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Definition
A monic Orthogonal Polynomial Sequence (OPS) {Pn}n>0 is defined by

〈u0,PnPk〉 = Nnδn,k , with Nn 6= 0.

where u0 is the first element of the corresponding dual sequence.

I Equivalently, {Pn}n>0 is an OPS for u0 iff

〈u0, x
mPn〉 =

{
0 if n > m,
Nn if n = m, for n ≥ 0.

I It always satisfies the second order recurrence relation

Pn+1(x) = (x − βn)Pn(x)− γnPn−1(x)

with P0 = 1 and P−1 = 0 and

βn =
〈u0, xP

2
n 〉

〈u0,P2
n 〉

and γn+1 =
〈u0,P

2
n+1〉

〈u0,P2
n 〉
6= 0, n ∈ N
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Multiple orthogonal polynomials - type II

Consider a sequence {P̃~n} with ~n = (n1, n2) and deg P̃~n(x) = n1 + n2 such that

〈u0, x
k P̃~n(x)〉 =

∫
∆1

xk P̃~n(x)W0(x)dx = 0 , k = 0, 1, . . . , n1 − 1

〈u1, x
k P̃~n(x)〉 =

∫
∆2

xk P̃~n(x)W1(x)dx = 0 , k = 0, 1, . . . , n2 − 1

Now, if we construct a sequence {P̃n}n≥0 such that

P2n(x) = P̃n,n(x)

P2n+1(x) = P̃n,n+1(x)

then {Pn}n≥0 is a 2-OPS.
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2-orthogonal polynomials

Definition
Consider a vector linear functional u = (u0, u1) defined on P in C . The
sequence of polynomials {Pn}n≥0, where degPn = n, is said to be 2-orthogonal
to u = (u0, u1) if

< u0, x
mPn >=

{
0 for n ≥ 2m + 1
N2m 6= 0 for n = 2m

(1)

< u1, x
mPn >=

{
0 for n ≥ 2m + 2
N2m+1 6= 0 for n = 2m + 1

(2)
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2-orthogonal polynomials

The monic 2-OPS {Pn}n≥0 for u = (u0, u1) satisfies a third order recurrence
relation (see Van Iseghem’88, Maroni’89)

Pn+1(x) = (x − βn)Pn(x)− αnPn−1(x)− γn−1Pn−2(x) (3)

with P0(x) = 1, P1(x) = x − β0 and P2(x) = (x − β1)P1(x)− α1.

Expressions for the recurrence coefficients follow immediately from the
definition. For instance,

γ2n+1 =
< u0, x

n+1P2n+2 >

< u0, xnP2n >
, γ2n+2 =

< u1, x
n+1P2n+3 >

< u1, xnP2n+1 >
, n ≥ 0.

Conversely, we also have

N2n :=< u0, x
n+1P2n+2 >=

n∏
k=0

γ2k+1

and

N2n+1 :=< u1, x
n+1P2n+3 >=

n∏
k=0

γ2k+2, for n ≥ 0.
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Example 1: 2-orthogonal polynomials for Bessel weights

Pn+1(x) = (x − βn)Pn(x)− αnPn−1(x)− γn−1Pn−2(x)

with

βn = 3n2 + (2α + 2β + 3)n + (1 + α)(1 + β)

αn = n(3n + α + β)(n + α)(n + β), n ≥ 1,

γn = n(n + 1)(n + α + 1)(n + α)(n + β + 1)(n + β), n ≥ 2,

They satisfy the 3rd order recurrence relation

x2P ′′′n + (3 + α + β)xP ′′n + ((α + 1)(β + 1)− x)P ′n = −nPn

and are 2-OPS for U = (u0, u1) satisfying

x2u′′0 − (α + β − 1)xu′0 − (x − αβ)u0 = 0 , (α + 1)(β + 1)u1 = −(xu0)′

Such vector functional U = (u0, u1) admits the following integral representation

< u0, f (x) > = 2
Γ(α+1)Γ(β+1)

∫ +∞

0

f (x)x (α+β)/2Kα−β(2
√
x)dx ,

< u1, f (x) > = 2
Γ(α+1)Γ(β+1)

∫ +∞

0

f (x)
(
x (α+β)/2Kα−β(2

√
x)
)′

dx ,

(See Ben Cheikh&Douak’00 and Van Assche&Yakubovich’00.)
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Example 2: 2-orthogonal polynomials with constant rec coef

The sequence of polynomials {Pn(x)}n≥0 satisfying the recurrence relation

Pn+1(x) = xPn(x)− 4

27
Pn−2(x)

is 2-orthogonal with respect to U = (u0, u1) such that{
(x3 − 1)u′′0 + 3

2
x2u′0 − 1

2
xu0 = 0

u1 = 3(x3 − 1)u′0 − 3
2
x2u0

Such vector functional admits an integral representation on the real line as
follows

< u0, f (x) > =

∫ 1

0

f (x)
9
√

3

4π

[
(1 +

√
1− x3)1/3 − (1−

√
1− x3)1/3

]
dx

+

∫ +∞

0

f (x)3e−x

[
λ1

√
x cos(

√
3x) + λ2x

2 sin(
√

3x)

]
dx ,

< u1, f (x) > =

∫
f (x)U1(x)dx ,

(See Douak&Maroni’97 for further details.)
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Example 3: multiple orthogonal polynomials with exponential weights

Consider the monic polynomials Pn,m of degree n + m for which∫
Γ0∪Γ1

x jPn,m(x) exp (−x3 + tx)dx = 0, j = 0, . . . , n − 1,∫
Γ0∪Γ2

x jPn,m(x) exp (−x3 + tx)dx = 0, j = 0, . . . ,m − 1,

with Γk = {z ∈ C : arg z = e2kπi/3}, k = 0, 1, 2.
(see Van Assche & Filipuk & Zhang (2015))

Γ1

Γ2

Γ0

Rodrigues’ formula:

e−x3+txPn,n+m(x) =
(−1)n

3n

dn

dxn

(
e−x3+txP0,m(x)

)
e−x3+txPn+m,n(x) =

(−1)n

3n

dn

dxn

(
e−x3+txPm,0(x)

)
where Pm,0 and P0,m are orthogonal polynomials...

and {Pk,k}k is 2-OPS.
( Case t = 0 already in Pólya and Szegő (1925).

Special case of Gould-Hopper polynomials (1962).)
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3-fold symmetric (not necessarily 2-orthogonal) polynomials

Definition
A monic polynomial sequence {Bn}n≥0 is 3-fold symmetric if and only if

Bn(e
2iπ

3 x) = e
2inπ

3 Bn(x)

and
Bn(e

4iπ
3 x) = e

4inπ
3 Bn(x), n ≥ 0.

In other words, this is to say that there exist three sequences {B [j]
n }n≥0 with

j ∈ {0, 1, 2} such that

B3n(x) = B
[0]
n (x3),

B3n+1(x) = xB
[1]
n (x3),

B3n+2(x) = x2B
[2]
n (x3),

(The sequences {B [j]
n }n≥0 are the components of the cubic decomposition of

the 3-fold symmetric sequence {Bn}n≥0.)

(see Barrucand&Dickinson’66)
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3-fold symmetric 2-orthogonal polynomials

Whilst we are dealing with 3-fold symmetric and 2-orthogonal sequences, we
recall the following result.

Theorem (Douak & Maroni’92)

Let {Pn}n≥0 be a 2-orthogonal polynomial sequence for U = (u0, u1). Then,
{Pn}n≥0 is 3-fold symmetric iff if satisfies the third order recurrence relation

Pn+1(x) = xPn(x)− γn−1Pn−2(x), n ≥ 2,

with P0(x) = 1, P1(x) = x and P2(x) = x2.

Moreover, we have
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3-fold symmetric 2-orthogonal polynomials

Lemma (Douak & Maroni’92)

If the a 3-fold symmetric sequence {Pn}n≥0 is 2-orthogonal, then the three
components in the cubic decomposition of {Pn}n≥0 are also 2-orthogonal
fulfilling the recurrence relations:

P
[k]
n+1(x) = (x − β[k]

n )P [k]
n (x)− α[k]

n P
[k]
n−1(x)− γ[k]

n−1P
[k]
n−2(x),

where

β
[k]
n = γ3n−1+k + γ3n+k + γ3n+1+k , n ≥ 0,

α
[k]
n = γ3n−2+kγ3n+k + γ3n−1+kγ3n−3+k + γ3n−2+kγ3n−1+k , n ≥ 1,

γ
[k]
n = γ3n−2+kγ3n+kγ3n+2+k 6= 0, n ≥ 2,

for each k = 0, 1, 2.
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3-fold symmetric 2-OPS

Theorem. (Aptekarev et al.’00)
If γn > 0 for n ≥ 1 in

Pn+1(x) = xPn(x)− γn−1Pn−2(x),

then {Pn}n≥0 is a 2-OPS w.r.t. the vector of linear functionals (u0, u1) and

< u0, f (x) >=

∫
S

f (x)dµ0(x) (4)

< u1, f (x) >=

∫
S

f (x)dµ1(x) (5)

where S represents the starlike set

S :=
2⋃

k=0

Γk with Γk = [0, e2πik/3∞),

and the measures have a common support which is a subset of S and are
invariant under rotations of 2π/3.
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3-fold symmetric 2-OPS

Theorem. (Ben Romdhane’08)
Let {Pn}n≥0 be a 2-OPS satisfying

Pn+1(x) = xPn(x)− γn−1Pn−2(x).

If γn > 0, then the following statements hold

(a) If x is a zero of P3n+j , then ωkx are also zeros of P3n+j with ω = e2πi/3

(b) 0 is a zero of P3n+j of multiplicity j when j = 1, 2

(c) P3n+j has n distinct positive real zeros

0 < x
(j)
n,1 < . . . < x (j)

n,n

(d) Between two real zeros of P3n+j+3 there exist only one zero of P3n+j+2 and
only one zero of P3n+j+1, ie,

x
(j+2)
n,k < x

(j)
n,k+1 < x

(j+1)
n,k+1 < x

(j+2)
n,k+1
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3-fold symmetric 2-OPS

Theorem. (AL & Van Assche’18)
Let {Pn}n≥0 be a 2-OPS satisfying

Pn+1(x) = xPn(x)− γn−1Pn−2(x).

If γn > 0 and, additionally,

γ2n = c0n
α + o(nα) and γ2n+1 = c1n

α + o(nα)

for large n, with c0, c1 > 0 and α ≥ 0, then the largest zero in absolute value
|xn,n| behaves as

|xn,n| ≤
3

22/3
c1/3nα/3 + o(nα/3), n ≥ 1, (6)

where c = max{c0, c1}.
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3-fold symmetric 2-OPS

Proof. Consider the Hessenberg matrix

Hn =



0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
γ1 0 0 1 · · · 0 0 0
0 γ2 0 0 · · · 0 0 0

. . .

. . .

. . .

0 0 0 0 · · · γn−2 0 0


Hence,

Hn


P0(x)
P1(x)

...
Pn−1(x)

 = x


P0(x)
P1(x)

...
Pn−1(x)

− Pn(x)


0
0
...
1


and each zero of Pn(x) is an eigenvalue of the matrix Hn.
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3-fold symmetric 2-OPS (Proof - upper bounds for the zeros)

The spectral radius of the matrix Hn,

ρ(Hn) = max{|λ| : λ is an eigenvalue of Hn},

is bounded from above by ||Hn|| where || · || denotes a matrix norm. In
particular

||Hn||S = ||S−1HnS ||∞ = max
1≤i≤n

{
n∑

j=1

∣∣∣(S−1HnS)i,j
∣∣∣} ,

where S = diag(d1, . . . , dk , . . . , dn) is non-singular matrix and (S−1HnS)i,j if
the ith row and jth column entry of the product matrix S−1HnS we obtain

||Hn||S = max

{
d2

d1
,
d3

d2
,
d4 + d1γ1

d3
, . . . ,

dk + dk−3γk−3

dk−1
, . . . ,

dn−2γn−2

dn

}
.

Setting dk = dk(k!)α/3 6= 0, for some d > 0, brings

||Hn||S ≤ 2α/3
(
d +

c

d2

)
nα/3 + o(nα/3) as n→ +∞.

The choice of d = (2c)1/3 provides a minimum to
(
d + c

d2

)
and this gives

||Hn||S ≤
3

41/3
(c nα)1/3 + o(nα/3) as n→ +∞.

�
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Hahn ’Classical’ 2-orthogonal polynomials

Definition
A monic 2-OPS {Pn}n≥0 is ”classical” in Hahn’s sense when the sequence of
its derivatives {Qn}n≥0, with

Qn(x) =
1

n + 1
P ′n+1(x)

is also a 2-OPS.

Hence, as a monic 2-OPS, the sequence {Qn}n≥0 satisfies a third order
recurrence relation:

Qn+1(x) = (x − β̃n)Qn(x)− α̃nQn−1(x)− γ̃n−1Qn−2(x), n ≥ 2, (7)

with Q0 = 1, Q1(x) = x − β̃0 and Q2(x) = (x − β̃1)Q1(x)− α̃1.
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”Classical” 2-orthogonal polynomials

Between the two recurrence relations

Pn+1(x) = (x − βn)Pn(x)− αnPn−1(x)− γn−1Pn−2(x)

Qn+1(x) = (x − β̃n)Qn(x)− α̃nQn−1(x)− γ̃n−1Qn−2(x), n ≥ 2,

it follows a nonlinear system of equations

(n + 2)β̃n − nβ̃n−1 = (n + 1)βn+1 − (n − 1)βn
(n + 3)α̃n+1 − (n + 1)α̃n = (n + 2)αn+2 − (n − 1)αn+2 + (n + 1)(βn+1 − β̃n)2

(n + 4)γ̃n+1 − (n + 2)γ̃n = (n + 1)γn+2 − (n − 1)γn+1

+(n + 1)αn+2(βn+2 + βn+1 − 2β̃n)− (n + 2)α̃n+1(2βn+2 − β̃n+1 − β̃n)
nαn+1αn+2 + (n + 2)α̃nα̃n+1 − 2(n + 1)α̃nαn+2

= (n + 2)γ̃n(2βn+2 − β̃n+1 − β̃n−1)− nγn+1(βn+2 + βn − 2β̃n−1)

n(αn+1γn+2 + αn+3γn+1) = γ̃n

(
2(n + 2)αn+3 − (n + 3)α̃n+2

)
+α̃n

(
2(n + 1)γn+2 − (n + 3)γ̃n+1

)
nγn+1γn+3 = γ̃n

(
2(n + 2)γn+3 − (n + 4)γ̃n+2

)
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”Classical” 2-orthogonal polynomials

On the other hand, the 2-orthogonality of {Pn}n≥0 for U = (u0, u1)
and the 2-orthogonality of {Qn}n≥0 for V = (v0, v1) implies[

v0

v1

]
= Φ

[
u0

u1

]
(8)

and also that [
v ′0
v ′1

]
= −Ψ

[
u0

u1

]
. (9)

with

Φ =

[
φ0,0 φ0,1

φ1,0 φ1,1

]
and Ψ =

[
0 1
ψ(x) ζ

]

where ψ(x) = 2
γ1
P1(x) and ζ = − 2α1

γ1
,

whilst deg{φ0,0, φ0,1, φ1,1} ≤ 1 and deg φ1,0 ≤ 2.
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”Classical” 2-orthogonal polynomials

Theorem. (Maroni& Douak’92, Maroni’99)

The monic 2-OPS {Pn}n≥0 for U = (u0, u1) is ”classical” iff there are
polynomials ψ and φi,j , with i , j ∈ {0, 1}, and a constant ζ such that([

φ0,0 φ0,1

φ1,0 φ1,1

] [
u0

u1

])′
+

[
0 1
ψ(x) ζ

] [
u0

u1

]
=

[
0
0

]
(10)

where deg{φ0,0, φ0,1, φ1,1} ≤ 1, deg φ1,0 ≤ 2 and degψ = 1.

Relation (11a) reads as follows(
Φ

[
u0

u1

])′
+ Ψ

[
u0

u1

]
=

[
0
0

]
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The sequence of derivatives of a three-fold symmetric polynomial sequence

If {Pn}n>0 is three-fold symmetric, then so is {Qn}n>0 where

Qn(x) :=
1

n + 1
P ′n+1(x), n > 0.

This means that for a three-fold symmetric Hahn-classical polynomial sequence
{Pn}n>0 then {Qn}n>0 is three-fold and satisfies

Qn+1(x) = xQn(x)− γ̃n−1Qn−2, for n > 2,

with initial conditions Qk(x) = xk for k = 0, 1, 2.

in this case we have
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Three-fold symmetric ”classical” 2-orthogonal polynomials

Theorem. (AL&Van Assche’18) Let {Pn(x)}n≥0 be a three-fold symmetric
2-OPS for (u0, u1). The following are equivalent:

(a) {Pn(x)}n≥0 is a three-fold symmetric ”classical” 2-orthogonal polynomial
sequence.

(b) The vector functional (u0, u1) satisfies the matrix differential equation(
Φ

[
u0

u1

])′
+ Ψ

[
u0

u1

]
=

[
0
0

]
(11a)

where

Φ =

 ϑ1 (1− ϑ1)x

2

γ1
(1− ϑ2) x2 2ϑ2 − 1

 and Ψ =

[
0 1

2
γ1
x 0

]
(11b)

for some constants ϑ1 = 3γ̃1
γ2

and ϑ2 = 2γ̃2
γ3

such that ϑ1, ϑ2 6= n−1
n

.

(c) There exists a sequence of numbers {γ̃n+1}n≥0 such that

Pn+3(x) = Qn+3(x) +
(

(n + 1)γn+2 − (n + 3)γ̃n+1

)
Qn(x) (12)

with initial conditions Pk(x) = Qk(x) = xk for k = 0, 1, 2.
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Three-fold symmetric ”classical” 2-orthogonal polynomials

Proof. (a) ⇒ (c): consequence of the rec. rel. of {Pn}n≥0 and {Qn}n≥0.

(c) ⇒ (b): If {un}n≥0 and {vn}n≥0 are the dual sequences of {Pn}n≥0 and
{Qn}n≥0, resp., then

v ′n = −(n + 1)un+1 (13)

vn = un +
(

(n + 1)γn+2 − (n + 3)γ̃n+1

)
un+3. (14)

The 2-orthogonality of {Pn}n≥0 implies

u2 =
x

γ1
u0, u3 = − 1

γ2
u0 +

x

γ2
u1, u4 =

x2

γ1γ3
u0 −

1

γ3
u1

If we take n = 0 and n = 1 in (13) we obtain[
v ′0
v ′1

]
=

[
0 1

2
γ1
x 0

] [
u0

u1

]
With n = 0 and n = 1 in (14) leads to

[
v0

v1

]
=

 ϑ1 (1− ϑ1)x

2
γ1

(1− ϑ2) x2 2ϑ2 − 1

[ u0

u1

]
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Three-fold symmetric ”classical” 2-orthogonal polynomials

Proof. (cont.)
The proof of (b) ⇒ (a) is essentially about showing that {Qn}n≥0 is
2-orthogonal with respect to[

v0

v1

]
=

 ϑ1 (1− ϑ1)x

2
γ1

(1− ϑ2) x2 2ϑ2 − 1

[ u0

u1

]
�

The Pearson equation(
Φ

[
u0

u1

])′
+ Ψ

[
u0

u1

]
=

[
0
0

]
gives

γ̃n =
n

n + 2
ϑnγn+1

with

ϑ2n+1 =

(
1− (n + 1)(1− ϑ1)

1− n(1− ϑ1)

)
and ϑ2n+2 =

(
1− (n + 1)(1− ϑ2)

1− n(1− ϑ2)

)
.

(15)
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Three-fold symmetric ”classical” 2-orthogonal polynomials

If we replace each P in
xPn = Pn+1 + γn−1Pn−2

by the corresponding expression given in

Pn+3(x) = Qn+3(x) +
(

(n + 1)γn+2 − (n + 3)γ̃n+1

)
Qn(x)

to then use the recurrence relation

xQn = Qn+1 + γ̃n−1Qn−2 where γ̃n−1 =
n − 1

n + 1
ϑn−1γn

we obtain

ϑn+2 +
1

ϑn
= 2, n > 1,

and

γn+2 =
n + 3

n + 1

(
n(ϑn − 1) + 1

)
(

(n + 4)(ϑn+1 − 1) + 1
)γn+1 6= 0
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3-fold symmetric 2-orthogonal ”classical” polynomials (3rd order diff. eq.)

Lemma (Douak&Maroni’97)

If a 2-symmetric 2-OPS {Pn}n≥0 is ”classical”, then each polynomial is a
solution of the third order differential equation

(anx
3 − bn)P ′′′n+1 + cnx

2P ′′n+1 + dnxP
′
n+1 = enPn+1

where

an = (ϑn − 1)(ϑn+1 − 1)

bn =
γn+3((n+3)ϑn+2−(n+2))((n+4)ϑn+1−(n+3))((n+5)ϑn+2−(n+4))

(n+3)(n+4)

cn = ϑnϑn+1 − 1− (n − 3)(ϑn − 1)(ϑn+1 − 1)

dn = nϑn+1 − (n − 1)ϑn(2ϑn+1 − 1)

en = nϑn+1, for any n ≥ 1,

with a0 = b0 = c0 = d0 = e0 = 0.

Here

ϑ2n+1 =

(
1 − (n + 1)(1 − ϑ1)

1 − n(1 − ϑ1)

)
and ϑ2n+2 =

(
1 − (n + 1)(1 − ϑ2)

1 − n(1 − ϑ2)

)
.
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Three-fold symmetric ”classical” 2-orthogonal polynomials

Proposition. (AL & Van Assche’18) The 2-OPS {Pn(x)}n≥0 with respect to
the vector linear functional U = (u0, u1) satisfy the Hahn’s property if and only
if there are coefficients ϑ1, ϑ2 6= n−1

n
, such that U = (u0, u1) satisfies(

φ(x)u0

)′′
+

(
2

γ1
(ϑ2 + ϑ1 − 2)x2u0

)′
+

2

γ1
(ϑ1 − 2) xu0 = 0 (16)

and(ϑ1 − 2) (2ϑ2 − 1) u1 = φ(x)u′0 − 2
γ1

(ϑ1 − 1) (2ϑ2 − 3) x2u0, if ϑ1 6= 2,

x u′1 = 2u′0, if ϑ1 = 2,

where

φ(x) =

(
ϑ1 (2ϑ2 − 1)− 2

γ1
(ϑ1 − 1) (ϑ2 − 1) x3

)
. (17)

and from this we have
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Three-fold symmetric ”classical” 2-orthogonal polynomials

Theorem. (AL & Van Assche’18) For a ”classical” threefold symmetric
{Pn}n≥0 2-orthogonal with respect to (u0, u1) and satisfying the rec. rel. with
γn+1 > 0:

〈uk , f (x)〉

=
1

3

(∫ b

0

f (x)Uk(x)dx + ω2k−1

∫ bω

0

f (x)Uk(ω2x)dx + ω1−2k

∫ bω2

0

f (x)Uk(ωx)dx

)
,

with ω = e2πi/3 and b = lim
n→∞

(
27
4
γn
)
, provided that U0(x) and U1(x)



(
φ(x)U0(x)

)′′
+
(

2(ϑ2+ϑ1−2)
γ1

x2U0(x)
)′

+ 2(ϑ1−2)
γ1

xU0(x) = λ0g0(x)

(ϑ1 − 2) (2ϑ2 − 1)U1(x) = φ(x)U ′0(x)− 2(ϑ1−1)(2ϑ2−3)
γ1

x2U0(x) + λ1g1(x)

xU ′1(x) = 2U ′0(x) if ϑ1 = 2

with φ(x) =
(
ϑ1 (2ϑ2 − 1)− 2(ϑ1−1)(ϑ2−1)

γ1
x3
)
, satisfying

lim
x→b

f (x)
dk

dxk
U0(x) = 0, and

∫ b

0

U0(x)dx = 1

λk ∈ C and
∫

Γ
xngk(x)dx = 0 .
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Three-fold symmetric ”classical” 2-orthogonal polynomials

Theorem. (AL & Van Assche’18) For a ”classical” threefold symmetric
{Pn}n≥0 2-orthogonal with respect to (u0, u1) and satisfying the rec. rel. with
γn+1 > 0:

〈uk , f (x)〉

=
1

3

(∫ b

0

f (x)Uk(x)dx + ω2k−1

∫ bω

0

f (x)Uk(ω2x)dx + ω1−2k

∫ bω2

0

f (x)Uk(ωx)dx

)
,

with ω = e2πi/3 and b = lim
n→∞

(
27
4
γn
)
, provided that U0(x) and U1(x)



(
φ(x)U0(x)

)′′
+
(

2(ϑ2+ϑ1−2)
γ1

x2U0(x)
)′

+ 2(ϑ1−2)
γ1

xU0(x) = λ0g0(x)

(ϑ1 − 2) (2ϑ2 − 1)U1(x) = φ(x)U ′0(x)− 2(ϑ1−1)(2ϑ2−3)
γ1

x2U0(x) + λ1g1(x)

xU ′1(x) = 2U ′0(x) if ϑ1 = 2

with φ(x) =
(
ϑ1 (2ϑ2 − 1)− 2(ϑ1−1)(ϑ2−1)

γ1
x3
)
, satisfying

lim
x→b

f (x)
dk

dxk
U0(x) = 0, and

∫ b

0

U0(x)dx = 1

λk ∈ C and
∫

Γ
xngk(x)dx = 0 .
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3-fold symmetric 2-orthogonal ”classical” polynomials

There are four cases to single out:

Case A: ϑ1 = ϑ2 = 1. This implies that ϑn = 1 for all n ≥ 0.

Case B1: ϑ1 6= 1 but ϑ2 = 1 so that by setting ϑ1 = µ+2
µ+1

it follows

ϑ2n−1 =
n + µ+ 1

n + µ
and ϑ2n = 1 , n ≥ 1.

Case B2: ϑ1 = 1 but ϑ2 6= 1 so that by setting ϑ2 = ρ+2
ρ+1

it follows

ϑ2n−1 = 1 and ϑ2n =
n + ρ+ 1

n + ρ
, n ≥ 1.

Case C: ϑ1 6= 1 and ϑ2 6= 1 and hence by setting ϑ1 = µ+2
µ+1

and ϑ2 = ρ+2
ρ+1

it follows

ϑ2n−1 =
n + µ+ 1

n + µ
and ϑ2n =

n + ρ+ 1

n + ρ
, n ≥ 1.
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Case A: Appell polynomials

In this case we have Qn(x) := 1
n+1

P ′n+1(x) = Pn(x). Additionally

γn+1 = (n + 1)(n + 2)
γ1

2
, and


u′′0 −

2

γ1
x u0 = 0

u1 = −u′0

With the choice γ1 = 2, it follows that

γn+1 = (n + 1)(n + 2), and


u′′0 − x u0 = 0

u1 = −u′0

and
−P ′′′n+1(x) + xP ′n+1(x) = nPn+1(x), n ≥ 0.

Remark. The polynomials appear in the Vorob’ev-Yablonski polynomials
associated with rational solutions of Painlevé II equations (Clarkson &
Mansfield’03)
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Case A: Appell polynomials

Integral representation (AL&Van Assche)

< u0, f > =

∫
Γ

f (x)W0(x)dx , for all f ∈ P,

< u1, f > =

∫
Γ

f (x)W1(x)dx , for all f ∈ P,

where W0 : Γ = Γ0 ∪ Γ1 ∪ Γ2 −→ R defined by

W0(x) = Ai(x)IΓ0 − e−2πi/3Ai(e−2πi/3x)IΓ1 − e2πi/3Ai(e2πi/3x)IΓ2

with Γk =
{
w : arg(w) = 2kπ

3

}
,with k = 0, 1, 2,

where the orientations of Γk are all taken from left to right

Γ1

Γ2

Γ0
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Plot of the zeros of P30,P31 and P32

Remarks.
- All the zeros of Pn(x) are located on Γ0 ∪ Γ1 ∪ Γ2

- In each Γk , between two zeros of Pn+2 there is one zero of Pn and Pn+1.
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Case B1

• Here we have

γ2n =
n(2n + 1)(n + µ)(µ+ 2)

(3n + µ− 1)(3n + µ+ 2)
γ1=

2γ1(µ+ 2)

9
n + o(n), n ≥ 1,

γ2n+1 =
(n + 1)(2n + 1)(µ+ 2)

(3n + µ+ 2)
γ1=

2γ1(µ+ 2)

3
n + o(n), n ≥ 0,

• For µ > 0, then γn > 0 for all n ≥ 1.
• The largest real zero x

(j)
n,n of P3n+j is bounded from above by

Fig. largest zero of the first 300 polynomials
(γ1, µ) = (2, 3)

x
(j)
n,n

6 32/3

21/3 (γ1(µ+ 2))1/3n1/3 +o(n1/3)
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Case B1: the zeros of Pn

Figure: Zeros of P34(x ;µ) (circle), P35(x ;µ) (star) and P36(x ;µ) (square) with µ = 3,
where Pn(x ;µ) is the 2-OPS studied in case B1.
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With the choice of γ1 = 2, when µ > 0
1
3
u′′0 + x2u′0 − (µ− 2)xu0 = 0

u1 = − (µ+2)
µ

(
u′0 + 3x2u0

)
.

and for µ = 0: 
u′0 + 3x2u0 = 0

xu′1 = 2u′0
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Case B1

Theorem (AL & Van Assche)

The linear 3-fold symmetric 2-orthogonal vector functional (u0, u1) admit the
following integral representation:

〈uk , f (x)〉 =
1

3

(∫ ∞
0

f (x)Uk(x)dx + ω2k−1

∫ ∞ω
0

f (x)Uk(ω2x)dx + ω1−2k

∫ ∞ω2

0

f (x)Uk(ωx)dx

)
,

with k = 0, 1 and

U0(x) := U0(x ;µ) =
3Γ(µ+2

3
)

Γ( 1
3
)Γ( 2

3
)
e−x3

U(µ
3
, 2

3
; x3),

U1(x) := U1(x ;µ) =
9Γ
(
µ+5

3

)
Γ
(

1
3

)
Γ
(

2
3

)x2 e−x3

U
(
µ
3

+ 1, 5
3
, x3
)
, for µ 6= 0

U1(x ; 0) = 3
√

3Γ
(

2
3

)
Γ
(

2
3
, x3
)

Here

U(a, b; x) =
1

Γ(a)

∫ ∞
0

ta−1(t + 1)−a+b−1e−txdt and U(0, b; x) = 1
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case B1: proof of the integral representation

Proof (idea). We seek an integral representation for u0, that is, we seek a
weight function U0(x) and a path C so that

< u0, f (x) >=

∫
C
f (x)U0(x)dx ,

is valid for any polynomial f . In particular, we must have

< u0, x
n >=

∫
C
xnU0(x)dx , n ≥ 0.

The functional equation (µ+ 2)u′′0 + x2u′0 − (µ− 2)xu0 = 0 implies that U0

must be a solution of the differential equation

(µ+ 2)U ′′0 + x2U ′0 − (µ− 2)xU0 = λg(x)

where λ is a complex constant and g(x) is a function such that∫
C
xng(x)(x)dx = 0, n ≥ 0.

With λ = 0, it follows that

U0(x) = c1 1F1

(
2− µ

3
,

2

3
; t

)
+ c2t

1/3
1F1

(
1− µ

3
,

4

3
; t

)
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case B1: proof of the integral representation (cont.)

The choice of the constants c1 and c2 as well as the path of integration is
dictated by the conditions

< u0, x
n >=

∫
C
xnU0(x)dx , n ≥ 0,

and

[
(µ+ 2) (f ′(x)− f (x))U ′0(x)− x2f (x)U0(x)

]∣∣∣∣∣
C

= 0, for any f ∈ P.

From DLMF (relations (13.2.39) and (13.2.41)) we deduce

e−zU(a, b, z) =
Γ(1− b)

Γ(a− b + 1)
1F1 (b − a, b;−z)+

Γ(b − 1)

Γ(a)
z1−b

1F1 (1− a, 2− b;−z)

which are valid when b is not an integer.

Thus, with c1 =
Γ(

1
3

)

Γ(
1+µ

3
)
K and c2 =

−µ Γ(
2
3

)

Γ(
µ
3

+1)
K and C = Γ, the result follows.

�
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Case B1 with µ = 1

The particular choice of µ = 1 produces

γ2n =
2

9
(2n + 1)(µ+ 2), n ≥ 1,

γ2n+1 =
2

3
(2n + 1)(µ+ 2), n ≥ 0,

whilst the weight functions become

U0(x ; 1) =

√
x

2
√

3π3/2
e−

x3

18 K 1
6

(
x3

18

)
U1(x ; 1) =

x2

4
√

3π3/2 (x3)5/6
e−

x3

18

((
x3 + 6

)
K 1

6

(
x3

18

)
− x3K 7

6

(
x3

18

))
where Kν(z) represents the modified Bessel function of second kind.
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Case B1 with µ = 2

With µ = 2, we have

γ2n =
4n(2n + 1)(n + 2)

(3n + 1)(3n + 4)
γ1, n ≥ 1,

γ2n+1 =
4(n + 1)(2n + 1)

(3n + 4)
γ1, n ≥ 0,

whilst the integral representation becomes

U0(x ; 2) =

√
3 Γ( 4

3
)

2 π 3
1
3 4

1
3

Γ
(

1
3
, 1

12
x3
)

U1(x ; 2) =
6
√

3Γ
(

4
3

)
3
√

4π

(
1

2
x2 Γ

(
1
3
, 1

12
x3
)
− 3
√

18 e−
x3

12

)
where Γ(α, z) represents the incomplete Gamma function:

Γ(α, z) =

∫ +∞

z

tα−1e−tdt provided that α > 0.

A. Loureiro @ University of Kent



case B1 - differential equation

3rd order differential equation:

−γ1(µ+ 2)P ′′′n (x) + 2x2P ′′n (x) + 2x

(
µ+

3

4
((−1)n + 3)− n

2

)
P ′n(x)

= 2n

(
µ+

n

2
+

3(−1)n

4
+

5

4

)
Pn(x)

from which we deduce

P [0]
n (x ;µ) =

(−1)n(3µ+ 6)n
(

1
3

)
n

(
2
3

)
n(

n
2

+ (−1)n

4
+ µ

3
+ 5

12

)
n

2F2

(
−n, 2µ+3n

6
+ (−1)n

4
+ 5

12
1
3
, 2

3

;
x

3(µ+ 2)

)

P [1]
n (x ;µ) =

(−1)n(3µ+ 6)n
(

2
3

)
n

(
4
3

)
n(

n
2

+ (−1)n+1

4
+ µ

3
+ 11

12

)
n

2F2

(
−n, 2µ+3n

6
+ (−1)n+1

4
+ 11

12
2
3
, 4

3

;
x

3(µ+ 2)

)

P [2]
n (x ;µ) =

(−1)n(3µ+ 6)n
(

4
3

)
n

(
5
3

)
n(

n
2

+ (−1)n

4
+ µ

3
+ 17

12

)
n

2F2

(
−n, 2µ+3n

6
+ (−1)n

4
+ 17

12
4
3
, 5

3

;
x

3(µ+ 2)

)
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Case B2

In this case we have

γ2n =
n(2n + 1)(ρ+ 3)

(3n + ρ)
γ1, n ≥ 1,

γ2n+1 =
(n + 1)(2n + 1)(n + ρ)(ρ+ 3)

(3n + ρ+ 3)(3n + ρ)
γ1, n ≥ 0.

With the choice of γ1 = 2
3(ρ+3)

, we obtain

Qcase B2
n (x ;µ) = Pcase B1

n (x ;µ+ 1), for all n ≥ 0,

while
Qcase B1

n (x ;µ) = Pcase B2
n (x ;µ+ 2), for all n ≥ 0,

which brings

1

(n + 2)(n + 1)

d2

dx2
Pn+2(x ;µ) = Pn(x ;µ+ 3)
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Case B2

In this case we have

γ2n =
n(2n + 1)(ρ+ 3)

(3n + ρ)
γ1, n ≥ 1,

γ2n+1 =
(n + 1)(2n + 1)(n + ρ)(ρ+ 3)

(3n + ρ+ 3)(3n + ρ)
γ1, n ≥ 0.

With the choice of γ1 = 2
3(ρ+3)

, we obtain

Qcase B2
n (x ;µ) = Pcase B1

n (x ;µ+ 1), for all n ≥ 0,

while
Qcase B1

n (x ;µ) = Pcase B2
n (x ;µ+ 2), for all n ≥ 0,

which brings

1

(n + 2)(n + 1)

d2

dx2
Pn+2(x ;µ) = Pn(x ;µ+ 3)
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Case C

We set

γ1 =
2

(µ+ 2)(ρ+ 3)

so that

γ2n := γ2n(µ, ρ) =
2n(2n + 1)(n + µ)

(3n + µ− 1)(3n + µ+ 2)(3n + ρ)
, n ≥ 1,

γ2n+1 := γ2n(µ, ρ) =
2(n + 1)(2n + 1)(n + ρ)

(3n + µ+ 2)(3n + ρ)(3n + ρ+ 3)
, n ≥ 0.

Besides, we have

(
1− x3

)
u′′0 + x2(µ+ ρ− 4)u′0 − (µ− 2)(ρ− 1)xu0 = 0,

µ
(µ+2)

u1 =
(
x3 − 1

)
u′0 − (ρ− 1)x2 u0, for µ > −1,

xu′1 = 2u′0, for µ = 0.

Some of these are related to polynomials introduced by Pincherle (1890) and
later extended by Humbert (1920), which were also related to 3F2 functions by
Baker (1920).
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Case C: the weights

Here we have

〈uk , f (x)〉 =
1

3

(∫ 1

0

f (x)Uk(x)dx + ω2k−1

∫ ω

0

f (x)Uk(ω2x)dx + ω1−2k

∫ ω2

0

f (x)Uk(ωx)dx

)
with

U0(x) := U0(x ;µ, ρ)

=
3Γ
(
µ+2

3

)
Γ
(
ρ
3

+ 1
)

Γ
(

1
3

)
Γ
(

2
3

)
Γ
(
µ+ρ+2

3

) (1− x3)
µ+ρ−1

3 2F1

(
µ
3
, ρ+1

3
µ+ρ+2

3

; 1− x3

)
,

U1(x) := U1(x ;µ, ρ)

=
3Γ
(
µ+5

3

)
Γ
(
ρ
3

+ 1
)

Γ
(

2
3

)
Γ
(

4
3

)
Γ
(
µ+ρ+2

3

)x2(1− x3)
µ+ρ−1

3 2F1

(
µ
3

+ 1, ρ+1
3

µ+ρ+2
3

; 1− x3

)
.

A. Loureiro @ University of Kent



Case C: known particular cases

Humbert polynomials: when µ = 3ν−1
2

and ρ = 3ν
2

, this 2-OPS satisfies

Pn+2(x ; 3ν−1
2
, 3ν

2
)

= xPn+1(x ; 3ν−1
2
, 3ν

2
)− 4

27

n(n + 1)(3ν + n − 1)

(ν + n − 1)(ν + n)(ν + n + 1)
Pn−1(x ; 3ν−1

2
, 3ν

2
)

”Chebyshev”-type polynomials: when ν = 1 ⇒ (µ, ρ) = (1, 3/2):

Pn+2(x ; 1, 3
2
) = xPn+1(x ; 1, 3

2
)− 4

27
Pn−1(x ; 1, 3

2
)

and here

U0(x) =
9
√

3

4π

((
1 +

√
1− x3

)1/3

−
(

1−
√

1− x3
)1/3

)

U1(x) =
27
√

3

8π

(√
1− x3

[(
1 +

√
1− x3

)2/3

−
(

1−
√

1− x3
)2/3

]
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Case C: explicit expressions

P3n(x ;µ, ρ) =
(−1)n

(
1
3

)
n

(
2
3

)
n(

n
2

+ 1
4
(−1)3n + µ

3
+ 5

12

)
n

(
n
2
− 1

4
(−1)3n + ρ

3
+ 1

4

)
n

3F2

(
−n, n

2
+ 1

4
(−1)3n + µ

3
+ 5

12
, n

2
− 1

4
(−1)3n + ρ

3
+ 1

4
1
3
, 2

3

; x3

)

P3n+1(x ;µ, ρ) = x
(−1)n

(
2
3

)
n

(
4
3

)
n(

n
2
− 1

4
(−1)3n + µ

3
+ 11

12

)
n

(
n
2

+ 1
4
(−1)3n + ρ

3
+ 3

4

)
n

3F2

(
−n, n

2
− 1

4
(−1)3n + µ

3
+ 11

12
, n

2
+ 1

4
(−1)3n + ρ

3
+ 3

4
2
3
, 4

3

; x3

)

P3n+2(x ;µ, ρ) = x2 (−1)n
(

4
3

)
n

(
5
3

)
n(

n
2

+ 1
4
(−1)3n + µ

3
+ 17

12

)
n

(
n
2
− 1

4
(−1)3n + ρ

3
+ 5

4

)
n

3F2

(
−n, n

2
+ 1

4
(−1)3n + µ

3
+ 17

12
, n

2
− 1

4
(−1)3n + ρ

3
+ 5

4
4
3
, 5

3

; x3

)
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Case C: zeros of Pn(x ; 3, 2)
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THANK YOU!
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