(x)\right\rangle=\int_{\Delta_{2}} x^{k} \widetilde{P}_{\vec{n}}(x) W_{1}(x) \mathrm{d} x=0, k=0,1, \ldots, n_{2}-1
\end{aligned}
$$

Consider a sequence $\left\{\widetilde{P}_{\vec{n}}\right\}$ with $\vec{n}=\left(n_{1}, n_{2}\right)$ and $\operatorname{deg} \widetilde{P}_{\vec{n}}(x)=n_{1}+n_{2}$ such that

$$
\begin{aligned}
& \left\langle u_{0}, x^{k} \widetilde{P}_{\vec{n}}(x)\right\rangle=\int_{\Delta_{1}} x^{k} \widetilde{P}_{\vec{n}}(x) W_{0}(x) \mathrm{d} x=0, k=0,1, \ldots, n_{1}-1 \\
& \left\langle u_{1}, x^{k} \widetilde{P}_{\vec{n}}(x)\right\rangle=\int_{\Delta_{2}} x^{k} \widetilde{P}_{\vec{n}}(x) W_{1}(x) \mathrm{d} x=0, k=0,1, \ldots, n_{2}-1
\end{aligned}
$$

Now, if we construct a sequence $\left\{\widetilde{P}_{n}\right\}_{n \geq 0}$ such that

$$
\begin{aligned}
& P_{2 n}(x)=\widetilde{P}_{n, n}(x) \\
& P_{2 n+1}(x)=\widetilde{P}_{n, n+1}(x)
\end{aligned}
$$

then $\left\{P_{n}\right\}_{n \geq 0}$ is a 2-OPS.

Definition

Consider a vector linear functional $\mathbf{u}=\left(u_{0}, u_{1}\right)$ defined on \mathcal{P} in \mathbb{C}. The sequence of polynomials $\left\{P_{n}\right\}_{n \geq 0}$, where $\operatorname{deg} P_{n}=n$, is said to be 2 -orthogonal to $\mathbf{u}=\left(u_{0}, u_{1}\right)$ if

$$
\begin{align*}
& <u_{0}, x^{m} P_{n}>=\left\{\begin{array}{lll}
0 & \text { for } & n \geq 2 m+1 \\
N_{2 m} \neq 0 & \text { for } & n=2 m
\end{array}\right. \tag{1}\\
& <u_{1}, x^{m} P_{n}>=\left\{\begin{array}{lll}
0 & \text { for } & n \geq 2 m+2 \\
N_{2 m+1} \neq 0 & \text { for } & n=2 m+1
\end{array}\right. \tag{2}
\end{align*}
$$

The monic 2-OPS $\left\{P_{n}\right\}_{n \geq 0}$ for $\mathbf{u}=\left(u_{0}, u_{1}\right)$ satisfies a third order recurrence relation (see Van Iseghem'88, Maroni'89)

$$
\begin{equation*}
P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\alpha_{n} P_{n-1}(x)-\gamma_{n-1} P_{n-2}(x) \tag{3}
\end{equation*}
$$

with $P_{0}(x)=1, \quad P_{1}(x)=x-\beta_{0}$ and $P_{2}(x)=\left(x-\beta_{1}\right) P_{1}(x)-\alpha_{1}$.

The monic 2-OPS $\left\{P_{n}\right\}_{n \geq 0}$ for $\mathbf{u}=\left(u_{0}, u_{1}\right)$ satisfies a third order recurrence relation (see Van Iseghem'88, Maroni'89)

$$
\begin{equation*}
P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\alpha_{n} P_{n-1}(x)-\gamma_{n-1} P_{n-2}(x) \tag{3}
\end{equation*}
$$

with $P_{0}(x)=1, P_{1}(x)=x-\beta_{0}$ and $P_{2}(x)=\left(x-\beta_{1}\right) P_{1}(x)-\alpha_{1}$.
Expressions for the recurrence coefficients follow immediately from the definition. For instance,

$$
\gamma_{2 n+1}=\frac{\left\langle u_{0}, x^{n+1} P_{2 n+2}\right\rangle}{\left\langle u_{0}, x^{n} P_{2 n}\right\rangle}, \quad \gamma_{2 n+2}=\frac{\left\langle u_{1}, x^{n+1} P_{2 n+3}\right\rangle}{\left\langle u_{1}, x^{n} P_{2 n+1}\right\rangle}, \quad n \geq 0 .
$$

Conversely, we also have

$$
N_{2 n}:=<u_{0}, x^{n+1} P_{2 n+2}>=\prod_{k=0}^{n} \gamma_{2 k+1}
$$

and

$$
N_{2 n+1}:=<u_{1}, x^{n+1} P_{2 n+3}>=\prod_{k=0}^{n} \gamma_{2 k+2}, \quad \text { for } \quad n \geq 0
$$

$$
P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\alpha_{n} P_{n-1}(x)-\gamma_{n-1} P_{n-2}(x)
$$

with

$$
\begin{aligned}
& \beta_{n}=3 n^{2}+(2 \alpha+2 \beta+3) n+(1+\alpha)(1+\beta) \\
& \alpha_{n}=n(3 n+\alpha+\beta)(n+\alpha)(n+\beta), n \geq 1 \\
& \gamma_{n}=n(n+1)(n+\alpha+1)(n+\alpha)(n+\beta+1)(n+\beta), n \geq 2
\end{aligned}
$$

They satisfy the 3rd order recurrence relation

$$
x^{2} P_{n}^{\prime \prime \prime}+(3+\alpha+\beta) x P_{n}^{\prime \prime}+((\alpha+1)(\beta+1)-x) P_{n}^{\prime}=-n P_{n}
$$

and are 2-OPS for $U=\left(u_{0}, u_{1}\right)$ satisfying

$$
x^{2} u_{0}^{\prime \prime}-(\alpha+\beta-1) x u_{0}^{\prime}-(x-\alpha \beta) u_{0}=0 \quad, \quad(\alpha+1)(\beta+1) u_{1}=-\left(x u_{0}\right)^{\prime}
$$

Such vector functional $U=\left(u_{0}, u_{1}\right)$ admits the following integral representation

$$
\begin{aligned}
& <u_{0}, f(x)>=\frac{2}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{0}^{+\infty} f(x) x^{(\alpha+\beta) / 2} K_{\alpha-\beta}(2 \sqrt{x}) \mathrm{d} x \\
& <u_{1}, f(x)>=\frac{2}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{0}^{+\infty} f(x)\left(x^{(\alpha+\beta) / 2} K_{\alpha-\beta}(2 \sqrt{x})\right)^{\prime} \mathrm{d} x
\end{aligned}
$$

(See Ben Cheikh\&Douak'00 and Van Assche\&Yakubovich'00.)

The sequence of polynomials $\left\{P_{n}(x)\right\}_{n \geq 0}$ satisfying the recurrence relation

$$
P_{n+1}(x)=x P_{n}(x)-\frac{4}{27} P_{n-2}(x)
$$

is 2-orthogonal with respect to $U=\left(u_{0}, u_{1}\right)$ such that

$$
\left\{\begin{array}{l}
\left(x^{3}-1\right) u_{0}^{\prime \prime}+\frac{3}{2} x^{2} u_{0}^{\prime}-\frac{1}{2} x u_{0}=0 \\
u_{1}=3\left(x^{3}-1\right) u_{0}^{\prime}-\frac{3}{2} x^{2} u_{0}
\end{array}\right.
$$

Such vector functional admits an integral representation on the real line as follows

$$
\begin{aligned}
<u_{0}, f(x)>= & \int_{0}^{1} f(x) \frac{9 \sqrt{3}}{4 \pi}\left[\left(1+\sqrt{1-x^{3}}\right)^{1 / 3}-\left(1-\sqrt{1-x^{3}}\right)^{1 / 3}\right] \mathrm{d} x \\
& +\int_{0}^{+\infty} f(x) 3 \mathrm{e}^{-x}\left[\lambda_{1} \sqrt{x} \cos (\sqrt{3} x)+\lambda_{2} x^{2} \sin (\sqrt{3} x)\right] \mathrm{d} x \\
<u_{1}, f(x)>= & \int f(x) \mathcal{U}_{1}(x) \mathrm{d} x
\end{aligned}
$$

(See Douak\&Maroni' 97 for further details.)

Example 3: multiple orthogonal polynomials with exponential weights

Consider the monic polynomials $P_{n, m}$ of degree $n+m$ for which

$$
\begin{aligned}
& \int_{\Gamma_{0} \cup \Gamma_{1}} x^{j} P_{n, m}(x) \exp \left(-x^{3}+t x\right) d x=0, j=0, \ldots, n-1, \\
& \int_{\Gamma_{0} \cup \Gamma_{2}} x^{j} P_{n, m}(x) \exp \left(-x^{3}+t x\right) d x=0, j=0, \ldots, m-1,
\end{aligned}
$$

with $\Gamma_{k}=\left\{z \in \mathbb{C}: \arg z=e^{2 k \pi i / 3}\right\}, k=0,1,2$.
(see Van Assche \& Filipuk \& Zhang (2015))

Rodrigues' formula:

$$
\begin{aligned}
& \mathrm{e}^{-x^{3}+t x} P_{n, n+m}(x)=\frac{(-1)^{n}}{3^{n}} \frac{d^{n}}{d x^{n}}\left(\mathrm{e}^{-x^{3}+t x} P_{0, m}(x)\right) \\
& \mathrm{e}^{-x^{3}+t x} P_{n+m, n}(x)=\frac{(-1)^{n}}{3^{n}} \frac{d^{n}}{d x^{n}}\left(\mathrm{e}^{-x^{3}+t x} P_{m, 0}(x)\right)
\end{aligned}
$$

where $P_{m, 0}$ and $P_{0, m}$ are orthogonal polynomials... and $\left\{P_{k, k}\right\}_{k}$ is 2-OPS.

Definition

A monic polynomial sequence $\left\{B_{n}\right\}_{n \geq 0}$ is 3 -fold symmetric if and only if

$$
B_{n}\left(\mathrm{e}^{\frac{2 i \pi}{3}} x\right)=\mathrm{e}^{\frac{2 i n \pi}{3}} B_{n}(x)
$$

and

$$
B_{n}\left(\mathrm{e}^{\frac{4 i \pi}{3}} x\right)=\mathrm{e}^{\frac{4 i n \pi}{3}} B_{n}(x), n \geq 0 .
$$

In other words, this is to say that there exist three sequences $\left\{B_{n}^{[j]}\right\}_{n \geq 0}$ with $j \in\{0,1,2\}$ such that

$$
\begin{aligned}
& B_{3 n}(x)=B_{n}^{[0]}\left(x^{3}\right), \\
& B_{3 n+1}(x)=x B_{n}^{[1]}\left(x^{3}\right), \\
& B_{3 n+2}(x)=x^{2} B_{n}^{[2]}\left(x^{3}\right),
\end{aligned}
$$

(The sequences $\left\{B_{n}^{[j]}\right\}_{n \geq 0}$ are the components of the cubic decomposition of the 3 -fold symmetric sequence $\left\{B_{n}\right\}_{n \geq 0}$.)

Whilst we are dealing with 3-fold symmetric and 2-orthogonal sequences, we recall the following result.

Theorem (Douak \& Maroni'92)
Let $\left\{P_{n}\right\}_{n \geq 0}$ be a 2-orthogonal polynomial sequence for $U=\left(u_{0}, u_{1}\right)$. Then, $\left\{P_{n}\right\}_{n \geq 0}$ is 3-fold symmetric iff if satisfies the third order recurrence relation

$$
P_{n+1}(x)=x P_{n}(x)-\gamma_{n-1} P_{n-2}(x), n \geq 2
$$

with $P_{0}(x)=1, P_{1}(x)=x$ and $P_{2}(x)=x^{2}$.

Moreover, we have

Lemma (Douak \& Maroni'92)

If the a 3-fold symmetric sequence $\left\{P_{n}\right\}_{n \geq 0}$ is 2-orthogonal, then the three components in the cubic decomposition of $\left\{P_{n}\right\}_{n \geq 0}$ are also 2-orthogonal fulfilling the recurrence relations:

$$
P_{n+1}^{[k]}(x)=\left(x-\beta_{n}^{[k]}\right) P_{n}^{[k]}(x)-\alpha_{n}^{[k]} P_{n-1}^{[k]}(x)-\gamma_{n-1}^{[k]} P_{n-2}^{[k]}(x),
$$

where

$$
\begin{aligned}
& \beta_{n}^{[k]}=\gamma_{3 n-1+k}+\gamma_{3 n+k}+\gamma_{3 n+1+k}, n \geq 0 \\
& \alpha_{n}^{[k]}=\gamma_{3 n-2+k} \gamma_{3 n+k}+\gamma_{3 n-1+k} \gamma_{3 n-3+k}+\gamma_{3 n-2+k} \gamma_{3 n-1+k}, n \geq 1, \\
& \gamma_{n}^{[k]}=\gamma_{3 n-2+k} \gamma_{3 n+k} \gamma_{3 n+2+k} \neq 0, \quad n \geq 2
\end{aligned}
$$

for each $k=0,1,2$.

Theorem. (Aptekarev et al.'00)
If $\gamma_{n}>0$ for $n \geq 1$ in

$$
P_{n+1}(x)=x P_{n}(x)-\gamma_{n-1} P_{n-2}(x)
$$

then $\left\{P_{n}\right\}_{n \geq 0}$ is a 2-OPS w.r.t. the vector of linear functionals $\left(u_{0}, u_{1}\right)$ and

$$
\begin{align*}
& <u_{0}, f(x)>=\int_{S} f(x) \mathrm{d} \mu_{0}(x) \tag{4}\\
& <u_{1}, f(x)>=\int_{S} f(x) \mathrm{d} \mu_{1}(x) \tag{5}
\end{align*}
$$

where S represents the starlike set

$$
S:=\bigcup_{k=0}^{2} \Gamma_{k} \quad \text { with } \quad \Gamma_{k}=\left[0, \mathrm{e}^{2 \pi i k / 3} \infty\right)
$$

and the measures have a common support which is a subset of S and are invariant under rotations of $2 \pi / 3$.

Theorem. (Ben Romdhane'08)
Let $\left\{P_{n}\right\}_{n \geq 0}$ be a 2-OPS satisfying

$$
P_{n+1}(x)=x P_{n}(x)-\gamma_{n-1} P_{n-2}(x)
$$

If $\gamma_{n}>0$, then the following statements hold
(a) If x is a zero of $P_{3 n+j}$, then $\omega^{k} x$ are also zeros of $P_{3 n+j}$ with $\omega=\mathrm{e}^{2 \pi i / 3}$
(b) 0 is a zero of $P_{3 n+j}$ of multiplicity j when $j=1,2$
(c) $P_{3 n+j}$ has n distinct positive real zeros

$$
0<x_{n, 1}^{(j)}<\ldots<x_{n, n}^{(j)}
$$

(d) Between two real zeros of $P_{3 n+j+3}$ there exist only one zero of $P_{3 n+j+2}$ and only one zero of $P_{3 n+j+1}$, ie,

$$
x_{n, k}^{(j+2)}<x_{n, k+1}^{(j)}<x_{n, k+1}^{(j+1)}<x_{n, k+1}^{(j+2)}
$$

Theorem. (AL \& Van Assche'18)
Let $\left\{P_{n}\right\}_{n \geq 0}$ be a 2-OPS satisfying

$$
P_{n+1}(x)=x P_{n}(x)-\gamma_{n-1} P_{n-2}(x)
$$

If $\gamma_{n}>0$ and, additionally,

$$
\gamma_{2 n}=c_{0} n^{\alpha}+o\left(n^{\alpha}\right) \quad \text { and } \quad \gamma_{2 n+1}=c_{1} n^{\alpha}+o\left(n^{\alpha}\right)
$$

for large n, with $c_{0}, c_{1}>0$ and $\alpha \geq 0$, then the largest zero in absolute value $\left|x_{n, n}\right|$ behaves as

$$
\begin{equation*}
\left|x_{n, n}\right| \leq \frac{3}{2^{2 / 3}} c^{1 / 3} n^{\alpha / 3}+o\left(n^{\alpha / 3}\right), n \geq 1 \tag{6}
\end{equation*}
$$

where $c=\max \left\{c_{0}, c_{1}\right\}$.

Proof. Consider the Hessenberg matrix

$$
\mathbf{H}_{n}=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
\gamma_{1} & 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & \gamma_{2} & 0 & 0 & \cdots & 0 & 0 & 0 \\
& & \ddots & & & & & \\
& & & \ddots & & & & \\
& & & & \ddots & & & \\
0 & 0 & 0 & 0 & \cdots & \gamma_{n-2} & 0 & 0
\end{array}\right)
$$

Hence,

$$
\mathbf{H}_{n}\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
\vdots \\
P_{n-1}(x)
\end{array}\right)=x\left(\begin{array}{c}
P_{0}(x) \\
P_{1}(x) \\
\vdots \\
P_{n-1}(x)
\end{array}\right)-P_{n}(x)\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

and each zero of $P_{n}(x)$ is an eigenvalue of the matrix \mathbf{H}_{n}.

The spectral radius of the matrix \mathbf{H}_{n},

$$
\rho\left(\mathbf{H}_{n}\right)=\max \left\{|\lambda|: \lambda \text { is an eigenvalue of } \mathbf{H}_{n}\right\},
$$

is bounded from above by $\left\|\mathbf{H}_{n}\right\|$ where $\|\cdot\|$ denotes a matrix norm. In particular

$$
\left\|\mathbf{H}_{n}\right\| S=\left\|S^{-1} \mathbf{H}_{n} S\right\|_{\infty}=\max _{1 \leq i \leq n}\left\{\sum_{j=1}^{n}\left|\left(S^{-1} \mathbf{H}_{n} S\right)_{i, j}\right|\right\}
$$

where $S=\operatorname{diag}\left(d_{1}, \ldots, d_{k}, \ldots, d_{n}\right)$ is non-singular matrix and $\left(S^{-1} \mathbf{H}_{n} S\right)_{i, j}$ if the ith row and j th column entry of the product matrix $S^{-1} \mathbf{H}_{n} S$ we obtain

$$
\left\|\mathbf{H}_{n}\right\|_{S}=\max \left\{\frac{d_{2}}{d_{1}}, \frac{d_{3}}{d_{2}}, \frac{d_{4}+d_{1} \gamma_{1}}{d_{3}}, \ldots, \frac{d_{k}+d_{k-3} \gamma_{k-3}}{d_{k-1}}, \ldots, \frac{d_{n-2} \gamma_{n-2}}{d_{n}}\right\} .
$$

Setting $d_{k}=d^{k}(k!)^{\alpha / 3} \neq 0$, for some $d>0$, brings

$$
\left\|\mathbf{H}_{n}\right\| s \leq 2^{\alpha / 3}\left(d+\frac{c}{d^{2}}\right) n^{\alpha / 3}+o\left(n^{\alpha / 3}\right) \text { as } n \rightarrow+\infty .
$$

The choice of $d=(2 c)^{1 / 3}$ provides a minimum to $\left(d+\frac{c}{d^{2}}\right)$ and this gives

$$
\left\|\mathbf{H}_{n}\right\|_{s} \leq \frac{3}{4^{1 / 3}}\left(c n^{\alpha}\right)^{1 / 3}+o\left(n^{\alpha / 3}\right) \quad \text { as } n \rightarrow+\infty
$$

Definition

A monic 2-OPS $\left\{P_{n}\right\}_{n \geq 0}$ is "classical" in Hahn's sense when the sequence of its derivatives $\left\{Q_{n}\right\}_{n \geq 0}$, with

$$
Q_{n}(x)=\frac{1}{n+1} P_{n+1}^{\prime}(x)
$$

is also a 2-OPS.

Hence, as a monic 2-OPS, the sequence $\left\{Q_{n}\right\}_{n \geq 0}$ satisfies a third order recurrence relation:

$$
\begin{equation*}
Q_{n+1}(x)=\left(x-\widetilde{\beta}_{n}\right) Q_{n}(x)-\widetilde{\alpha}_{n} Q_{n-1}(x)-\widetilde{\gamma}_{n-1} Q_{n-2}(x), \quad n \geq 2 \tag{7}
\end{equation*}
$$

with $Q_{0}=1, Q_{1}(x)=x-\widetilde{\beta}_{0}$ and $Q_{2}(x)=\left(x-\widetilde{\beta}_{1}\right) Q_{1}(x)-\widetilde{\alpha}_{1}$.

Between the two recurrence relations

$$
\begin{aligned}
& P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\alpha_{n} P_{n-1}(x)-\gamma_{n-1} P_{n-2}(x) \\
& Q_{n+1}(x)=\left(x-\widetilde{\beta}_{n}\right) Q_{n}(x)-\widetilde{\alpha}_{n} Q_{n-1}(x)-\widetilde{\gamma}_{n-1} Q_{n-2}(x), n \geq 2,
\end{aligned}
$$

it follows a nonlinear system of equations

$$
\begin{aligned}
& (n+2) \widetilde{\beta}_{n}-n \widetilde{\beta}_{n-1}=\left(n+1-(n) \beta_{n}\right. \\
& \left.\left.(n+3) \widetilde{\alpha}_{n+1}-(n+1) \widetilde{\alpha}_{n} \quad-2\right) \alpha_{n} \quad n-1\right) \alpha_{n+2}+(n+1)\left(\beta_{n+1}-\widetilde{\beta}_{n}\right)^{2} \\
& (n+4) \widetilde{\gamma}_{n+1}-(n+2) \widetilde{\gamma}_{n}-(n+1) \gamma_{n}-(n-1) \gamma_{n+1} \\
& +(n+1) \alpha_{n+2}\left(\beta_{n+2}+\beta_{n+1}-2 \widetilde{\beta}_{n}\right)-(n+2) \widetilde{\alpha}_{n+1}\left(2 \beta_{n+2}-\widetilde{\beta}_{n+1}-\widetilde{\beta}_{n}\right) \\
& n \alpha_{n+1} \alpha_{n+2}+(n+2) \widetilde{\alpha}_{n} \widetilde{\alpha}_{n+1}-2\left(n \quad \widetilde{a}_{n} \alpha_{n+2}\right. \\
& =(n+2) \widetilde{\gamma}_{n}\left(2 \beta_{n+2}-\widehat{\beta}_{n-1}\right)-n \gamma_{n+1}\left(\beta_{n+2}+\beta_{n}-2 \widetilde{\beta}_{n-1}\right) \\
& n\left(\alpha_{n+1} \gamma_{n+2}+\alpha_{n+3} \gamma_{n+1}\right)=\widetilde{\gamma}_{n}\left(2(n+2) \alpha_{n+3}-(n+3) \widetilde{\alpha}_{n+2}\right) \\
& +\widetilde{\alpha}_{n}\left(2(n+1) \gamma_{n+}-(n)-3\right) \widetilde{\gamma}_{n+1} \\
& n \gamma_{n+1} \gamma_{n+3}=\widetilde{\gamma}_{n}\left(2(n+2) \gamma_{n+3}-(n+4) \widetilde{\gamma}_{n+2}\right)
\end{aligned}
$$

On the other hand, the 2-orthogonality of $\left\{P_{n}\right\}_{n \geq 0}$ for $U=\left(u_{0}, u_{1}\right)$ and the 2-orthogonality of $\left\{Q_{n}\right\}_{n \geq 0}$ for $V=\left(v_{0}, v_{1}\right)$ implies

$$
\left[\begin{array}{l}
v_{0} \tag{8}\\
v_{1}
\end{array}\right]=\boldsymbol{\Phi}\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]
$$

and also that

$$
\left[\begin{array}{c}
v_{0}^{\prime} \tag{9}\\
v_{1}^{\prime}
\end{array}\right]=-\boldsymbol{\Psi}\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right] .
$$

with

$$
\boldsymbol{\Phi}=\left[\begin{array}{ll}
\phi_{0,0} & \phi_{0,1} \\
\phi_{1,0} & \phi_{1,1}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Psi}=\left[\begin{array}{ll}
0 & 1 \\
\psi(x) & \zeta
\end{array}\right]
$$

where $\psi(x)=\frac{2}{\gamma_{1}} P_{1}(x)$ and $\zeta=-\frac{2 \alpha_{1}}{\gamma_{1}}$,
whilst $\operatorname{deg}\left\{\phi_{0,0}, \phi_{0,1}, \phi_{1,1}\right\} \leq 1$ and $\operatorname{deg} \phi_{1,0} \leq 2$.

Theorem. (Maroni\& Douak'92, Maroni'99)
The monic 2-OPS $\left\{P_{n}\right\}_{n \geq 0}$ for $U=\left(u_{0}, u_{1}\right)$ is "classical" iff there are polynomials ψ and $\phi_{i, j}$, with $i, j \in\{0,1\}$, and a constant ζ such that

$$
\left(\left[\begin{array}{ll}
\phi_{0,0} & \phi_{0,1} \tag{10}\\
\phi_{1,0} & \phi_{1,1}
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]\right)^{\prime}+\left[\begin{array}{ll}
0 & 1 \\
\psi(x) & \zeta
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where $\operatorname{deg}\left\{\phi_{0,0}, \phi_{0,1}, \phi_{1,1}\right\} \leq 1, \operatorname{deg} \phi_{1,0} \leq 2$ and $\operatorname{deg} \psi=1$.

Relation (11a) reads as follows

$$
\left(\boldsymbol{\Phi}\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]\right)^{\prime}+\boldsymbol{\Psi}\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

If $\left\{P_{n}\right\}_{n \geqslant 0}$ is three-fold symmetric, then so is $\left\{Q_{n}\right\}_{n \geqslant 0}$ where

$$
Q_{n}(x):=\frac{1}{n+1} P_{n+1}^{\prime}(x), n \geqslant 0
$$

This means that for a three-fold symmetric Hahn-classical polynomial sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ then $\left\{Q_{n}\right\}_{n \geqslant 0}$ is three-fold and satisfies

$$
Q_{n+1}(x)=x Q_{n}(x)-\widetilde{\gamma}_{n-1} Q_{n-2}, \quad \text { for } \quad n \geqslant 2
$$

with initial conditions $Q_{k}(x)=x^{k}$ for $k=0,1,2$.
in this case we have

Theorem. (AL\&Van Assche'18) Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be a three-fold symmetric 2-OPS for (u_{0}, u_{1}). The following are equivalent:
(a) $\left\{P_{n}(x)\right\}_{n \geq 0}$ is a three-fold symmetric "classical" 2-orthogonal polynomial sequence.
(b) The vector functional $\left(u_{0}, u_{1}\right)$ satisfies the matrix differential equation

$$
\left(\boldsymbol{\Phi}\left[\begin{array}{l}
u_{0} \tag{11a}\\
u_{1}
\end{array}\right]\right)^{\prime}+\boldsymbol{\Psi}\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where

$$
\Phi=\left[\begin{array}{cc}
\vartheta_{1} & \left(1-\vartheta_{1}\right) x \tag{11b}\\
\frac{2}{\gamma_{1}}\left(1-\vartheta_{2}\right) x^{2} & 2 \vartheta_{2}-1
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Psi}=\left[\begin{array}{cc}
0 & 1 \\
\frac{2}{\gamma_{1}} x & 0
\end{array}\right]
$$

for some constants $\vartheta_{1}=\frac{3 \widetilde{\gamma}_{1}}{\gamma_{2}}$ and $\vartheta_{2}=\frac{2 \widetilde{\gamma}_{2}}{\gamma_{3}}$ such that $\vartheta_{1}, \vartheta_{2} \neq \frac{n-1}{n}$.
(c) There exists a sequence of numbers $\left\{\widetilde{\gamma}_{n+1}\right\}_{n \geq 0}$ such that

$$
\begin{equation*}
P_{n+3}(x)=Q_{n+3}(x)+\left((n+1) \gamma_{n+2}-(n+3) \widetilde{\gamma}_{n+1}\right) Q_{n}(x) \tag{12}
\end{equation*}
$$

with initial conditions $P_{k}(x)=Q_{k}(x)=x^{k}$ for $k=0,1,2$.

Proof. (a) \Rightarrow (c): consequence of the rec. rel. of $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$. (c) \Rightarrow (b): If $\left\{u_{n}\right\}_{n \geq 0}$ and $\left\{v_{n}\right\}_{n \geq 0}$ are the dual sequences of $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$, resp., then

$$
\begin{align*}
& v_{n}^{\prime}=-(n+1) u_{n+1} \tag{13}\\
& v_{n}=u_{n}+\left((n+1) \gamma_{n+2}-(n+3) \widetilde{\gamma}_{n+1}\right) u_{n+3} . \tag{14}
\end{align*}
$$

The 2-orthogonality of $\left\{P_{n}\right\}_{n \geq 0}$ implies

$$
u_{2}=\frac{x}{\gamma_{1}} u_{0}, \quad u_{3}=-\frac{1}{\gamma_{2}} u_{0}+\frac{x}{\gamma_{2}} u_{1}, \quad u_{4}=\frac{x^{2}}{\gamma_{1} \gamma_{3}} u_{0}-\frac{1}{\gamma_{3}} u_{1}
$$

If we take $n=0$ and $n=1$ in (13) we obtain

$$
\left[\begin{array}{c}
v_{0}^{\prime} \\
v_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
\frac{2}{\gamma_{1}} x & 0
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]
$$

With $n=0$ and $n=1$ in (14) leads to

$$
\left[\begin{array}{c}
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{cc}
\vartheta_{1} & \left(1-\vartheta_{1}\right) x \\
\frac{2}{\gamma_{1}}\left(1-\vartheta_{2}\right) x^{2} & 2 \vartheta_{2}-1
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]
$$

Three-fold symmetric "classical" 2-orthogonal polynomials

Proof. (cont.)

The proof of $(b) \Rightarrow(a)$ is essentially about showing that $\left\{Q_{n}\right\}_{n \geq 0}$ is 2-orthogonal with respect to

$$
\left[\begin{array}{c}
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{cc}
\vartheta_{1} & \left(1-\vartheta_{1}\right) x \\
\frac{2}{\gamma_{1}}\left(1-\vartheta_{2}\right) x^{2} & 2 \vartheta_{2}-1
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]
$$

Proof. (cont.)
The proof of $(\mathrm{b}) \Rightarrow(\mathrm{a})$ is essentially about showing that $\left\{Q_{n}\right\}_{n \geq 0}$ is 2-orthogonal with respect to

$$
\left[\begin{array}{c}
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{cc}
\vartheta_{1} & \left(1-\vartheta_{1}\right) x \\
\frac{2}{\gamma_{1}}\left(1-\vartheta_{2}\right) x^{2} & 2 \vartheta_{2}-1
\end{array}\right]\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]
$$

The Pearson equation

$$
\left(\boldsymbol{\Phi}\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]\right)^{\prime}+\boldsymbol{\Psi}\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

gives

$$
\widetilde{\gamma}_{n}=\frac{n}{n+2} \vartheta_{n} \gamma_{n+1}
$$

with

$$
\begin{equation*}
\vartheta_{2 n+1}=\left(\frac{1-(n+1)\left(1-\vartheta_{1}\right)}{1-n\left(1-\vartheta_{1}\right)}\right) \quad \text { and } \quad \vartheta_{2 n+2}=\left(\frac{1-(n+1)\left(1-\vartheta_{2}\right)}{1-n\left(1-\vartheta_{2}\right)}\right) . \tag{15}
\end{equation*}
$$

If we replace each P in

$$
x P_{n}=P_{n+1}+\gamma_{n-1} P_{n-2}
$$

by the corresponding expression given in

$$
P_{n+3}(x)=Q_{n+3}(x)+\left((n+1) \gamma_{n+2}-(n+3) \widetilde{\gamma}_{n+1}\right) Q_{n}(x)
$$

to then use the recurrence relation

$$
x Q_{n}=Q_{n+1}+\widetilde{\gamma}_{n-1} Q_{n-2} \quad \text { where } \quad \widetilde{\gamma}_{n-1}=\frac{n-1}{n+1} \vartheta_{n-1} \gamma_{n}
$$

we obtain

$$
\vartheta_{n+2}+\frac{1}{\vartheta_{n}}=2, n \geqslant 1
$$

and

$$
\gamma_{n+2}=\frac{n+3}{n+1} \frac{\left(n\left(\vartheta_{n}-1\right)+1\right)}{\left((n+4)\left(\vartheta_{n+1}-1\right)+1\right)} \gamma_{n+1} \neq 0
$$

Lemma (Douak\&Maroni'97)

If a 2 -symmetric 2-OPS $\left\{P_{n}\right\}_{n \geq 0}$ is "classical", then each polynomial is a solution of the third order differential equation

$$
\left(a_{n} x^{3}-b_{n}\right) P_{n+1}^{\prime \prime \prime}+c_{n} x^{2} P_{n+1}^{\prime \prime}+d_{n} x P_{n+1}^{\prime}=e_{n} P_{n+1}
$$

where

$$
\begin{aligned}
a_{n} & =\left(\vartheta_{n}-1\right)\left(\vartheta_{n+1}-1\right) \\
b_{n} & =\frac{\gamma_{n+3}\left((n+3) \vartheta_{n+2}-(n+2)\right)\left((n+4) \vartheta_{n+1}-(n+3)\right)\left((n+5) \vartheta_{n+2}-(n+4)\right)}{(n+3)(n+4)} \\
c_{n} & =\vartheta_{n} \vartheta_{n+1}-1-(n-3)\left(\vartheta_{n}-1\right)\left(\vartheta_{n+1}-1\right) \\
d_{n} & =n \vartheta_{n+1}-(n-1) \vartheta_{n}\left(2 \vartheta_{n+1}-1\right) \\
e_{n} & =n \vartheta_{n+1}, \quad \text { for any } n \geq 1,
\end{aligned}
$$

with $a_{0}=b_{0}=c_{0}=d_{0}=e_{0}=0$.

Here

$$
\vartheta_{2 n+1}=\left(\frac{1-(n+1)\left(1-\vartheta_{1}\right)}{1-n\left(1-\vartheta_{1}\right)}\right) \quad \text { and } \quad \vartheta_{2 n+2}=\left(\frac{1-(n+1)\left(1-\vartheta_{2}\right)}{1-n\left(1-\vartheta_{2}\right)}\right) .
$$

Proposition. (AL \& Van Assche'18) The 2-OPS $\left\{P_{n}(x)\right\}_{n \geq 0}$ with respect to the vector linear functional $\mathbf{U}=\left(u_{0}, u_{1}\right)$ satisfy the Hahn's property if and only if there are coefficients $\vartheta_{1}, \vartheta_{2} \neq \frac{n-1}{n}$, such that $\mathbf{U}=\left(u_{0}, u_{1}\right)$ satisfies

$$
\begin{equation*}
\left(\phi(x) u_{0}\right)^{\prime \prime}+\left(\frac{2}{\gamma_{1}}\left(\vartheta_{2}+\vartheta_{1}-2\right) x^{2} u_{0}\right)^{\prime}+\frac{2}{\gamma_{1}}\left(\vartheta_{1}-2\right) x u_{0}=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{cases}\left(\vartheta_{1}-2\right)\left(2 \vartheta_{2}-1\right) u_{1}=\phi(x) u_{0}^{\prime}-\frac{2}{\gamma_{1}}\left(\vartheta_{1}-1\right)\left(2 \vartheta_{2}-3\right) x^{2} u_{0}, & \text { if } \vartheta_{1} \neq 2, \\ x u_{1}^{\prime}=2 u_{0}^{\prime}, & \text { if } \vartheta_{1}=2,\end{cases}
$$

where

$$
\begin{equation*}
\phi(x)=\left(\vartheta_{1}\left(2 \vartheta_{2}-1\right)-\frac{2}{\gamma_{1}}\left(\vartheta_{1}-1\right)\left(\vartheta_{2}-1\right) x^{3}\right) . \tag{17}
\end{equation*}
$$

and from this we have

Three-fold symmetric "classical" 2-orthogonal polynomials
Theorem. (AL \& Van Assche'18) For a "classical" threefold symmetric $\left\{P_{n}\right\}_{n \geq 0}$ 2-orthogonal with respect to (u_{0}, u_{1}) and satisfying the rec. rel. with $\gamma_{n+1}>0$:
$\left\langle u_{k}, f(x)\right\rangle$
$=\frac{1}{3}\left(\int_{0}^{b} f(x) \mathcal{U}_{k}(x) \mathrm{d} x+\omega^{2 k-1} \int_{0}^{b \omega} f(x) \mathcal{U}_{k}\left(\omega^{2} x\right) \mathrm{d} x+\omega^{1-2 k} \int_{0}^{b \omega^{2}} f(x) \mathcal{U}_{k}(\omega x) \mathrm{d} x\right)$,
with $\omega=\mathrm{e}^{2 \pi i / 3}$ and $b=\lim _{n \rightarrow \infty}\left(\frac{27}{4} \gamma_{n}\right)$, provided that $\mathcal{U}_{0}(x)$ and $\mathcal{U}_{1}(x)$

Three-fold symmetric "classical" 2-orthogonal polynomials

Theorem. (AL \& Van Assche'18) For a "classical" threefold symmetric $\left\{P_{n}\right\}_{n \geq 0}$ 2-orthogonal with respect to $\left(u_{0}, u_{1}\right)$ and satisfying the rec. rel. with $\gamma_{n+1}>0$:

$$
\begin{aligned}
& \left\langle u_{k}, f(x)\right\rangle \\
& \quad=\frac{1}{3}\left(\int_{0}^{b} f(x) \mathcal{U}_{k}(x) \mathrm{d} x+\omega^{2 k-1} \int_{0}^{b \omega} f(x) \mathcal{U}_{k}\left(\omega^{2} x\right) \mathrm{d} x+\omega^{1-2 k} \int_{0}^{b \omega^{2}} f(x) \mathcal{U}_{k}(\omega x) \mathrm{d} x\right),
\end{aligned}
$$

with $\omega=\mathrm{e}^{2 \pi i / 3}$ and $b=\lim _{n \rightarrow \infty}\left(\frac{27}{4} \gamma_{n}\right)$, provided that $\mathcal{U}_{0}(x)$ and $\mathcal{U}_{1}(x)$

$$
\left\{\begin{array}{l}
\left(\phi(x) \mathcal{U}_{0}(x)\right)^{\prime \prime}+\left(\frac{2\left(\vartheta_{2}+\vartheta_{1}-2\right)}{\gamma_{1}} x^{2} \mathcal{U}_{0}(x)\right)^{\prime}+\frac{2\left(\vartheta_{1}-2\right)}{\gamma_{1}} x \mathcal{U}_{0}(x)=\lambda_{0} g_{0}(x) \\
\left(\vartheta_{1}-2\right)\left(2 \vartheta_{2}-1\right) \mathcal{U}_{1}(x)=\phi(x) \mathcal{U}_{0}^{\prime}(x)-\frac{2\left(\vartheta_{1}-1\right)\left(2 \vartheta_{2}-3\right)}{\gamma_{1}} x^{2} \mathcal{U}_{0}(x)+\lambda_{1} g_{1}(x) \\
x \mathcal{U}_{1}^{\prime}(x)=2 \mathcal{U}_{0}^{\prime}(x) \quad \text { if } \quad \vartheta_{1}=2
\end{array}\right.
$$

with $\phi(x)=\left(\vartheta_{1}\left(2 \vartheta_{2}-1\right)-\frac{2\left(\vartheta_{1}-1\right)\left(\vartheta_{2}-1\right)}{\gamma_{1}} x^{3}\right)$, satisfying

$$
\lim _{x \rightarrow b} f(x) \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \mathcal{U}_{0}(x)=0, \quad \text { and } \quad \int_{0}^{b} \mathcal{U}_{0}(x) \mathrm{d} x=1
$$

$\lambda_{k} \in \mathbb{C}$ and $\int_{\Gamma} x^{n} g_{k}(x) \mathrm{d} x=0$.

There are four cases to single out:

Case A: $\vartheta_{1}=\vartheta_{2}=1$. This implies that $\vartheta_{n}=1$ for all $n \geq 0$.
Case $\mathbf{B}_{1}: \vartheta_{1} \neq 1$ but $\vartheta_{2}=1$ so that by setting $\vartheta_{1}=\frac{\mu+2}{\mu+1}$ it follows

$$
\vartheta_{2 n-1}=\frac{n+\mu+1}{n+\mu} \quad \text { and } \quad \vartheta_{2 n}=1, \quad n \geq 1 .
$$

Case $\mathbf{B}_{2}: \vartheta_{1}=1$ but $\vartheta_{2} \neq 1$ so that by setting $\vartheta_{2}=\frac{\rho+2}{\rho+1}$ it follows

$$
\vartheta_{2 n-1}=1 \quad \text { and } \quad \vartheta_{2 n}=\frac{n+\rho+1}{n+\rho}, \quad n \geq 1
$$

Case C: $\vartheta_{1} \neq 1$ and $\vartheta_{2} \neq 1$ and hence by setting $\vartheta_{1}=\frac{\mu+2}{\mu+1}$ and $\vartheta_{2}=\frac{\rho+2}{\rho+1}$ it follows

$$
\vartheta_{2 n-1}=\frac{n+\mu+1}{n+\mu} \quad \text { and } \quad \vartheta_{2 n}=\frac{n+\rho+1}{n+\rho}, \quad n \geq 1 .
$$

In this case we have $Q_{n}(x):=\frac{1}{n+1} P_{n+1}^{\prime}(x)=P_{n}(x)$. Additionally

$$
\gamma_{n+1}=(n+1)(n+2) \frac{\gamma_{1}}{2}, \quad \text { and } \quad\left\{\begin{array}{l}
u_{0}^{\prime \prime}-\frac{2}{\gamma_{1}} \times u_{0}=0 \\
u_{1}=-u_{0}^{\prime}
\end{array}\right.
$$

With the choice $\gamma_{1}=2$, it follows that

$$
\gamma_{n+1}=(n+1)(n+2), \quad \text { and } \quad\left\{\begin{array}{l}
u_{0}^{\prime \prime}-x u_{0}=0 \\
u_{1}=-u_{0}^{\prime}
\end{array}\right.
$$

and

$$
-P_{n+1}^{\prime \prime \prime}(x)+x P_{n+1}^{\prime}(x)=n P_{n+1}(x), n \geq 0
$$

Remark. The polynomials appear in the Vorob'ev-Yablonski polynomials associated with rational solutions of Painlevé II equations (Clarkson \& Mansfield'03)

$$
\begin{aligned}
& <u_{0}, f>=\int_{\Gamma} f(x) W_{0}(x) d x, \text { for all } f \in \mathcal{P} \\
& <u_{1}, f>=\int_{\Gamma} f(x) W_{1}(x) d x, \text { for all } f \in \mathcal{P}
\end{aligned}
$$

where $W_{0}: \Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2} \longrightarrow \mathbb{R}$ defined by

$$
W_{0}(x)=\operatorname{Ai}(x) \rrbracket_{\Gamma_{0}}-\mathrm{e}^{-2 \pi i / 3} \operatorname{Ai}\left(\mathrm{e}^{-2 \pi i / 3} x\right) \rrbracket_{\Gamma_{1}}-\mathrm{e}^{2 \pi i / 3} \operatorname{Ai}\left(\mathrm{e}^{2 \pi i / 3} x\right) \rrbracket_{\Gamma_{2}}
$$

with $\quad \Gamma_{k}=\left\{w: \arg (w)=\frac{2 k \pi}{3}\right\}$, with $k=0,1,2$,
where the orientations of Γ_{k} are all taken from left to right

Remarks.

- All the zeros of $P_{n}(x)$ are located on $\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$
- In each Γ_{k}, between two zeros of P_{n+2} there is one zero of P_{n} and P_{n+1}.
- Here we have

$$
\begin{aligned}
& \gamma_{2 n}=\frac{n(2 n+1)(n+\mu)(\mu+2)}{(3 n+\mu-1)(3 n+\mu+2)} \gamma_{1}=\frac{2 \gamma_{1}(\mu+2)}{9} n+o(n), \quad n \geq 1 \\
& \gamma_{2 n+1}=\frac{(n+1)(2 n+1)(\mu+2)}{(3 n+\mu+2)} \gamma_{1}=\frac{2 \gamma_{1}(\mu+2)}{3} n+o(n), \quad n \geq 0
\end{aligned}
$$

- For $\mu>0$, then $\gamma_{n}>0$ for all $n \geq 1$.
- The largest real zero $x_{n, n}^{(j)}$ of $P_{3 n+j}$ is bounded from above by

$$
\begin{aligned}
& x_{n, n}^{(j)} \\
& \leqslant \frac{3^{2 / 3}}{2^{1 / 3}}\left(\gamma_{1}(\mu+2)\right)^{1 / 3} n^{1 / 3}+o\left(n^{1 / 3}\right)
\end{aligned}
$$

With the choice of $\gamma_{1}=2$, when $\mu>0$

$$
\left\{\begin{array}{l}
\frac{1}{3} u_{0}^{\prime \prime}+x^{2} u_{0}^{\prime}-(\mu-2) x u_{0}=0 \\
u_{1}=-\frac{(\mu+2)}{\mu}\left(u_{0}^{\prime}+3 x^{2} u_{0}\right)
\end{array}\right.
$$

and for $\mu=0$:

$$
\left\{\begin{array}{l}
u_{0}^{\prime}+3 x^{2} u_{0}=0 \\
x u_{1}^{\prime}=2 u_{0}^{\prime}
\end{array}\right.
$$

Theorem (AL \& Van Assche)

The linear 3-fold symmetric 2-orthogonal vector functional (u_{0}, u_{1}) admit the following integral representation:
$\left\langle u_{k}, f(x)\right\rangle=\frac{1}{3}\left(\int_{0}^{\infty} f(x) \mathcal{U}_{k}(x) \mathrm{d} x+\omega^{2 k-1} \int_{0}^{\infty \omega} f(x) \mathcal{U}_{k}\left(\omega^{2} x\right) \mathrm{d} x+\omega^{1-2 k} \int_{0}^{\infty} \omega^{2} f(x) \mathcal{U}_{k}(\omega x) \mathrm{d} x\right)$,
with $k=0,1$ and

$$
\begin{aligned}
& \mathcal{U}_{0}(x):=\mathcal{U}_{0}(x ; \mu)=\frac{3 \Gamma\left(\frac{\mu+2}{3}\right)}{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)} \mathrm{e}^{-x^{3}} \mathbf{U}\left(\frac{\mu}{3}, \frac{2}{3} ; x^{3}\right), \\
& \mathcal{U}_{1}(x):=\mathcal{U}_{1}(x ; \mu)=\frac{9 \Gamma\left(\frac{\mu+5}{3}\right)}{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)} x^{2} e^{-x^{3}} \mathbf{U}\left(\frac{\mu}{3}+1, \frac{5}{3}, x^{3}\right), \text { for } \mu \neq 0 \\
& \mathcal{U}_{1}(x ; 0)=3 \sqrt{3} \Gamma\left(\frac{2}{3}\right) \Gamma\left(\frac{2}{3}, x^{3}\right)
\end{aligned}
$$

Here

$$
\mathbf{U}(a, b ; x)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} t^{a-1}(t+1)^{-a+b-1} \mathrm{e}^{-t x} \mathrm{~d} t \quad \text { and } \quad \mathbf{U}(0, b ; x)=1
$$

case B_{1} : proof of the integral representation

Proof (idea). We seek an integral representation for u_{0}, that is, we seek a weight function $\mathcal{U}_{0}(x)$ and a path \mathcal{C} so that

$$
<u_{0}, f(x)>=\int_{\mathcal{C}} f(x) \mathcal{U}_{0}(x) \mathrm{d} x
$$

is valid for any polynomial f. In particular, we must have

$$
<u_{0}, x^{n}>=\int_{\mathcal{C}} x^{n} \mathcal{U}_{0}(x) \mathrm{d} x, n \geq 0
$$

The functional equation $(\mu+2) u_{0}^{\prime \prime}+x^{2} u_{0}^{\prime}-(\mu-2) x u_{0}=0$ implies that \mathcal{U}_{0} must be a solution of the differential equation

$$
(\mu+2) \mathcal{U}_{0}^{\prime \prime}+x^{2} \mathcal{U}_{0}^{\prime}-(\mu-2) x \mathcal{U}_{0}=\lambda g(x)
$$

where λ is a complex constant and $g(x)$ is a function such that

$$
\int_{\mathcal{C}} x^{n} g(x)(x) \mathrm{d} x=0, n \geq 0
$$

With $\lambda=0$, it follows that

$$
\mathcal{U}_{0}(x)=c_{1}{ }_{1} F_{1}\left(\frac{2-\mu}{3}, \frac{2}{3} ; t\right)+c_{2} t^{1 / 3}{ }_{1} F_{1}\left(1-\frac{\mu}{3}, \frac{4}{3} ; t\right)
$$

The choice of the constants c_{1} and c_{2} as well as the path of integration is dictated by the conditions

$$
<u_{0}, x^{n}>=\int_{\mathcal{C}} x^{n} \mathcal{U}_{0}(x) \mathrm{d} x, n \geq 0
$$

and $\left.\left[(\mu+2)\left(f^{\prime}(x)-f(x)\right) \mathcal{U}_{0}^{\prime}(x)-x^{2} f(x) \mathcal{U}_{0}(x)\right]\right|_{\mathcal{C}}=0$, for any $f \in \mathcal{P}$.

From DLMF (relations (13.2.39) and (13.2.41)) we deduce
$\mathrm{e}^{-z} \mathbf{U}(a, b, z)=\frac{\Gamma(1-b)}{\Gamma(a-b+1)}{ }_{1} F_{1}(b-a, b ;-z)+\frac{\Gamma(b-1)}{\Gamma(a)} z^{1-b}{ }_{1} F_{1}(1-a, 2-b ;-z)$
which are valid when b is not an integer.
Thus, with $c_{1}=\frac{\Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{1+\mu}{3}\right)} K$ and $c_{2}=\frac{-\mu \Gamma\left(\frac{2}{3}\right)}{\Gamma\left(\frac{\mu}{3}+1\right)} K$ and $\mathcal{C}=\Gamma$, the result follows.

The particular choice of $\mu=1$ produces

$$
\begin{aligned}
& \gamma_{2 n}=\frac{2}{9}(2 n+1)(\mu+2), \quad n \geq 1 \\
& \gamma_{2 n+1}=\frac{2}{3}(2 n+1)(\mu+2), \quad n \geq 0
\end{aligned}
$$

whilst the weight functions become

$$
\begin{aligned}
& \mathcal{U}_{0}(x ; 1)=\frac{\sqrt{x}}{2 \sqrt{3} \pi^{3 / 2}} e^{-\frac{x^{3}}{18}} K_{\frac{1}{6}}\left(\frac{x^{3}}{18}\right) \\
& \mathcal{U}_{1}(x ; 1)=\frac{x^{2}}{4 \sqrt{3} \pi^{3 / 2}\left(x^{3}\right)^{5 / 6}} e^{-\frac{x^{3}}{18}}\left(\left(x^{3}+6\right) K_{\frac{1}{6}}\left(\frac{x^{3}}{18}\right)-x^{3} K_{\frac{7}{6}}\left(\frac{x^{3}}{18}\right)\right)
\end{aligned}
$$

where $K_{\nu}(z)$ represents the modified Bessel function of second kind.

With $\mu=2$, we have

$$
\begin{aligned}
& \gamma_{2 n}=\frac{4 n(2 n+1)(n+2)}{(3 n+1)(3 n+4)} \gamma_{1}, \quad n \geq 1 \\
& \gamma_{2 n+1}=\frac{4(n+1)(2 n+1)}{(3 n+4)} \gamma_{1}, \quad n \geq 0
\end{aligned}
$$

whilst the integral representation becomes

$$
\begin{aligned}
& \mathcal{U}_{0}(x ; 2)=\frac{\sqrt{3} \Gamma\left(\frac{4}{3}\right)}{2 \pi 3^{\frac{1}{3}} 4^{\frac{1}{3}}} \Gamma\left(\frac{1}{3}, \frac{1}{12} x^{3}\right) \\
& \mathcal{U}_{1}(x ; 2)=\frac{\sqrt[6]{3} \Gamma\left(\frac{4}{3}\right)}{\sqrt[3]{4} \pi}\left(\frac{1}{2} x^{2} \Gamma\left(\frac{1}{3}, \frac{1}{12} x^{3}\right)-\sqrt[3]{18} \mathrm{e}^{-\frac{x^{3}}{12}}\right)
\end{aligned}
$$

where $\Gamma(\alpha, z)$ represents the incomplete Gamma function:
$\Gamma(\alpha, z)=\int_{z}^{+\infty} t^{\alpha-1} \mathrm{e}^{-t} \mathrm{~d} t$ provided that $\alpha>0$.

3rd order differential equation:

$$
\begin{aligned}
& -\gamma_{1}(\mu+2) P_{n}^{\prime \prime \prime}(x)+2 x^{2} P_{n}^{\prime \prime}(x)+2 x\left(\mu+\frac{3}{4}\left((-1)^{n}+3\right)-\frac{n}{2}\right) P_{n}^{\prime}(x) \\
& =2 n\left(\mu+\frac{n}{2}+\frac{3(-1)^{n}}{4}+\frac{5}{4}\right) P_{n}(x)
\end{aligned}
$$

from which we deduce

$$
\left.\begin{array}{l}
P_{n}^{[0]}(x ; \mu)=\frac{(-1)^{n}(3 \mu+6)^{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{\left(\frac{n}{2}+\frac{(-1)^{n}}{4}+\frac{\mu}{3}+\frac{5}{12}\right)_{n}} F_{2}\binom{-n, \frac{2 \mu+3 n}{6}+\frac{(-1)^{n}}{4}+\frac{5}{12} ; \frac{x}{3(\mu+2)}}{\frac{1}{3}, \frac{2}{3}} \\
P_{n}^{[1]}(x ; \mu)=\frac{(-1)^{n}(3 \mu+6)^{n}\left(\frac{2}{3}\right)_{n}\left(\frac{4}{3}\right)_{n}}{\left(\frac{n}{2}+\frac{(-1)^{n+1}}{4}+\frac{\mu}{3}+\frac{11}{12}\right)_{n}} F_{2}\left(-n, \frac{2 \mu+3 n}{6}+\frac{(-1)^{n+1}}{4}+\frac{11}{12} ; \frac{x}{3(\mu+2)}\right) \\
P_{n}^{3}, \frac{4}{3}
\end{array}\right)
$$

In this case we have

$$
\begin{aligned}
& \gamma_{2 n}=\frac{n(2 n+1)(\rho+3)}{(3 n+\rho)} \gamma_{1}, \quad n \geq 1 \\
& \gamma_{2 n+1}=\frac{(n+1)(2 n+1)(n+\rho)(\rho+3)}{(3 n+\rho+3)(3 n+\rho)} \gamma_{1}, \quad n \geq 0
\end{aligned}
$$

With the choice of $\gamma_{1}=\frac{2}{3(\rho+3)}$, we obtain

In this case we have

$$
\begin{aligned}
& \gamma_{2 n}=\frac{n(2 n+1)(\rho+3)}{(3 n+\rho)} \gamma_{1}, \quad n \geq 1, \\
& \gamma_{2 n+1}=\frac{(n+1)(2 n+1)(n+\rho)(\rho+3)}{(3 n+\rho+3)(3 n+\rho)} \gamma_{1}, \quad n \geq 0 .
\end{aligned}
$$

With the choice of $\gamma_{1}=\frac{2}{3(\rho+3)}$, we obtain

$$
Q_{n}^{\text {case } \mathrm{B}_{2}}(x ; \mu)=P_{n}^{\text {case } \mathrm{B}_{1}}(x ; \mu+1), \quad \text { for all } \quad n \geq 0,
$$

while

$$
Q_{n}^{\text {case } \mathrm{B}_{1}}(x ; \mu)=P_{n}^{\text {case } \mathrm{B}_{2}}(x ; \mu+2), \quad \text { for all } \quad n \geq 0,
$$

which brings

$$
\frac{1}{(n+2)(n+1)} \frac{\mathrm{d}^{2}}{\mathrm{dx}} \mathrm{x}^{2} P_{n+2}(x ; \mu)=P_{n}(x ; \mu+3)
$$

We set

$$
\gamma_{1}=\frac{2}{(\mu+2)(\rho+3)}
$$

so that

$$
\begin{aligned}
& \gamma_{2 n}:=\gamma_{2 n}(\mu, \rho)=\frac{2 n(2 n+1)(n+\mu)}{(3 n+\mu-1)(3 n+\mu+2)(3 n+\rho)}, \quad n \geq 1 \\
& \gamma_{2 n+1}:=\gamma_{2 n}(\mu, \rho)=\frac{2(n+1)(2 n+1)(n+\rho)}{(3 n+\mu+2)(3 n+\rho)(3 n+\rho+3)}, \quad n \geq 0
\end{aligned}
$$

Besides, we have

$$
\begin{cases}\left(1-x^{3}\right) u_{0}^{\prime \prime}+x^{2}(\mu+\rho-4) u_{0}^{\prime}-(\mu-2)(\rho-1) x u_{0}=0, & \\ \frac{\mu}{(\mu+2)} u_{1}=\left(x^{3}-1\right) u_{0}^{\prime}-(\rho-1) x^{2} u_{0}, & \text { for } \mu>-1 \\ x u_{1}^{\prime}=2 u_{0}^{\prime}, & \text { for } \mu=0\end{cases}
$$

Some of these are related to polynomials introduced by Pincherle (1890) and later extended by Humbert (1920), which were also related to ${ }_{3} F_{2}$ functions by Baker (1920).

Case C: the weights

Here we have

$$
\left\langle u_{k}, f(x)\right\rangle=\frac{1}{3}\left(\int_{0}^{1} f(x) \mathcal{U}_{k}(x) \mathrm{d} x+\omega^{2 k-1} \int_{0}^{\omega} f(x) \mathcal{U}_{k}\left(\omega^{2} x\right) \mathrm{d} x+\omega^{1-2 k} \int_{0}^{\omega^{2}} f(x) \mathcal{U}_{k}(\omega x) \mathrm{d} x\right)
$$

with

$$
\mathcal{U}_{0}(x):=\mathcal{U}_{0}(x ; \mu, \rho)
$$

$$
=\frac{3 \Gamma\left(\frac{\mu+2}{3}\right) \Gamma\left(\frac{\rho}{3}+1\right)}{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right) \Gamma\left(\frac{\mu+\rho+2}{3}\right)}\left(1-x^{3}\right)^{\frac{\mu+\rho-1}{3}}{ }_{2} F_{1}\left(\begin{array}{l}
\frac{\mu}{3}, \frac{\rho+1}{3} \\
\frac{\mu+\rho+2}{3}
\end{array} 1-x^{3}\right),
$$

$$
\mathcal{U}_{1}(x):=\mathcal{U}_{1}(x ; \mu, \rho)
$$

$$
=\frac{3 \Gamma\left(\frac{\mu+5}{3}\right) \Gamma\left(\frac{\rho}{3}+1\right)}{\Gamma\left(\frac{2}{3}\right) \Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{\mu+\rho+2}{3}\right)} x^{2}\left(1-x^{3}\right)^{\frac{\mu+\rho-1}{3}}{ }_{2} F_{1}\left(\begin{array}{c}
\frac{\mu}{3}+1, \frac{\rho+1}{3} \\
\frac{\mu+\rho+2}{3}
\end{array} 1-x^{3}\right) .
$$

Humbert polynomials: when $\mu=\frac{3 \nu-1}{2}$ and $\rho=\frac{3 \nu}{2}$, this 2 -OPS satisfies

$$
\begin{aligned}
& P_{n+2}\left(x ; \frac{3 \nu-1}{2}, \frac{3 \nu}{2}\right) \\
& \quad=x P_{n+1}\left(x ; \frac{3 \nu-1}{2}, \frac{3 \nu}{2}\right)-\frac{4}{27} \frac{n(n+1)(3 \nu+n-1)}{(\nu+n-1)(\nu+n)(\nu+n+1)} P_{n-1}\left(x ; \frac{3 \nu-1}{2}, \frac{3 \nu}{2}\right)
\end{aligned}
$$

"Chebyshev"-type polynomials: when $\nu=1 \Rightarrow(\mu, \rho)=(1,3 / 2)$:

$$
P_{n+2}\left(x ; 1, \frac{3}{2}\right)=x P_{n+1}\left(x ; 1, \frac{3}{2}\right)-\frac{4}{27} P_{n-1}\left(x ; 1, \frac{3}{2}\right)
$$

and here

$$
\begin{aligned}
& \mathcal{U}_{0}(x)=\frac{9 \sqrt{3}}{4 \pi}\left(\left(1+\sqrt{1-x^{3}}\right)^{1 / 3}-\left(1-\sqrt{1-x^{3}}\right)^{1 / 3}\right) \\
& \mathcal{U}_{1}(x)=\frac{27 \sqrt{3}}{8 \pi}\left(\sqrt{1-x^{3}}\left[\left(1+\sqrt{1-x^{3}}\right)^{2 / 3}-\left(1-\sqrt{1-x^{3}}\right)^{2 / 3}\right]\right.
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
P_{3 n}(x ; \mu, \rho)= & \frac{(-1)^{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{\left(\frac{n}{2}+\frac{1}{4}(-1)^{3 n}+\frac{\mu}{3}+\frac{5}{12}\right)_{n}\left(\frac{n}{2}-\frac{1}{4}(-1)^{3 n}+\frac{\rho}{3}+\frac{1}{4}\right)_{n}} \\
& { }_{3} F_{2}\left(-n, \frac{n}{2}+\frac{1}{4}(-1)^{3 n}+\frac{\mu}{3}+\frac{5}{12}, \frac{n}{2}-\frac{1}{4}(-1)^{3 n}+\frac{\rho}{3}+\frac{1}{4}\right. \\
\frac{1}{3}, \frac{2}{3}
\end{array} x^{3}\right)\right)
$$

THANK YOU!

