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Low Rank Matrices and Tensors

Our objects of interest are multivariate functions

f (x1, . . . , xd) ∈ R, x ∈ I = I1 × · · · × Id

with typically finite univariate index sets Iµ

We want to represent or approximate the function in low rank form

f (x1, . . . , xd) ≈
∑
j

fj ,1(x1) · · · fj ,d(xd)

with univariate fj ,µ

Data-sparse representation of each fj ,µ easy
Curse of dimensionality lifted provided few summands
Need to find/determine the fj ,µ
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Low Rank Matrices and Tensors

f (x1, . . . , xd) ≈
∑
j

fj ,1(x1) · · · fj ,d(xd)

Is this format useful for computations?

Hilbert-Schmidt (SVD) in d = 2

f (x1, x2) =
r∑

j=1

fj ,1(x1)fj ,2(x2)

s.t. f·,1 and f·,2 orthogonal / normalized

Problem: This framework exists only in d < 3

Our goal is to extend this to high dimension d � 1000
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Low Rank Matrices and Tensors

Example: d-dimensional Laplacian

We solve [Computing 2004, G.]

−∆u(x) = 1, x ∈ Ω = [0, 1]d , u|∂Ω = 0

on a grid with 1024d grid points and rel. pointwise accuracy ≈ 10−5

d 128 256 512 1024 2048 4096
Seconds 32 31 35 48 82 187

Why do we choose the grid/basis fixed?

ease of presentation, cf. [FOCM 16,2016, Dahmen,DeVore,G.,Süli]
Results based on exponential sums 1

x
≈

∑r
j=1 wj exp(tjx)
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Low Rank Matrices and Tensors

Example: d-dimensional Laplacian

−∆u(x) = 1, x ∈ Ω = [0, 1]d , u|∂Ω = 0

The operator discretized leads to a (sparse) matrix A and we solve

Ax = b

We apply the matrix function

F (A) =
r∑

j=1

wj exp(tjA) ≈ A−1

and obtain — for structured b — a structured solution

x ≈ x̃ =
r∑

j=1

wj exp(tjA)b
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Low Rank Matrices and Tensors

Remarks:

1. The operator (and thus A) is structured

2. The right-hand side is assumed to be structured
3. We require an explicit a priori exponential sum approximation

1

x
≈

r∑
j=1

wj exp(tjx), x ∈ (1,∞)

4. This trick is so good, it is used in all sciences
5. There exists essentially no generalisation (so far?)

We need to change the low rank format
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The Hierarchical Tucker Format

Low rank matrix representation M = UV T

M(i1, i2) =
k∑

j=1

U(i1, j)V (i2, j)

Low rank tensor representation (CP) format

M(i1, . . . , id) =
k∑

j=1

Mj ,1(i1) · · ·Mj ,d(id)

Matrices of rank ≤ k closed
Tensors of rank ≤ k not closed (and complicated)
CP decomposition used e.g. in blind source separation
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The Hierarchical Tucker Format

Idea (Hackbusch): Use a hierarchy of low rank matrices:

M( i1, i2 , i3, i4 ) =
k∑

j=1

U (1,2)( i1, i2 , j)U
(3,4)( i3, i4 , j)

U (1,2)(i1, i2, j) =
k∑
`=1

k∑
m=1

B (1,2)
j ,`,mU

(1)(i1, `)U
(2)(i2,m)

U (3,4)(i3, i4, j) =
k∑
`=1

k∑
m=1

B (3,4)
j ,`,mU

(3)(i3, `)U
(4)(i4,m)

→ (HT) format

HT Tensors of rank ≤ k closed (and simple)
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The Hierarchical Tucker Format

k
k

k×k×k

n×k n×k

k×k×k

n×k n×k

(illustration for d = 4)
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k
k

k×k×k

k×k×k

n×k n×k

k×k×k

n×k n×k

k×k×k

k×k×k

n×k n×k

k×k×k

n×k n×k

(illustration for d = 8)
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The Hierarchical Tucker Format

k
k

n×k

k×k×k

n×k

k×k×k

n×k

k×k×k

n×k n×k

(illustration for d = 5)
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The Hierarchical Tucker Format

A d -dimensional tensor M ∈ Rn×···×n (i.e. nd entries) of
low rank k allows for a representation in the
Hierarchical Tucker Format with only

d · n · k + (d − 2) · k3 + k2 = O(d) entries.

Example: d = 20, n = 10, k = 5
full tensor: 100, 000, 000, 000, 000, 000, 000 entries
HT tensor: 3, 275 parameters
CP tensor: 1, 000 parameters
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The Hierarchical Tucker Format

Matricization and low rank representation for t = {2, 3, 5}:

M( i2, i3, i5 , i1, i4, i6, i7 ) =
k∑

j=1

U( i2, i3, i5 , j)V ( i1, i4, i6, i7 , j)

For each t this defines a set R(t, k) ⊂ Rnd .

HT (k) :=
⋂
t∈T

R(t, k) tree T

Two main research directions:

1. Design algorithms to work with and exploit data-sparse tensor
representations ( � 1000 articles )

2. Prove approximability / convergence ( few articles )
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k∑

j=1

U( i2, i3, i5 , j)V ( i1, i4, i6, i7 , j)

For each t this defines a set R(t, k) ⊂ Rnd .

HT (k) :=
⋂
t∈T

R(t, k) tree T

Two main research directions:

1. Design algorithms to work with and exploit data-sparse tensor
representations ( � 1000 articles )

2. Prove approximability / convergence ( few articles )
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The Hierarchical Tucker Format

Truncation of Hierarchical Tensors / Projection onto HT (k)

The computation of u + v doubles the rank: k → 2k.

The computation of Au or u ◦ v even causes k → k2.

A tensor u can either be truncated
– to a tensor ũ of prescribed rank k or
– to a tensor ũ, that fulfills ‖u − ũ‖ < ε for a prescribed error ε

(the rank of ũ gets chosen adaptively).

(Truncation should be applied after a certain amount of
summations or multiplications to keep the amount of data
dnk + (d − 2)k3 + k2 below some upper limit)
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The Hierarchical Tucker Format

Truncation of Hierarchical Tensors

Best approximation of u ∈ HT (T , k) not computable
Independent (best) truncation in each R(T , k)
(HT (T , k) = ∩t∈TR(t, k)) yields

‖u − ũ‖ ≤
√

2d − 3 inf
v∈HT (T ,k)

‖u − v‖

Speed of truncation (single processor CPU, 9 years ago):

n = 100, d = 1000, input rank k = 25
Memory consumption: 138 MB
Time consumption: 19 seconds
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The Hierarchical Tucker Format

Parallel Truncation [Num.Lin.Alg.Appl., G.,Löbbert, acc.]

time ∼ log2(d) (full tensor: 10512 entries)

0 2 4 6 8
0

50

100

150

200

log2(d)

ti
m

e
[s

]
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The Hierarchical Tucker Format

Postprocessing with low rank tensors can be easy:

QoI =

∫
f (x)dπ(x)

with product measure π and

f (x1, . . . , xd) =
k∑

j=1

fj ,1(x1) · · · fj ,d(xd)

gives

QoI =
k∑

j=1

d∏
µ=1

∫
fj ,µ(xµ)dπµ(xµ)

. . . or complicated:
max
i1,...,id

f (i1, . . . , id) =?
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Determine Largest Element

max
i1,...,id

f (i1, . . . , id) =?

1. Conditioning of the problem
2. Numerical heuristics
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Determine Largest Element

1. Conditioning

M := max
i1,...,id
|f (i1, . . . , id)| =?

Any elementwise perturbation E of size ε yields

max
i1,...,id
|f (i1, . . . , id) + E (i1, . . . , id)| ∈ [M − ε,M + ε]

What about
max
i1,...,id
|f (i1, . . . , id) + E (i1, . . . , id)|

for ‖M‖ ≤ ε‖f ‖?
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Determine Largest Element

max
i1,...,id
|f (i1, . . . , id) + E (i1, . . . , id)| ∈?, ‖M‖ ≤ ε‖f ‖

Example: ε ∼ 1/
√
n

f =


ε · · · ε 0
... . . . ... 0
ε · · · ε 0
0 · · · 0 1

 ∈ Rn+1×n+1, ‖f ‖F =
√
n2ε2 + 1 ∼

√
n

M =


0 · · · 0 0
... . . . ... 0
0 · · · 0 0
0 · · · 0 −1

 ∈ Rn+1×n+1, ‖M‖F = 1 ∼ ε‖f ‖F

In higher dimension d ill-conditioned in ‖ · ‖F
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Determine Largest Element

max
i1,...,id
|f (i1, . . . , id) + E (i1, . . . , id)| ∈?, ‖M‖ ≤ ε‖f ‖

Example: ε ∼ n−d/4

f = εv ⊗ · · · ⊗ v ∈ R(n+1)d , ‖f ‖F =
√
ndε2 + 1 ∼ nd/4

M = −en+1 ⊗ · · · ⊗ en+1 ∈ R(n+1)d , ‖M‖F = 1 ∼ ε‖f ‖F

In higher dimension d ill-conditioned in ‖ · ‖F
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Determine Largest Element

2. Numerical Heuristics

First approach:

for any rank 1 tensor v = v1 ⊗ · · · ⊗ vd we have

‖v‖∞ =
d∏
µ=1

‖vµ‖∞

argmaxi |v(i)| = (argmaxiµ|vµ(iµ)|)dµ=1

truncate tensor M to rank 1 tensor M̃ and compute its max
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Determine Largest Element

2. Numerical Heuristics

First approach: truncate to rank 1
Example: ε ∼ n−d/2

M = εv ⊗ · · · ⊗ v + en+1 ⊗ · · · ⊗ en+1

Rank 1 best approximation in ‖ · ‖F is

M̃ = εv ⊗ · · · ⊗ v

Result: ‖M‖∞ = 1 estimated by ‖M̃‖∞ = n−d/2,
gives completely wrong answer
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Determine Largest Element

2. Numerical Heuristics

Second approach: power iteration (Mike Espig)

compute Hadamard products

M̂ := M �M �M · · ·

truncate tensor M̂ to rank 1 tensor M̃ and compute its argmax
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Determine Largest Element

2. Numerical Heuristics

Second approach: power iteration
Example: ε ∼ n−1

M = εv ⊗ · · · ⊗ v + en+1 ⊗ · · · ⊗ en+1

M̂ := M �M �M · · · = ε`v ⊗ · · · ⊗ v

Rank 1 best approximation in ‖ · ‖F is

M̃ = ε`v ⊗ · · · ⊗ v

for all ` < d/2
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Determine Largest Element

2. Numerical Heuristics

Further approaches:

subspace iterations (Lukas Juschka)
local search
many optimizations. . .

[cf. Higham and Relton 2015]

Lower bound: largest known value
Good upper bound: ? some p-norm
→ branach and bound

(work in progress)

27 of 29 Matrix and Tensor Functions in Conflict with Approximation
Lars Grasedyck — lgr@igpm.rwth-aachen.de — RWTH Aachen University
amf18 — May 31st 2018



Determine Largest Element

2. Numerical Heuristics

Further approaches:

subspace iterations (Lukas Juschka)
local search
many optimizations. . .

[cf. Higham and Relton 2015]

Lower bound: largest known value
Good upper bound: ? some p-norm
→ branach and bound

(work in progress)

27 of 29 Matrix and Tensor Functions in Conflict with Approximation
Lars Grasedyck — lgr@igpm.rwth-aachen.de — RWTH Aachen University
amf18 — May 31st 2018



Interesting Problems

1. Stability of Tensor Completion
(→ Krämer, G. arXiv:1701.08045) and other operations

2. Geometry of HT (T , k),
e.g. feasible singular values, Krämer arXiv:1701.08437

3. Finding the tree T (→ Ballani, G. SISC 36, 2014)
4. A priori assess u ≈ ũ ∈ HT (T , k)
5. Postprocess ũ to find max, min, cuts, . . .
6. Prove (global) convergence of alternating minimization
7. From trees to networks
8. Relation between HT and deep convolutional neural networks

. . .
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Interesting Problems
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Thank You!
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Stable ALS Approximation in the TT-Format for Rank-Adaptive Tensor Completion,

arXiv:1701.08045 (2017). kraemer@igpm.rwth-aachen.de

supported by the DFG within priority program 1648, 1886

29 of 29 Matrix and Tensor Functions in Conflict with Approximation
Lars Grasedyck — lgr@igpm.rwth-aachen.de — RWTH Aachen University
amf18 — May 31st 2018


	Low Rank Matrices and Tensors
	The Hierarchical Tucker Format
	Determine Largest Element
	Interesting Problems

