Two-periodic Aztec diamond and matrix valued orthogonal polynomials

Arno Kuijlaars (KU Leuven, Belgium) with Maurice Duits (arXiv 1712:05636) and

Christophe Charlier, Maurice Duits, Jonatan Lenells (in preparation)

Approximation and Matrix Functions Université de Lille, France, 31 May 2018

Outline

1. Matrix Valued Orthogonal Polynomials
2. Aztec diamond
3. Hexagon tilings
4. The two periodic model
5. Non-intersecting paths
6. Determinantal point processes
7. New result for periodic T_{m}
8. Matrix Valued Orthogonal Polynomials (again)
9. Results for the Aztec diamond
10. Results for the hexagon

1. Matrix Valued Orthogonal Polynomials

Matrix valued polynomial of degree j

$$
P_{j}(z)=\sum_{i=0}^{j} C_{i} z^{j}, \quad C_{i} \text { is } d \times d \text { matrix }
$$

- Matrix valued orthogonality

$$
\int_{\gamma} P_{j}(x) W(x) P_{k}^{t}(x) d x=H_{j} \delta_{j, k}
$$

where $W(x)$ is given matrix valued weight on γ.
Mathematical properties:

- Three term recurrence with matrix coefficients
- Christoffel Darboux formula
- Riemann-Hilbert problem

Connections

MVOP appear in representation theory and spectral theory

We found MVOP in periodic tiling problems

- Varying weight W^{N} on closed contour γ around 0

$$
\frac{1}{2 \pi i} \int_{\gamma} P_{j}(z) W^{N}(z) P_{k}^{t}(z) d z=H_{j} \delta_{j, k}
$$

- Example: $W(z)=\frac{1}{z^{2}}\left(\begin{array}{cc}1+z & 1+\alpha \\ (1+\alpha) z & 1+\alpha^{2} z\end{array}\right)^{2}$
- W^{N} is matrix analogue of a Jacobi weight $(z-1)^{-N}(z+1)^{N}$ with nonstandard parameters.
- Main interest in behavior of the reproducing kernel in the limit $N \rightarrow \infty$.

2. Aztec diamond

Aztec diamond

North

West

South

Tiling of an Aztec diamond

- Tiling with 2×1 and 1×2 rectangles (dominos)
- Four types of dominos

Large random tiling

Deterministic pattern near corners
Solid region or
Frozen region

Disorder in the middle Liquid region

Boundary curve Arctic circle

Recent development

- Two-periodic weighting Chhita, Johansson (2016) Beffara, Chhita, Johansson (2018 to appear)

Two-periodic weights

- A new phase within the liquid region: gas region

Phase diagram

3. Hexagon tilings

Lozenge tiling of a hexagon

three types of lozenges

Arctic circle phenomenon

Two periodic hexagon（size 6）

$$
\alpha=0
$$

$$
\alpha=0.1
$$

Two periodic hexagon (size 30)

$\alpha=0.1$

$\alpha=0.18$

Two periodic hexagon (size 50)

$$
\alpha=0.1
$$

$\alpha=0.15$

4. The two periodic model

Oblique hexagon and weights

- Vertices are on the integer lattice \mathbb{Z}^{2}

Oblique hexagon and weights

- Vertices are on the integer lattice \mathbb{Z}^{2}

has weight $\begin{cases}\alpha<1, & \text { if } i+j \text { is even }, \\ 1, & \text { if } i+j \text { is odd },\end{cases}$
(i, j)

have weight 1

Weight

(i, j)
have weight 1

- Weight of a tiling T is the product of the weights of the lozenges in the tiling.
- Probability is proportional to the weight

$$
\operatorname{Prob}(T)=\frac{w(T)}{Z_{N}}
$$

where $Z_{N}=\sum_{T} w(T)$ is the normalizing constant (partition function)

4. Non-intersecting paths

Non-intersecting paths

Non-intersecting paths

Non-intersecting paths on a graph
Paths fit on a graph

Weights on the graph

Red edges carry weight $\alpha<1$.
Other edges weight 1

Two periodic hexagon (size 30)

$\alpha=0.1$

$\alpha=0.18$

- For $0<\alpha<1$: punishment to cover the red edges.
- Staircase region in the middle avoids all red edges.

6. Determinantal point process : known results

Particle configuration
Consider positions of particles along the paths.

Transitions and LGV theorem

Particles at level $m: x_{j}^{(m)}, j=0, \ldots, N-1$.
Proposition

$$
\operatorname{Prob}\left(\left(x_{j}^{(m)}\right)_{j=0, m=1}^{N-1,2 N-1}\right)=\frac{1}{Z_{n}} \prod_{m=0}^{2 N-1} \operatorname{det}\left[T_{m}\left(x_{j}^{(m)}, x_{k}^{(m+1)}\right)\right]_{j, k=0}^{N-1}
$$

with $x_{j}^{(0)}=j, x_{j}^{(2 N)}=N+j$ and transition matrices

$$
\begin{aligned}
T_{m}(x, x) & =1 \\
T_{m}(x, x+1) & = \begin{cases}\alpha, & \text { if } m+x \text { is even }, \\
1, & \text { if } m+x \text { is odd },\end{cases} \\
T_{m}(x, y) & =0 \quad \text { otherwise }, \quad x, y \in \mathbb{Z}
\end{aligned}
$$

This follows from Lindström-Gessel-Viennot lemma. Lindström (1973) Gessel-Viennot (1985)

Such a product of determinants defines a determinantal point process on $\mathcal{X}=\{0, \ldots, 2 N\} \times \mathbb{Z}$.

Determinantal point process

Such a product of determinants defines a determinantal point process on $\mathcal{X}=\{0, \ldots, 2 N\} \times \mathbb{Z}$.

Corollary

There is a correlation kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ such that for every finite $\mathcal{A} \subset \mathcal{X}$
$\operatorname{Prob}[\exists$ particle at each $(m, x) \in \mathcal{A}]$

$$
=\operatorname{det}\left[K\left((m, x),\left(m^{\prime}, x^{\prime}\right)\right)\right]_{(m, x),\left(m^{\prime}, x^{\prime}\right) \in \mathcal{A}}
$$

Eynard Mehta formula

Notation for $m<m^{\prime}$

$$
T_{m, m^{\prime}}=T_{m^{\prime}-1} \cdots \cdot T_{m+1} \cdot T_{m}
$$

is transition matrix from level m to level m^{\prime}, and

$$
G=\left[T_{0,2 N}(i, j)\right]_{i, j=0}^{2 N-1}
$$

is finite section of $T_{0,2 N}$.
Eynard-Mehta (1998) formula for correlation kernel

$$
\begin{aligned}
K\left((m, x),\left(m^{\prime}, x^{\prime}\right)\right)=- & \chi_{m>m^{\prime}} T_{m^{\prime}, m}\left(x^{\prime}, x\right)+ \\
& \sum_{i, j=0}^{2 N-1} T_{0, m}(i, x)\left[G^{-1}\right]_{j, i} T_{m^{\prime}, 2 N}\left(x^{\prime}, j\right)
\end{aligned}
$$

- How to invert the matrix G ?

7. Determinantal point process: new result for periodic T_{m}

T_{m} is 2-periodic: $T_{m}(x+2, y+2)=T_{m}(x, y)$ for $x, y \in \mathbb{Z}$

T_{m} is 2-periodic: $T_{m}(x+2, y+2)=T_{m}(x, y)$ for $x, y \in \mathbb{Z}$

- Notation

$$
A(z)=A_{1}(z) A_{0}(z)
$$

Double contour integral formula

Theorem (Duits +K for this special case)
Suppose hexagon of size $2 N$. Then

$$
\begin{gathered}
\left(\begin{array}{cc}
K\left(2 m, 2 x ; 2 m^{\prime}, 2 y\right) & K\left(2 m, 2 x+1 ; 2 m^{\prime}, 2 y\right) \\
K\left(2 m, 2 x ; 2 m^{\prime}, 2 y+1\right) & K\left(2 m, 2 x+1,2 m^{\prime}, 2 y+1\right)
\end{array}\right) \\
=-\frac{\chi_{m>m^{\prime}}}{2 \pi i} \oint_{\gamma} A^{m-m^{\prime}}(z) z^{y-x} \frac{d z}{z} \\
+\frac{1}{(2 \pi i)^{2}} \oint_{\gamma} \oint_{\gamma} A^{2 N-m^{\prime}}(w) R_{N}(w, z) A^{m}(z) \frac{w^{y}}{z^{x+1} w^{2 N}} d z d w
\end{gathered}
$$

where $R_{N}(w, z)$ is a reproducing kernel for matrix valued polynomials with respect to weight matrix

$$
W_{N}(z)=\frac{A^{2 N}(z)}{z^{2 N}}=\frac{1}{z^{2 N}}\left(\begin{array}{cc}
1+z & 1+\alpha \\
(1+\alpha) z & 1+\alpha^{2} z
\end{array}\right)^{2 N}
$$

8. Matrix Valued Orthogonal Polynomials (again)

- Matrix valued orthogonality

$$
\frac{1}{2 \pi i} \oint_{\gamma} P_{j}(z) W_{N}(z) P_{k}^{t}(z) d z=H_{j} \delta_{j, k}
$$

Definition

Reproducing kernel for matrix polynomials

$$
R_{N}(w, z)=\sum_{j=0}^{N-1} P_{j}^{t}(w) H_{j}^{-1} P_{j}(z)
$$

- If Q has degree $\leq N-1$, then

$$
\frac{1}{2 \pi i} \oint_{\gamma} Q(w) W_{N}(w) R_{N}(w, z) d w=Q(z)
$$

- There is a Christoffel-Darboux formula for R_{N} and a Riemann Hilbert problem for MVOP
$Y: \mathbb{C} \backslash \gamma \rightarrow \mathbb{C}^{4 \times 4}$ satisfies
- Y is analytic,
- $Y_{+}=Y_{-}\left(\begin{array}{cc}I_{2} & W_{N} \\ 0_{2} & I_{2}\end{array}\right)$ on γ,
- $Y(z)=\left(I_{4}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}z^{N} I_{2} & 0_{2} \\ 0_{2} & z^{-N} I_{2}\end{array}\right)$ as $z \rightarrow \infty$.
- There is a Christoffel-Darboux formula for R_{N} and a Riemann Hilbert problem for MVOP
$Y: \mathbb{C} \backslash \gamma \rightarrow \mathbb{C}^{4 \times 4}$ satisfies
- Y is analytic,
- $Y_{+}=Y_{-}\left(\begin{array}{cc}I_{2} & W_{N} \\ 0_{2} & I_{2}\end{array}\right)$ on γ,
- $Y(z)=\left(I_{4}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}z^{N} / I_{2} & 0_{2} \\ 0_{2} & z^{-N} I_{2}\end{array}\right)$ as $z \rightarrow \infty$.

Christoffel Darboux formula

$$
R_{N}(w, z)=\frac{1}{z-w}\left(\begin{array}{ll}
0_{2} & l_{2}
\end{array}\right) Y^{-1}(w) Y(z)\binom{I_{2}}{0_{2}}
$$

Delvaux (2010)

Matrix weights and genus

Lozenge tiling of hexagon

- $A(z)=\left(\begin{array}{cc}1+z & 1+\alpha \\ (1+\alpha) z & 1+\alpha^{2} z\end{array}\right)$ has eigenvalues

$$
1+\frac{1+\alpha^{2}}{2} z \pm \frac{1-\alpha^{2}}{2} \sqrt{z\left(z+\frac{4}{(1-\alpha)^{2}}\right)}
$$

that "live" on $y^{2}=z\left(z+\frac{4}{(1-\alpha)^{2}}\right) \quad \rightarrow$ genus zero

Matrix weights and genus

Lozenge tiling of hexagon

- $A(z)=\left(\begin{array}{cc}1+z & 1+\alpha \\ (1+\alpha) z & 1+\alpha^{2} z\end{array}\right)$ has eigenvalues

$$
1+\frac{1+\alpha^{2}}{2} z \pm \frac{1-\alpha^{2}}{2} \sqrt{z\left(z+\frac{4}{(1-\alpha)^{2}}\right)}
$$

that "live" on $y^{2}=z\left(z+\frac{4}{(1-\alpha)^{2}}\right) \quad \rightarrow$ genus zero
Two periodic Aztec diamond

- Similar analysis leads to $\left(\begin{array}{cc}2 \alpha z & \alpha(z+1) \\ \alpha^{-1} z(z+1) & 2 \alpha^{-1} z\end{array}\right)$ with eigenvalues

$$
\left(\alpha+\alpha^{-1}\right) z \pm \sqrt{z\left(z+\alpha^{2}\right)\left(z+\alpha^{-2}\right)}
$$

\rightarrow genus one and this leads to gas phase

9. Results for Aztec diamond

- MVOP of degree N is explicit for N even

$$
P_{N}(z)=(z-1)^{N} z^{N / 2} A^{-N}(z)
$$

- Explicit formula for correlation kernel (double contour part only)

$$
\begin{aligned}
\frac{1}{(2 \pi i)^{2}} \oint_{\gamma_{0,1}} \frac{d z}{z} \oint_{\gamma_{1}} \frac{d w}{z-w} & A^{N-m^{\prime}}(w) F(w) A^{-N+m}(z) \\
& \times \frac{z^{N / 2}(z-1)^{N}}{w^{N / 2}(w-1)^{N}} \frac{w^{\left(m^{\prime}+n^{\prime}\right) / 2}}{z^{(m+n) / 2}}
\end{aligned}
$$

with $F(w)=\frac{1}{2} I_{2}$

$$
+\frac{1}{2 \sqrt{w\left(w+\alpha^{2}\right)\left(w+\alpha^{-2}\right)}}\left(\begin{array}{cc}
\left(\alpha-\alpha^{-1}\right) w & \alpha(w+1) \\
\alpha^{-1} w(w+1) & -\left(\alpha-\alpha^{-1}\right) w
\end{array}\right)
$$

Steepest descent

- Classical steepest descent for integrals on the Riemann surface explains the phases and transitions between phases

10. Results for hexagon

Scalar orthogonality

MVOP for two periodic hexagon are expressed in terms of scalar OP of degree $2 N$

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{\gamma_{1}} P_{2 N}(\zeta)\left(\frac{(\zeta-\alpha)^{2}}{\zeta(\zeta-1)^{2}}\right)^{2 N} \zeta^{k} d \zeta & =0 \\
& k=0,1, \ldots, 2 N-1
\end{aligned}
$$

- Non-hermitian orthogonality with respect to varying weight

Scalar orthogonality

MVOP for two periodic hexagon are expressed in terms of scalar OP of degree $2 N$

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{\gamma_{1}} P_{2 N}(\zeta)\left(\frac{(\zeta-\alpha)^{2}}{\zeta(\zeta-1)^{2}}\right)^{2 N} \zeta^{k} d \zeta & =0 \\
& k=0,1, \ldots, 2 N-1
\end{aligned}
$$

- Non-hermitian orthogonality with respect to varying weight
- We can see the phase transition at $\alpha=1 / 9$ in the behavior of the zeros of $P_{2 N}$ as $N \rightarrow \infty$.

- Curve closes for $\alpha=1 / 9$.
- Analysis uses logarithmic potential theory, S-curves in external field, and the Riemann-Hilbert problem

Thanks

Thank you for your attention

